chebyshev.py 61.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
"""
Objects for dealing with Chebyshev series.

This module provides a number of objects (mostly functions) useful for
dealing with Chebyshev series, including a `Chebyshev` class that
encapsulates the usual arithmetic operations.  (General information
on how this module represents and works with such polynomials is in the
docstring for its "parent" sub-package, `numpy.polynomial`).

Constants
---------
- `chebdomain` -- Chebyshev series default domain, [-1,1].
- `chebzero` -- (Coefficients of the) Chebyshev series that evaluates
  identically to 0.
- `chebone` -- (Coefficients of the) Chebyshev series that evaluates
  identically to 1.
- `chebx` -- (Coefficients of the) Chebyshev series for the identity map,
  ``f(x) = x``.

Arithmetic
----------
- `chebadd` -- add two Chebyshev series.
- `chebsub` -- subtract one Chebyshev series from another.
- `chebmulx` -- multiply a Chebyshev series in ``P_i(x)`` by ``x``.
- `chebmul` -- multiply two Chebyshev series.
- `chebdiv` -- divide one Chebyshev series by another.
- `chebpow` -- raise a Chebyshev series to a positive integer power.
- `chebval` -- evaluate a Chebyshev series at given points.
- `chebval2d` -- evaluate a 2D Chebyshev series at given points.
- `chebval3d` -- evaluate a 3D Chebyshev series at given points.
- `chebgrid2d` -- evaluate a 2D Chebyshev series on a Cartesian product.
- `chebgrid3d` -- evaluate a 3D Chebyshev series on a Cartesian product.

Calculus
--------
- `chebder` -- differentiate a Chebyshev series.
- `chebint` -- integrate a Chebyshev series.

Misc Functions
--------------
- `chebfromroots` -- create a Chebyshev series with specified roots.
- `chebroots` -- find the roots of a Chebyshev series.
- `chebvander` -- Vandermonde-like matrix for Chebyshev polynomials.
- `chebvander2d` -- Vandermonde-like matrix for 2D power series.
- `chebvander3d` -- Vandermonde-like matrix for 3D power series.
- `chebgauss` -- Gauss-Chebyshev quadrature, points and weights.
- `chebweight` -- Chebyshev weight function.
- `chebcompanion` -- symmetrized companion matrix in Chebyshev form.
- `chebfit` -- least-squares fit returning a Chebyshev series.
- `chebpts1` -- Chebyshev points of the first kind.
- `chebpts2` -- Chebyshev points of the second kind.
- `chebtrim` -- trim leading coefficients from a Chebyshev series.
- `chebline` -- Chebyshev series representing given straight line.
- `cheb2poly` -- convert a Chebyshev series to a polynomial.
- `poly2cheb` -- convert a polynomial to a Chebyshev series.
- `chebinterpolate` -- interpolate a function at the Chebyshev points.

Classes
-------
- `Chebyshev` -- A Chebyshev series class.

See also
--------
`numpy.polynomial`

Notes
-----
The implementations of multiplication, division, integration, and
differentiation use the algebraic identities [1]_:

.. math ::
    T_n(x) = \\frac{z^n + z^{-n}}{2} \\\\
    z\\frac{dx}{dz} = \\frac{z - z^{-1}}{2}.

where

.. math :: x = \\frac{z + z^{-1}}{2}.

These identities allow a Chebyshev series to be expressed as a finite,
symmetric Laurent series.  In this module, this sort of Laurent series
is referred to as a "z-series."

References
----------
.. [1] A. T. Benjamin, et al., "Combinatorial Trigonometry with Chebyshev
  Polynomials," *Journal of Statistical Planning and Inference 14*, 2008
  (preprint: https://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf, pg. 4)

"""
from __future__ import division, absolute_import, print_function

import warnings
import numpy as np
import numpy.linalg as la
from numpy.core.multiarray import normalize_axis_index

from . import polyutils as pu
from ._polybase import ABCPolyBase

__all__ = [
    'chebzero', 'chebone', 'chebx', 'chebdomain', 'chebline', 'chebadd',
    'chebsub', 'chebmulx', 'chebmul', 'chebdiv', 'chebpow', 'chebval',
    'chebder', 'chebint', 'cheb2poly', 'poly2cheb', 'chebfromroots',
    'chebvander', 'chebfit', 'chebtrim', 'chebroots', 'chebpts1',
    'chebpts2', 'Chebyshev', 'chebval2d', 'chebval3d', 'chebgrid2d',
    'chebgrid3d', 'chebvander2d', 'chebvander3d', 'chebcompanion',
    'chebgauss', 'chebweight', 'chebinterpolate']

chebtrim = pu.trimcoef

#
# A collection of functions for manipulating z-series. These are private
# functions and do minimal error checking.
#

def _cseries_to_zseries(c):
    """Covert Chebyshev series to z-series.

    Covert a Chebyshev series to the equivalent z-series. The result is
    never an empty array. The dtype of the return is the same as that of
    the input. No checks are run on the arguments as this routine is for
    internal use.

    Parameters
    ----------
    c : 1-D ndarray
        Chebyshev coefficients, ordered from low to high

    Returns
    -------
    zs : 1-D ndarray
        Odd length symmetric z-series, ordered from  low to high.

    """
    n = c.size
    zs = np.zeros(2*n-1, dtype=c.dtype)
    zs[n-1:] = c/2
    return zs + zs[::-1]


def _zseries_to_cseries(zs):
    """Covert z-series to a Chebyshev series.

    Covert a z series to the equivalent Chebyshev series. The result is
    never an empty array. The dtype of the return is the same as that of
    the input. No checks are run on the arguments as this routine is for
    internal use.

    Parameters
    ----------
    zs : 1-D ndarray
        Odd length symmetric z-series, ordered from  low to high.

    Returns
    -------
    c : 1-D ndarray
        Chebyshev coefficients, ordered from  low to high.

    """
    n = (zs.size + 1)//2
    c = zs[n-1:].copy()
    c[1:n] *= 2
    return c


def _zseries_mul(z1, z2):
    """Multiply two z-series.

    Multiply two z-series to produce a z-series.

    Parameters
    ----------
    z1, z2 : 1-D ndarray
        The arrays must be 1-D but this is not checked.

    Returns
    -------
    product : 1-D ndarray
        The product z-series.

    Notes
    -----
    This is simply convolution. If symmetric/anti-symmetric z-series are
    denoted by S/A then the following rules apply:

    S*S, A*A -> S
    S*A, A*S -> A

    """
    return np.convolve(z1, z2)


def _zseries_div(z1, z2):
    """Divide the first z-series by the second.

    Divide `z1` by `z2` and return the quotient and remainder as z-series.
    Warning: this implementation only applies when both z1 and z2 have the
    same symmetry, which is sufficient for present purposes.

    Parameters
    ----------
    z1, z2 : 1-D ndarray
        The arrays must be 1-D and have the same symmetry, but this is not
        checked.

    Returns
    -------

    (quotient, remainder) : 1-D ndarrays
        Quotient and remainder as z-series.

    Notes
    -----
    This is not the same as polynomial division on account of the desired form
    of the remainder. If symmetric/anti-symmetric z-series are denoted by S/A
    then the following rules apply:

    S/S -> S,S
    A/A -> S,A

    The restriction to types of the same symmetry could be fixed but seems like
    unneeded generality. There is no natural form for the remainder in the case
    where there is no symmetry.

    """
    z1 = z1.copy()
    z2 = z2.copy()
    lc1 = len(z1)
    lc2 = len(z2)
    if lc2 == 1:
        z1 /= z2
        return z1, z1[:1]*0
    elif lc1 < lc2:
        return z1[:1]*0, z1
    else:
        dlen = lc1 - lc2
        scl = z2[0]
        z2 /= scl
        quo = np.empty(dlen + 1, dtype=z1.dtype)
        i = 0
        j = dlen
        while i < j:
            r = z1[i]
            quo[i] = z1[i]
            quo[dlen - i] = r
            tmp = r*z2
            z1[i:i+lc2] -= tmp
            z1[j:j+lc2] -= tmp
            i += 1
            j -= 1
        r = z1[i]
        quo[i] = r
        tmp = r*z2
        z1[i:i+lc2] -= tmp
        quo /= scl
        rem = z1[i+1:i-1+lc2].copy()
        return quo, rem


def _zseries_der(zs):
    """Differentiate a z-series.

    The derivative is with respect to x, not z. This is achieved using the
    chain rule and the value of dx/dz given in the module notes.

    Parameters
    ----------
    zs : z-series
        The z-series to differentiate.

    Returns
    -------
    derivative : z-series
        The derivative

    Notes
    -----
    The zseries for x (ns) has been multiplied by two in order to avoid
    using floats that are incompatible with Decimal and likely other
    specialized scalar types. This scaling has been compensated by
    multiplying the value of zs by two also so that the two cancels in the
    division.

    """
    n = len(zs)//2
    ns = np.array([-1, 0, 1], dtype=zs.dtype)
    zs *= np.arange(-n, n+1)*2
    d, r = _zseries_div(zs, ns)
    return d


def _zseries_int(zs):
    """Integrate a z-series.

    The integral is with respect to x, not z. This is achieved by a change
    of variable using dx/dz given in the module notes.

    Parameters
    ----------
    zs : z-series
        The z-series to integrate

    Returns
    -------
    integral : z-series
        The indefinite integral

    Notes
    -----
    The zseries for x (ns) has been multiplied by two in order to avoid
    using floats that are incompatible with Decimal and likely other
    specialized scalar types. This scaling has been compensated by
    dividing the resulting zs by two.

    """
    n = 1 + len(zs)//2
    ns = np.array([-1, 0, 1], dtype=zs.dtype)
    zs = _zseries_mul(zs, ns)
    div = np.arange(-n, n+1)*2
    zs[:n] /= div[:n]
    zs[n+1:] /= div[n+1:]
    zs[n] = 0
    return zs

#
# Chebyshev series functions
#


def poly2cheb(pol):
    """
    Convert a polynomial to a Chebyshev series.

    Convert an array representing the coefficients of a polynomial (relative
    to the "standard" basis) ordered from lowest degree to highest, to an
    array of the coefficients of the equivalent Chebyshev series, ordered
    from lowest to highest degree.

    Parameters
    ----------
    pol : array_like
        1-D array containing the polynomial coefficients

    Returns
    -------
    c : ndarray
        1-D array containing the coefficients of the equivalent Chebyshev
        series.

    See Also
    --------
    cheb2poly

    Notes
    -----
    The easy way to do conversions between polynomial basis sets
    is to use the convert method of a class instance.

    Examples
    --------
    >>> from numpy import polynomial as P
    >>> p = P.Polynomial(range(4))
    >>> p
    Polynomial([0., 1., 2., 3.], domain=[-1,  1], window=[-1,  1])
    >>> c = p.convert(kind=P.Chebyshev)
    >>> c
    Chebyshev([1.  , 3.25, 1.  , 0.75], domain=[-1.,  1.], window=[-1.,  1.])
    >>> P.chebyshev.poly2cheb(range(4))
    array([1.  , 3.25, 1.  , 0.75])

    """
    [pol] = pu.as_series([pol])
    deg = len(pol) - 1
    res = 0
    for i in range(deg, -1, -1):
        res = chebadd(chebmulx(res), pol[i])
    return res


def cheb2poly(c):
    """
    Convert a Chebyshev series to a polynomial.

    Convert an array representing the coefficients of a Chebyshev series,
    ordered from lowest degree to highest, to an array of the coefficients
    of the equivalent polynomial (relative to the "standard" basis) ordered
    from lowest to highest degree.

    Parameters
    ----------
    c : array_like
        1-D array containing the Chebyshev series coefficients, ordered
        from lowest order term to highest.

    Returns
    -------
    pol : ndarray
        1-D array containing the coefficients of the equivalent polynomial
        (relative to the "standard" basis) ordered from lowest order term
        to highest.

    See Also
    --------
    poly2cheb

    Notes
    -----
    The easy way to do conversions between polynomial basis sets
    is to use the convert method of a class instance.

    Examples
    --------
    >>> from numpy import polynomial as P
    >>> c = P.Chebyshev(range(4))
    >>> c
    Chebyshev([0., 1., 2., 3.], domain=[-1,  1], window=[-1,  1])
    >>> p = c.convert(kind=P.Polynomial)
    >>> p
    Polynomial([-2., -8.,  4., 12.], domain=[-1.,  1.], window=[-1.,  1.])
    >>> P.chebyshev.cheb2poly(range(4))
    array([-2.,  -8.,   4.,  12.])

    """
    from .polynomial import polyadd, polysub, polymulx

    [c] = pu.as_series([c])
    n = len(c)
    if n < 3:
        return c
    else:
        c0 = c[-2]
        c1 = c[-1]
        # i is the current degree of c1
        for i in range(n - 1, 1, -1):
            tmp = c0
            c0 = polysub(c[i - 2], c1)
            c1 = polyadd(tmp, polymulx(c1)*2)
        return polyadd(c0, polymulx(c1))


#
# These are constant arrays are of integer type so as to be compatible
# with the widest range of other types, such as Decimal.
#

# Chebyshev default domain.
chebdomain = np.array([-1, 1])

# Chebyshev coefficients representing zero.
chebzero = np.array([0])

# Chebyshev coefficients representing one.
chebone = np.array([1])

# Chebyshev coefficients representing the identity x.
chebx = np.array([0, 1])


def chebline(off, scl):
    """
    Chebyshev series whose graph is a straight line.



    Parameters
    ----------
    off, scl : scalars
        The specified line is given by ``off + scl*x``.

    Returns
    -------
    y : ndarray
        This module's representation of the Chebyshev series for
        ``off + scl*x``.

    See Also
    --------
    polyline

    Examples
    --------
    >>> import numpy.polynomial.chebyshev as C
    >>> C.chebline(3,2)
    array([3, 2])
    >>> C.chebval(-3, C.chebline(3,2)) # should be -3
    -3.0

    """
    if scl != 0:
        return np.array([off, scl])
    else:
        return np.array([off])


def chebfromroots(roots):
    """
    Generate a Chebyshev series with given roots.

    The function returns the coefficients of the polynomial

    .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),

    in Chebyshev form, where the `r_n` are the roots specified in `roots`.
    If a zero has multiplicity n, then it must appear in `roots` n times.
    For instance, if 2 is a root of multiplicity three and 3 is a root of
    multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
    roots can appear in any order.

    If the returned coefficients are `c`, then

    .. math:: p(x) = c_0 + c_1 * T_1(x) + ... +  c_n * T_n(x)

    The coefficient of the last term is not generally 1 for monic
    polynomials in Chebyshev form.

    Parameters
    ----------
    roots : array_like
        Sequence containing the roots.

    Returns
    -------
    out : ndarray
        1-D array of coefficients.  If all roots are real then `out` is a
        real array, if some of the roots are complex, then `out` is complex
        even if all the coefficients in the result are real (see Examples
        below).

    See Also
    --------
    polyfromroots, legfromroots, lagfromroots, hermfromroots, hermefromroots

    Examples
    --------
    >>> import numpy.polynomial.chebyshev as C
    >>> C.chebfromroots((-1,0,1)) # x^3 - x relative to the standard basis
    array([ 0.  , -0.25,  0.  ,  0.25])
    >>> j = complex(0,1)
    >>> C.chebfromroots((-j,j)) # x^2 + 1 relative to the standard basis
    array([1.5+0.j, 0. +0.j, 0.5+0.j])

    """
    return pu._fromroots(chebline, chebmul, roots)


def chebadd(c1, c2):
    """
    Add one Chebyshev series to another.

    Returns the sum of two Chebyshev series `c1` + `c2`.  The arguments
    are sequences of coefficients ordered from lowest order term to
    highest, i.e., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of Chebyshev series coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Array representing the Chebyshev series of their sum.

    See Also
    --------
    chebsub, chebmulx, chebmul, chebdiv, chebpow

    Notes
    -----
    Unlike multiplication, division, etc., the sum of two Chebyshev series
    is a Chebyshev series (without having to "reproject" the result onto
    the basis set) so addition, just like that of "standard" polynomials,
    is simply "component-wise."

    Examples
    --------
    >>> from numpy.polynomial import chebyshev as C
    >>> c1 = (1,2,3)
    >>> c2 = (3,2,1)
    >>> C.chebadd(c1,c2)
    array([4., 4., 4.])

    """
    return pu._add(c1, c2)


def chebsub(c1, c2):
    """
    Subtract one Chebyshev series from another.

    Returns the difference of two Chebyshev series `c1` - `c2`.  The
    sequences of coefficients are from lowest order term to highest, i.e.,
    [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of Chebyshev series coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Of Chebyshev series coefficients representing their difference.

    See Also
    --------
    chebadd, chebmulx, chebmul, chebdiv, chebpow

    Notes
    -----
    Unlike multiplication, division, etc., the difference of two Chebyshev
    series is a Chebyshev series (without having to "reproject" the result
    onto the basis set) so subtraction, just like that of "standard"
    polynomials, is simply "component-wise."

    Examples
    --------
    >>> from numpy.polynomial import chebyshev as C
    >>> c1 = (1,2,3)
    >>> c2 = (3,2,1)
    >>> C.chebsub(c1,c2)
    array([-2.,  0.,  2.])
    >>> C.chebsub(c2,c1) # -C.chebsub(c1,c2)
    array([ 2.,  0., -2.])

    """
    return pu._sub(c1, c2)


def chebmulx(c):
    """Multiply a Chebyshev series by x.

    Multiply the polynomial `c` by x, where x is the independent
    variable.


    Parameters
    ----------
    c : array_like
        1-D array of Chebyshev series coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Array representing the result of the multiplication.

    Notes
    -----

    .. versionadded:: 1.5.0

    Examples
    --------
    >>> from numpy.polynomial import chebyshev as C
    >>> C.chebmulx([1,2,3])
    array([1. , 2.5, 1. , 1.5])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    # The zero series needs special treatment
    if len(c) == 1 and c[0] == 0:
        return c

    prd = np.empty(len(c) + 1, dtype=c.dtype)
    prd[0] = c[0]*0
    prd[1] = c[0]
    if len(c) > 1:
        tmp = c[1:]/2
        prd[2:] = tmp
        prd[0:-2] += tmp
    return prd


def chebmul(c1, c2):
    """
    Multiply one Chebyshev series by another.

    Returns the product of two Chebyshev series `c1` * `c2`.  The arguments
    are sequences of coefficients, from lowest order "term" to highest,
    e.g., [1,2,3] represents the series ``T_0 + 2*T_1 + 3*T_2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of Chebyshev series coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Of Chebyshev series coefficients representing their product.

    See Also
    --------
    chebadd, chebsub, chebmulx, chebdiv, chebpow

    Notes
    -----
    In general, the (polynomial) product of two C-series results in terms
    that are not in the Chebyshev polynomial basis set.  Thus, to express
    the product as a C-series, it is typically necessary to "reproject"
    the product onto said basis set, which typically produces
    "unintuitive live" (but correct) results; see Examples section below.

    Examples
    --------
    >>> from numpy.polynomial import chebyshev as C
    >>> c1 = (1,2,3)
    >>> c2 = (3,2,1)
    >>> C.chebmul(c1,c2) # multiplication requires "reprojection"
    array([  6.5,  12. ,  12. ,   4. ,   1.5])

    """
    # c1, c2 are trimmed copies
    [c1, c2] = pu.as_series([c1, c2])
    z1 = _cseries_to_zseries(c1)
    z2 = _cseries_to_zseries(c2)
    prd = _zseries_mul(z1, z2)
    ret = _zseries_to_cseries(prd)
    return pu.trimseq(ret)


def chebdiv(c1, c2):
    """
    Divide one Chebyshev series by another.

    Returns the quotient-with-remainder of two Chebyshev series
    `c1` / `c2`.  The arguments are sequences of coefficients from lowest
    order "term" to highest, e.g., [1,2,3] represents the series
    ``T_0 + 2*T_1 + 3*T_2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of Chebyshev series coefficients ordered from low to
        high.

    Returns
    -------
    [quo, rem] : ndarrays
        Of Chebyshev series coefficients representing the quotient and
        remainder.

    See Also
    --------
    chebadd, chebsub, chemulx, chebmul, chebpow

    Notes
    -----
    In general, the (polynomial) division of one C-series by another
    results in quotient and remainder terms that are not in the Chebyshev
    polynomial basis set.  Thus, to express these results as C-series, it
    is typically necessary to "reproject" the results onto said basis
    set, which typically produces "unintuitive" (but correct) results;
    see Examples section below.

    Examples
    --------
    >>> from numpy.polynomial import chebyshev as C
    >>> c1 = (1,2,3)
    >>> c2 = (3,2,1)
    >>> C.chebdiv(c1,c2) # quotient "intuitive," remainder not
    (array([3.]), array([-8., -4.]))
    >>> c2 = (0,1,2,3)
    >>> C.chebdiv(c2,c1) # neither "intuitive"
    (array([0., 2.]), array([-2., -4.]))

    """
    # c1, c2 are trimmed copies
    [c1, c2] = pu.as_series([c1, c2])
    if c2[-1] == 0:
        raise ZeroDivisionError()

    # note: this is more efficient than `pu._div(chebmul, c1, c2)`
    lc1 = len(c1)
    lc2 = len(c2)
    if lc1 < lc2:
        return c1[:1]*0, c1
    elif lc2 == 1:
        return c1/c2[-1], c1[:1]*0
    else:
        z1 = _cseries_to_zseries(c1)
        z2 = _cseries_to_zseries(c2)
        quo, rem = _zseries_div(z1, z2)
        quo = pu.trimseq(_zseries_to_cseries(quo))
        rem = pu.trimseq(_zseries_to_cseries(rem))
        return quo, rem


def chebpow(c, pow, maxpower=16):
    """Raise a Chebyshev series to a power.

    Returns the Chebyshev series `c` raised to the power `pow`. The
    argument `c` is a sequence of coefficients ordered from low to high.
    i.e., [1,2,3] is the series  ``T_0 + 2*T_1 + 3*T_2.``

    Parameters
    ----------
    c : array_like
        1-D array of Chebyshev series coefficients ordered from low to
        high.
    pow : integer
        Power to which the series will be raised
    maxpower : integer, optional
        Maximum power allowed. This is mainly to limit growth of the series
        to unmanageable size. Default is 16

    Returns
    -------
    coef : ndarray
        Chebyshev series of power.

    See Also
    --------
    chebadd, chebsub, chebmulx, chebmul, chebdiv

    Examples
    --------
    >>> from numpy.polynomial import chebyshev as C
    >>> C.chebpow([1, 2, 3, 4], 2)
    array([15.5, 22. , 16. , ..., 12.5, 12. ,  8. ])

    """
    # note: this is more efficient than `pu._pow(chebmul, c1, c2)`, as it
    # avoids converting between z and c series repeatedly

    # c is a trimmed copy
    [c] = pu.as_series([c])
    power = int(pow)
    if power != pow or power < 0:
        raise ValueError("Power must be a non-negative integer.")
    elif maxpower is not None and power > maxpower:
        raise ValueError("Power is too large")
    elif power == 0:
        return np.array([1], dtype=c.dtype)
    elif power == 1:
        return c
    else:
        # This can be made more efficient by using powers of two
        # in the usual way.
        zs = _cseries_to_zseries(c)
        prd = zs
        for i in range(2, power + 1):
            prd = np.convolve(prd, zs)
        return _zseries_to_cseries(prd)


def chebder(c, m=1, scl=1, axis=0):
    """
    Differentiate a Chebyshev series.

    Returns the Chebyshev series coefficients `c` differentiated `m` times
    along `axis`.  At each iteration the result is multiplied by `scl` (the
    scaling factor is for use in a linear change of variable). The argument
    `c` is an array of coefficients from low to high degree along each
    axis, e.g., [1,2,3] represents the series ``1*T_0 + 2*T_1 + 3*T_2``
    while [[1,2],[1,2]] represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) +
    2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is
    ``y``.

    Parameters
    ----------
    c : array_like
        Array of Chebyshev series coefficients. If c is multidimensional
        the different axis correspond to different variables with the
        degree in each axis given by the corresponding index.
    m : int, optional
        Number of derivatives taken, must be non-negative. (Default: 1)
    scl : scalar, optional
        Each differentiation is multiplied by `scl`.  The end result is
        multiplication by ``scl**m``.  This is for use in a linear change of
        variable. (Default: 1)
    axis : int, optional
        Axis over which the derivative is taken. (Default: 0).

        .. versionadded:: 1.7.0

    Returns
    -------
    der : ndarray
        Chebyshev series of the derivative.

    See Also
    --------
    chebint

    Notes
    -----
    In general, the result of differentiating a C-series needs to be
    "reprojected" onto the C-series basis set. Thus, typically, the
    result of this function is "unintuitive," albeit correct; see Examples
    section below.

    Examples
    --------
    >>> from numpy.polynomial import chebyshev as C
    >>> c = (1,2,3,4)
    >>> C.chebder(c)
    array([14., 12., 24.])
    >>> C.chebder(c,3)
    array([96.])
    >>> C.chebder(c,scl=-1)
    array([-14., -12., -24.])
    >>> C.chebder(c,2,-1)
    array([12.,  96.])

    """
    c = np.array(c, ndmin=1, copy=True)
    if c.dtype.char in '?bBhHiIlLqQpP':
        c = c.astype(np.double)
    cnt = pu._deprecate_as_int(m, "the order of derivation")
    iaxis = pu._deprecate_as_int(axis, "the axis")
    if cnt < 0:
        raise ValueError("The order of derivation must be non-negative")
    iaxis = normalize_axis_index(iaxis, c.ndim)

    if cnt == 0:
        return c

    c = np.moveaxis(c, iaxis, 0)
    n = len(c)
    if cnt >= n:
        c = c[:1]*0
    else:
        for i in range(cnt):
            n = n - 1
            c *= scl
            der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
            for j in range(n, 2, -1):
                der[j - 1] = (2*j)*c[j]
                c[j - 2] += (j*c[j])/(j - 2)
            if n > 1:
                der[1] = 4*c[2]
            der[0] = c[1]
            c = der
    c = np.moveaxis(c, 0, iaxis)
    return c


def chebint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
    """
    Integrate a Chebyshev series.

    Returns the Chebyshev series coefficients `c` integrated `m` times from
    `lbnd` along `axis`. At each iteration the resulting series is
    **multiplied** by `scl` and an integration constant, `k`, is added.
    The scaling factor is for use in a linear change of variable.  ("Buyer
    beware": note that, depending on what one is doing, one may want `scl`
    to be the reciprocal of what one might expect; for more information,
    see the Notes section below.)  The argument `c` is an array of
    coefficients from low to high degree along each axis, e.g., [1,2,3]
    represents the series ``T_0 + 2*T_1 + 3*T_2`` while [[1,2],[1,2]]
    represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) +
    2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.

    Parameters
    ----------
    c : array_like
        Array of Chebyshev series coefficients. If c is multidimensional
        the different axis correspond to different variables with the
        degree in each axis given by the corresponding index.
    m : int, optional
        Order of integration, must be positive. (Default: 1)
    k : {[], list, scalar}, optional
        Integration constant(s).  The value of the first integral at zero
        is the first value in the list, the value of the second integral
        at zero is the second value, etc.  If ``k == []`` (the default),
        all constants are set to zero.  If ``m == 1``, a single scalar can
        be given instead of a list.
    lbnd : scalar, optional
        The lower bound of the integral. (Default: 0)
    scl : scalar, optional
        Following each integration the result is *multiplied* by `scl`
        before the integration constant is added. (Default: 1)
    axis : int, optional
        Axis over which the integral is taken. (Default: 0).

        .. versionadded:: 1.7.0

    Returns
    -------
    S : ndarray
        C-series coefficients of the integral.

    Raises
    ------
    ValueError
        If ``m < 1``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
        ``np.ndim(scl) != 0``.

    See Also
    --------
    chebder

    Notes
    -----
    Note that the result of each integration is *multiplied* by `scl`.
    Why is this important to note?  Say one is making a linear change of
    variable :math:`u = ax + b` in an integral relative to `x`.  Then
    :math:`dx = du/a`, so one will need to set `scl` equal to
    :math:`1/a`- perhaps not what one would have first thought.

    Also note that, in general, the result of integrating a C-series needs
    to be "reprojected" onto the C-series basis set.  Thus, typically,
    the result of this function is "unintuitive," albeit correct; see
    Examples section below.

    Examples
    --------
    >>> from numpy.polynomial import chebyshev as C
    >>> c = (1,2,3)
    >>> C.chebint(c)
    array([ 0.5, -0.5,  0.5,  0.5])
    >>> C.chebint(c,3)
    array([ 0.03125   , -0.1875    ,  0.04166667, -0.05208333,  0.01041667, # may vary
        0.00625   ])
    >>> C.chebint(c, k=3)
    array([ 3.5, -0.5,  0.5,  0.5])
    >>> C.chebint(c,lbnd=-2)
    array([ 8.5, -0.5,  0.5,  0.5])
    >>> C.chebint(c,scl=-2)
    array([-1.,  1., -1., -1.])

    """
    c = np.array(c, ndmin=1, copy=True)
    if c.dtype.char in '?bBhHiIlLqQpP':
        c = c.astype(np.double)
    if not np.iterable(k):
        k = [k]
    cnt = pu._deprecate_as_int(m, "the order of integration")
    iaxis = pu._deprecate_as_int(axis, "the axis")
    if cnt < 0:
        raise ValueError("The order of integration must be non-negative")
    if len(k) > cnt:
        raise ValueError("Too many integration constants")
    if np.ndim(lbnd) != 0:
        raise ValueError("lbnd must be a scalar.")
    if np.ndim(scl) != 0:
        raise ValueError("scl must be a scalar.")
    iaxis = normalize_axis_index(iaxis, c.ndim)

    if cnt == 0:
        return c

    c = np.moveaxis(c, iaxis, 0)
    k = list(k) + [0]*(cnt - len(k))
    for i in range(cnt):
        n = len(c)
        c *= scl
        if n == 1 and np.all(c[0] == 0):
            c[0] += k[i]
        else:
            tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
            tmp[0] = c[0]*0
            tmp[1] = c[0]
            if n > 1:
                tmp[2] = c[1]/4
            for j in range(2, n):
                t = c[j]/(2*j + 1)  # FIXME: t never used
                tmp[j + 1] = c[j]/(2*(j + 1))
                tmp[j - 1] -= c[j]/(2*(j - 1))
            tmp[0] += k[i] - chebval(lbnd, tmp)
            c = tmp
    c = np.moveaxis(c, 0, iaxis)
    return c


def chebval(x, c, tensor=True):
    """
    Evaluate a Chebyshev series at points x.

    If `c` is of length `n + 1`, this function returns the value:

    .. math:: p(x) = c_0 * T_0(x) + c_1 * T_1(x) + ... + c_n * T_n(x)

    The parameter `x` is converted to an array only if it is a tuple or a
    list, otherwise it is treated as a scalar. In either case, either `x`
    or its elements must support multiplication and addition both with
    themselves and with the elements of `c`.

    If `c` is a 1-D array, then `p(x)` will have the same shape as `x`.  If
    `c` is multidimensional, then the shape of the result depends on the
    value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
    x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
    scalars have shape (,).

    Trailing zeros in the coefficients will be used in the evaluation, so
    they should be avoided if efficiency is a concern.

    Parameters
    ----------
    x : array_like, compatible object
        If `x` is a list or tuple, it is converted to an ndarray, otherwise
        it is left unchanged and treated as a scalar. In either case, `x`
        or its elements must support addition and multiplication with
        with themselves and with the elements of `c`.
    c : array_like
        Array of coefficients ordered so that the coefficients for terms of
        degree n are contained in c[n]. If `c` is multidimensional the
        remaining indices enumerate multiple polynomials. In the two
        dimensional case the coefficients may be thought of as stored in
        the columns of `c`.
    tensor : boolean, optional
        If True, the shape of the coefficient array is extended with ones
        on the right, one for each dimension of `x`. Scalars have dimension 0
        for this action. The result is that every column of coefficients in
        `c` is evaluated for every element of `x`. If False, `x` is broadcast
        over the columns of `c` for the evaluation.  This keyword is useful
        when `c` is multidimensional. The default value is True.

        .. versionadded:: 1.7.0

    Returns
    -------
    values : ndarray, algebra_like
        The shape of the return value is described above.

    See Also
    --------
    chebval2d, chebgrid2d, chebval3d, chebgrid3d

    Notes
    -----
    The evaluation uses Clenshaw recursion, aka synthetic division.

    Examples
    --------

    """
    c = np.array(c, ndmin=1, copy=True)
    if c.dtype.char in '?bBhHiIlLqQpP':
        c = c.astype(np.double)
    if isinstance(x, (tuple, list)):
        x = np.asarray(x)
    if isinstance(x, np.ndarray) and tensor:
        c = c.reshape(c.shape + (1,)*x.ndim)

    if len(c) == 1:
        c0 = c[0]
        c1 = 0
    elif len(c) == 2:
        c0 = c[0]
        c1 = c[1]
    else:
        x2 = 2*x
        c0 = c[-2]
        c1 = c[-1]
        for i in range(3, len(c) + 1):
            tmp = c0
            c0 = c[-i] - c1
            c1 = tmp + c1*x2
    return c0 + c1*x


def chebval2d(x, y, c):
    """
    Evaluate a 2-D Chebyshev series at points (x, y).

    This function returns the values:

    .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * T_i(x) * T_j(y)

    The parameters `x` and `y` are converted to arrays only if they are
    tuples or a lists, otherwise they are treated as a scalars and they
    must have the same shape after conversion. In either case, either `x`
    and `y` or their elements must support multiplication and addition both
    with themselves and with the elements of `c`.

    If `c` is a 1-D array a one is implicitly appended to its shape to make
    it 2-D. The shape of the result will be c.shape[2:] + x.shape.

    Parameters
    ----------
    x, y : array_like, compatible objects
        The two dimensional series is evaluated at the points `(x, y)`,
        where `x` and `y` must have the same shape. If `x` or `y` is a list
        or tuple, it is first converted to an ndarray, otherwise it is left
        unchanged and if it isn't an ndarray it is treated as a scalar.
    c : array_like
        Array of coefficients ordered so that the coefficient of the term
        of multi-degree i,j is contained in ``c[i,j]``. If `c` has
        dimension greater than 2 the remaining indices enumerate multiple
        sets of coefficients.

    Returns
    -------
    values : ndarray, compatible object
        The values of the two dimensional Chebyshev series at points formed
        from pairs of corresponding values from `x` and `y`.

    See Also
    --------
    chebval, chebgrid2d, chebval3d, chebgrid3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._valnd(chebval, c, x, y)


def chebgrid2d(x, y, c):
    """
    Evaluate a 2-D Chebyshev series on the Cartesian product of x and y.

    This function returns the values:

    .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * T_i(a) * T_j(b),

    where the points `(a, b)` consist of all pairs formed by taking
    `a` from `x` and `b` from `y`. The resulting points form a grid with
    `x` in the first dimension and `y` in the second.

    The parameters `x` and `y` are converted to arrays only if they are
    tuples or a lists, otherwise they are treated as a scalars. In either
    case, either `x` and `y` or their elements must support multiplication
    and addition both with themselves and with the elements of `c`.

    If `c` has fewer than two dimensions, ones are implicitly appended to
    its shape to make it 2-D. The shape of the result will be c.shape[2:] +
    x.shape + y.shape.

    Parameters
    ----------
    x, y : array_like, compatible objects
        The two dimensional series is evaluated at the points in the
        Cartesian product of `x` and `y`.  If `x` or `y` is a list or
        tuple, it is first converted to an ndarray, otherwise it is left
        unchanged and, if it isn't an ndarray, it is treated as a scalar.
    c : array_like
        Array of coefficients ordered so that the coefficient of the term of
        multi-degree i,j is contained in `c[i,j]`. If `c` has dimension
        greater than two the remaining indices enumerate multiple sets of
        coefficients.

    Returns
    -------
    values : ndarray, compatible object
        The values of the two dimensional Chebyshev series at points in the
        Cartesian product of `x` and `y`.

    See Also
    --------
    chebval, chebval2d, chebval3d, chebgrid3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._gridnd(chebval, c, x, y)


def chebval3d(x, y, z, c):
    """
    Evaluate a 3-D Chebyshev series at points (x, y, z).

    This function returns the values:

    .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * T_i(x) * T_j(y) * T_k(z)

    The parameters `x`, `y`, and `z` are converted to arrays only if
    they are tuples or a lists, otherwise they are treated as a scalars and
    they must have the same shape after conversion. In either case, either
    `x`, `y`, and `z` or their elements must support multiplication and
    addition both with themselves and with the elements of `c`.

    If `c` has fewer than 3 dimensions, ones are implicitly appended to its
    shape to make it 3-D. The shape of the result will be c.shape[3:] +
    x.shape.

    Parameters
    ----------
    x, y, z : array_like, compatible object
        The three dimensional series is evaluated at the points
        `(x, y, z)`, where `x`, `y`, and `z` must have the same shape.  If
        any of `x`, `y`, or `z` is a list or tuple, it is first converted
        to an ndarray, otherwise it is left unchanged and if it isn't an
        ndarray it is  treated as a scalar.
    c : array_like
        Array of coefficients ordered so that the coefficient of the term of
        multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
        greater than 3 the remaining indices enumerate multiple sets of
        coefficients.

    Returns
    -------
    values : ndarray, compatible object
        The values of the multidimensional polynomial on points formed with
        triples of corresponding values from `x`, `y`, and `z`.

    See Also
    --------
    chebval, chebval2d, chebgrid2d, chebgrid3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._valnd(chebval, c, x, y, z)


def chebgrid3d(x, y, z, c):
    """
    Evaluate a 3-D Chebyshev series on the Cartesian product of x, y, and z.

    This function returns the values:

    .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * T_i(a) * T_j(b) * T_k(c)

    where the points `(a, b, c)` consist of all triples formed by taking
    `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
    a grid with `x` in the first dimension, `y` in the second, and `z` in
    the third.

    The parameters `x`, `y`, and `z` are converted to arrays only if they
    are tuples or a lists, otherwise they are treated as a scalars. In
    either case, either `x`, `y`, and `z` or their elements must support
    multiplication and addition both with themselves and with the elements
    of `c`.

    If `c` has fewer than three dimensions, ones are implicitly appended to
    its shape to make it 3-D. The shape of the result will be c.shape[3:] +
    x.shape + y.shape + z.shape.

    Parameters
    ----------
    x, y, z : array_like, compatible objects
        The three dimensional series is evaluated at the points in the
        Cartesian product of `x`, `y`, and `z`.  If `x`,`y`, or `z` is a
        list or tuple, it is first converted to an ndarray, otherwise it is
        left unchanged and, if it isn't an ndarray, it is treated as a
        scalar.
    c : array_like
        Array of coefficients ordered so that the coefficients for terms of
        degree i,j are contained in ``c[i,j]``. If `c` has dimension
        greater than two the remaining indices enumerate multiple sets of
        coefficients.

    Returns
    -------
    values : ndarray, compatible object
        The values of the two dimensional polynomial at points in the Cartesian
        product of `x` and `y`.

    See Also
    --------
    chebval, chebval2d, chebgrid2d, chebval3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._gridnd(chebval, c, x, y, z)


def chebvander(x, deg):
    """Pseudo-Vandermonde matrix of given degree.

    Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
    `x`. The pseudo-Vandermonde matrix is defined by

    .. math:: V[..., i] = T_i(x),

    where `0 <= i <= deg`. The leading indices of `V` index the elements of
    `x` and the last index is the degree of the Chebyshev polynomial.

    If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
    matrix ``V = chebvander(x, n)``, then ``np.dot(V, c)`` and
    ``chebval(x, c)`` are the same up to roundoff.  This equivalence is
    useful both for least squares fitting and for the evaluation of a large
    number of Chebyshev series of the same degree and sample points.

    Parameters
    ----------
    x : array_like
        Array of points. The dtype is converted to float64 or complex128
        depending on whether any of the elements are complex. If `x` is
        scalar it is converted to a 1-D array.
    deg : int
        Degree of the resulting matrix.

    Returns
    -------
    vander : ndarray
        The pseudo Vandermonde matrix. The shape of the returned matrix is
        ``x.shape + (deg + 1,)``, where The last index is the degree of the
        corresponding Chebyshev polynomial.  The dtype will be the same as
        the converted `x`.

    """
    ideg = pu._deprecate_as_int(deg, "deg")
    if ideg < 0:
        raise ValueError("deg must be non-negative")

    x = np.array(x, copy=False, ndmin=1) + 0.0
    dims = (ideg + 1,) + x.shape
    dtyp = x.dtype
    v = np.empty(dims, dtype=dtyp)
    # Use forward recursion to generate the entries.
    v[0] = x*0 + 1
    if ideg > 0:
        x2 = 2*x
        v[1] = x
        for i in range(2, ideg + 1):
            v[i] = v[i-1]*x2 - v[i-2]
    return np.moveaxis(v, 0, -1)


def chebvander2d(x, y, deg):
    """Pseudo-Vandermonde matrix of given degrees.

    Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
    points `(x, y)`. The pseudo-Vandermonde matrix is defined by

    .. math:: V[..., (deg[1] + 1)*i + j] = T_i(x) * T_j(y),

    where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
    `V` index the points `(x, y)` and the last index encodes the degrees of
    the Chebyshev polynomials.

    If ``V = chebvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
    correspond to the elements of a 2-D coefficient array `c` of shape
    (xdeg + 1, ydeg + 1) in the order

    .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...

    and ``np.dot(V, c.flat)`` and ``chebval2d(x, y, c)`` will be the same
    up to roundoff. This equivalence is useful both for least squares
    fitting and for the evaluation of a large number of 2-D Chebyshev
    series of the same degrees and sample points.

    Parameters
    ----------
    x, y : array_like
        Arrays of point coordinates, all of the same shape. The dtypes
        will be converted to either float64 or complex128 depending on
        whether any of the elements are complex. Scalars are converted to
        1-D arrays.
    deg : list of ints
        List of maximum degrees of the form [x_deg, y_deg].

    Returns
    -------
    vander2d : ndarray
        The shape of the returned matrix is ``x.shape + (order,)``, where
        :math:`order = (deg[0]+1)*(deg([1]+1)`.  The dtype will be the same
        as the converted `x` and `y`.

    See Also
    --------
    chebvander, chebvander3d, chebval2d, chebval3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._vander_nd_flat((chebvander, chebvander), (x, y), deg)


def chebvander3d(x, y, z, deg):
    """Pseudo-Vandermonde matrix of given degrees.

    Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
    points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
    then The pseudo-Vandermonde matrix is defined by

    .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = T_i(x)*T_j(y)*T_k(z),

    where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`.  The leading
    indices of `V` index the points `(x, y, z)` and the last index encodes
    the degrees of the Chebyshev polynomials.

    If ``V = chebvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
    of `V` correspond to the elements of a 3-D coefficient array `c` of
    shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

    .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...

    and ``np.dot(V, c.flat)`` and ``chebval3d(x, y, z, c)`` will be the
    same up to roundoff. This equivalence is useful both for least squares
    fitting and for the evaluation of a large number of 3-D Chebyshev
    series of the same degrees and sample points.

    Parameters
    ----------
    x, y, z : array_like
        Arrays of point coordinates, all of the same shape. The dtypes will
        be converted to either float64 or complex128 depending on whether
        any of the elements are complex. Scalars are converted to 1-D
        arrays.
    deg : list of ints
        List of maximum degrees of the form [x_deg, y_deg, z_deg].

    Returns
    -------
    vander3d : ndarray
        The shape of the returned matrix is ``x.shape + (order,)``, where
        :math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`.  The dtype will
        be the same as the converted `x`, `y`, and `z`.

    See Also
    --------
    chebvander, chebvander3d, chebval2d, chebval3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._vander_nd_flat((chebvander, chebvander, chebvander), (x, y, z), deg)


def chebfit(x, y, deg, rcond=None, full=False, w=None):
    """
    Least squares fit of Chebyshev series to data.

    Return the coefficients of a Chebyshev series of degree `deg` that is the
    least squares fit to the data values `y` given at points `x`. If `y` is
    1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
    fits are done, one for each column of `y`, and the resulting
    coefficients are stored in the corresponding columns of a 2-D return.
    The fitted polynomial(s) are in the form

    .. math::  p(x) = c_0 + c_1 * T_1(x) + ... + c_n * T_n(x),

    where `n` is `deg`.

    Parameters
    ----------
    x : array_like, shape (M,)
        x-coordinates of the M sample points ``(x[i], y[i])``.
    y : array_like, shape (M,) or (M, K)
        y-coordinates of the sample points. Several data sets of sample
        points sharing the same x-coordinates can be fitted at once by
        passing in a 2D-array that contains one dataset per column.
    deg : int or 1-D array_like
        Degree(s) of the fitting polynomials. If `deg` is a single integer,
        all terms up to and including the `deg`'th term are included in the
        fit. For NumPy versions >= 1.11.0 a list of integers specifying the
        degrees of the terms to include may be used instead.
    rcond : float, optional
        Relative condition number of the fit. Singular values smaller than
        this relative to the largest singular value will be ignored. The
        default value is len(x)*eps, where eps is the relative precision of
        the float type, about 2e-16 in most cases.
    full : bool, optional
        Switch determining nature of return value. When it is False (the
        default) just the coefficients are returned, when True diagnostic
        information from the singular value decomposition is also returned.
    w : array_like, shape (`M`,), optional
        Weights. If not None, the contribution of each point
        ``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the
        weights are chosen so that the errors of the products ``w[i]*y[i]``
        all have the same variance.  The default value is None.

        .. versionadded:: 1.5.0

    Returns
    -------
    coef : ndarray, shape (M,) or (M, K)
        Chebyshev coefficients ordered from low to high. If `y` was 2-D,
        the coefficients for the data in column k  of `y` are in column
        `k`.

    [residuals, rank, singular_values, rcond] : list
        These values are only returned if `full` = True

        resid -- sum of squared residuals of the least squares fit
        rank -- the numerical rank of the scaled Vandermonde matrix
        sv -- singular values of the scaled Vandermonde matrix
        rcond -- value of `rcond`.

        For more details, see `linalg.lstsq`.

    Warns
    -----
    RankWarning
        The rank of the coefficient matrix in the least-squares fit is
        deficient. The warning is only raised if `full` = False.  The
        warnings can be turned off by

        >>> import warnings
        >>> warnings.simplefilter('ignore', np.RankWarning)

    See Also
    --------
    polyfit, legfit, lagfit, hermfit, hermefit
    chebval : Evaluates a Chebyshev series.
    chebvander : Vandermonde matrix of Chebyshev series.
    chebweight : Chebyshev weight function.
    linalg.lstsq : Computes a least-squares fit from the matrix.
    scipy.interpolate.UnivariateSpline : Computes spline fits.

    Notes
    -----
    The solution is the coefficients of the Chebyshev series `p` that
    minimizes the sum of the weighted squared errors

    .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,

    where :math:`w_j` are the weights. This problem is solved by setting up
    as the (typically) overdetermined matrix equation

    .. math:: V(x) * c = w * y,

    where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
    coefficients to be solved for, `w` are the weights, and `y` are the
    observed values.  This equation is then solved using the singular value
    decomposition of `V`.

    If some of the singular values of `V` are so small that they are
    neglected, then a `RankWarning` will be issued. This means that the
    coefficient values may be poorly determined. Using a lower order fit
    will usually get rid of the warning.  The `rcond` parameter can also be
    set to a value smaller than its default, but the resulting fit may be
    spurious and have large contributions from roundoff error.

    Fits using Chebyshev series are usually better conditioned than fits
    using power series, but much can depend on the distribution of the
    sample points and the smoothness of the data. If the quality of the fit
    is inadequate splines may be a good alternative.

    References
    ----------
    .. [1] Wikipedia, "Curve fitting",
           https://en.wikipedia.org/wiki/Curve_fitting

    Examples
    --------

    """
    return pu._fit(chebvander, x, y, deg, rcond, full, w)


def chebcompanion(c):
    """Return the scaled companion matrix of c.

    The basis polynomials are scaled so that the companion matrix is
    symmetric when `c` is a Chebyshev basis polynomial. This provides
    better eigenvalue estimates than the unscaled case and for basis
    polynomials the eigenvalues are guaranteed to be real if
    `numpy.linalg.eigvalsh` is used to obtain them.

    Parameters
    ----------
    c : array_like
        1-D array of Chebyshev series coefficients ordered from low to high
        degree.

    Returns
    -------
    mat : ndarray
        Scaled companion matrix of dimensions (deg, deg).

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        raise ValueError('Series must have maximum degree of at least 1.')
    if len(c) == 2:
        return np.array([[-c[0]/c[1]]])

    n = len(c) - 1
    mat = np.zeros((n, n), dtype=c.dtype)
    scl = np.array([1.] + [np.sqrt(.5)]*(n-1))
    top = mat.reshape(-1)[1::n+1]
    bot = mat.reshape(-1)[n::n+1]
    top[0] = np.sqrt(.5)
    top[1:] = 1/2
    bot[...] = top
    mat[:, -1] -= (c[:-1]/c[-1])*(scl/scl[-1])*.5
    return mat


def chebroots(c):
    """
    Compute the roots of a Chebyshev series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * T_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, legroots, lagroots, hermroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The Chebyshev series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> import numpy.polynomial.chebyshev as cheb
    >>> cheb.chebroots((-1, 1,-1, 1)) # T3 - T2 + T1 - T0 has real roots
    array([ -5.00000000e-01,   2.60860684e-17,   1.00000000e+00]) # may vary

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-c[0]/c[1]])

    # rotated companion matrix reduces error
    m = chebcompanion(c)[::-1,::-1]
    r = la.eigvals(m)
    r.sort()
    return r


def chebinterpolate(func, deg, args=()):
    """Interpolate a function at the Chebyshev points of the first kind.

    Returns the Chebyshev series that interpolates `func` at the Chebyshev
    points of the first kind in the interval [-1, 1]. The interpolating
    series tends to a minmax approximation to `func` with increasing `deg`
    if the function is continuous in the interval.

    .. versionadded:: 1.14.0

    Parameters
    ----------
    func : function
        The function to be approximated. It must be a function of a single
        variable of the form ``f(x, a, b, c...)``, where ``a, b, c...`` are
        extra arguments passed in the `args` parameter.
    deg : int
        Degree of the interpolating polynomial
    args : tuple, optional
        Extra arguments to be used in the function call. Default is no extra
        arguments.

    Returns
    -------
    coef : ndarray, shape (deg + 1,)
        Chebyshev coefficients of the interpolating series ordered from low to
        high.

    Examples
    --------
    >>> import numpy.polynomial.chebyshev as C
    >>> C.chebfromfunction(lambda x: np.tanh(x) + 0.5, 8)
    array([  5.00000000e-01,   8.11675684e-01,  -9.86864911e-17,
            -5.42457905e-02,  -2.71387850e-16,   4.51658839e-03,
             2.46716228e-17,  -3.79694221e-04,  -3.26899002e-16])

    Notes
    -----

    The Chebyshev polynomials used in the interpolation are orthogonal when
    sampled at the Chebyshev points of the first kind. If it is desired to
    constrain some of the coefficients they can simply be set to the desired
    value after the interpolation, no new interpolation or fit is needed. This
    is especially useful if it is known apriori that some of coefficients are
    zero. For instance, if the function is even then the coefficients of the
    terms of odd degree in the result can be set to zero.

    """
    deg = np.asarray(deg)

    # check arguments.
    if deg.ndim > 0 or deg.dtype.kind not in 'iu' or deg.size == 0:
        raise TypeError("deg must be an int")
    if deg < 0:
        raise ValueError("expected deg >= 0")

    order = deg + 1
    xcheb = chebpts1(order)
    yfunc = func(xcheb, *args)
    m = chebvander(xcheb, deg)
    c = np.dot(m.T, yfunc)
    c[0] /= order
    c[1:] /= 0.5*order

    return c


def chebgauss(deg):
    """
    Gauss-Chebyshev quadrature.

    Computes the sample points and weights for Gauss-Chebyshev quadrature.
    These sample points and weights will correctly integrate polynomials of
    degree :math:`2*deg - 1` or less over the interval :math:`[-1, 1]` with
    the weight function :math:`f(x) = 1/\\sqrt{1 - x^2}`.

    Parameters
    ----------
    deg : int
        Number of sample points and weights. It must be >= 1.

    Returns
    -------
    x : ndarray
        1-D ndarray containing the sample points.
    y : ndarray
        1-D ndarray containing the weights.

    Notes
    -----

    .. versionadded:: 1.7.0

    The results have only been tested up to degree 100, higher degrees may
    be problematic. For Gauss-Chebyshev there are closed form solutions for
    the sample points and weights. If n = `deg`, then

    .. math:: x_i = \\cos(\\pi (2 i - 1) / (2 n))

    .. math:: w_i = \\pi / n

    """
    ideg = pu._deprecate_as_int(deg, "deg")
    if ideg <= 0:
        raise ValueError("deg must be a positive integer")

    x = np.cos(np.pi * np.arange(1, 2*ideg, 2) / (2.0*ideg))
    w = np.ones(ideg)*(np.pi/ideg)

    return x, w


def chebweight(x):
    """
    The weight function of the Chebyshev polynomials.

    The weight function is :math:`1/\\sqrt{1 - x^2}` and the interval of
    integration is :math:`[-1, 1]`. The Chebyshev polynomials are
    orthogonal, but not normalized, with respect to this weight function.

    Parameters
    ----------
    x : array_like
       Values at which the weight function will be computed.

    Returns
    -------
    w : ndarray
       The weight function at `x`.

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    w = 1./(np.sqrt(1. + x) * np.sqrt(1. - x))
    return w


def chebpts1(npts):
    """
    Chebyshev points of the first kind.

    The Chebyshev points of the first kind are the points ``cos(x)``,
    where ``x = [pi*(k + .5)/npts for k in range(npts)]``.

    Parameters
    ----------
    npts : int
        Number of sample points desired.

    Returns
    -------
    pts : ndarray
        The Chebyshev points of the first kind.

    See Also
    --------
    chebpts2

    Notes
    -----

    .. versionadded:: 1.5.0

    """
    _npts = int(npts)
    if _npts != npts:
        raise ValueError("npts must be integer")
    if _npts < 1:
        raise ValueError("npts must be >= 1")

    x = np.linspace(-np.pi, 0, _npts, endpoint=False) + np.pi/(2*_npts)
    return np.cos(x)


def chebpts2(npts):
    """
    Chebyshev points of the second kind.

    The Chebyshev points of the second kind are the points ``cos(x)``,
    where ``x = [pi*k/(npts - 1) for k in range(npts)]``.

    Parameters
    ----------
    npts : int
        Number of sample points desired.

    Returns
    -------
    pts : ndarray
        The Chebyshev points of the second kind.

    Notes
    -----

    .. versionadded:: 1.5.0

    """
    _npts = int(npts)
    if _npts != npts:
        raise ValueError("npts must be integer")
    if _npts < 2:
        raise ValueError("npts must be >= 2")

    x = np.linspace(-np.pi, 0, _npts)
    return np.cos(x)


#
# Chebyshev series class
#

class Chebyshev(ABCPolyBase):
    """A Chebyshev series class.

    The Chebyshev class provides the standard Python numerical methods
    '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
    methods listed below.

    Parameters
    ----------
    coef : array_like
        Chebyshev coefficients in order of increasing degree, i.e.,
        ``(1, 2, 3)`` gives ``1*T_0(x) + 2*T_1(x) + 3*T_2(x)``.
    domain : (2,) array_like, optional
        Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
        to the interval ``[window[0], window[1]]`` by shifting and scaling.
        The default value is [-1, 1].
    window : (2,) array_like, optional
        Window, see `domain` for its use. The default value is [-1, 1].

        .. versionadded:: 1.6.0

    """
    # Virtual Functions
    _add = staticmethod(chebadd)
    _sub = staticmethod(chebsub)
    _mul = staticmethod(chebmul)
    _div = staticmethod(chebdiv)
    _pow = staticmethod(chebpow)
    _val = staticmethod(chebval)
    _int = staticmethod(chebint)
    _der = staticmethod(chebder)
    _fit = staticmethod(chebfit)
    _line = staticmethod(chebline)
    _roots = staticmethod(chebroots)
    _fromroots = staticmethod(chebfromroots)

    @classmethod
    def interpolate(cls, func, deg, domain=None, args=()):
        """Interpolate a function at the Chebyshev points of the first kind.

        Returns the series that interpolates `func` at the Chebyshev points of
        the first kind scaled and shifted to the `domain`. The resulting series
        tends to a minmax approximation of `func` when the function is
        continuous in the domain.

        .. versionadded:: 1.14.0

        Parameters
        ----------
        func : function
            The function to be interpolated. It must be a function of a single
            variable of the form ``f(x, a, b, c...)``, where ``a, b, c...`` are
            extra arguments passed in the `args` parameter.
        deg : int
            Degree of the interpolating polynomial.
        domain : {None, [beg, end]}, optional
            Domain over which `func` is interpolated. The default is None, in
            which case the domain is [-1, 1].
        args : tuple, optional
            Extra arguments to be used in the function call. Default is no
            extra arguments.

        Returns
        -------
        polynomial : Chebyshev instance
            Interpolating Chebyshev instance.

        Notes
        -----
        See `numpy.polynomial.chebfromfunction` for more details.

        """
        if domain is None:
            domain = cls.domain
        xfunc = lambda x: func(pu.mapdomain(x, cls.window, domain), *args)
        coef = chebinterpolate(xfunc, deg)
        return cls(coef, domain=domain)

    # Virtual properties
    nickname = 'cheb'
    domain = np.array(chebdomain)
    window = np.array(chebdomain)
    basis_name = 'T'