hermite.py 51.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
"""
Objects for dealing with Hermite series.

This module provides a number of objects (mostly functions) useful for
dealing with Hermite series, including a `Hermite` class that
encapsulates the usual arithmetic operations.  (General information
on how this module represents and works with such polynomials is in the
docstring for its "parent" sub-package, `numpy.polynomial`).

Constants
---------
- `hermdomain` -- Hermite series default domain, [-1,1].
- `hermzero` -- Hermite series that evaluates identically to 0.
- `hermone` -- Hermite series that evaluates identically to 1.
- `hermx` -- Hermite series for the identity map, ``f(x) = x``.

Arithmetic
----------
- `hermadd` -- add two Hermite series.
- `hermsub` -- subtract one Hermite series from another.
- `hermmulx` -- multiply a Hermite series in ``P_i(x)`` by ``x``.
- `hermmul` -- multiply two Hermite series.
- `hermdiv` -- divide one Hermite series by another.
- `hermpow` -- raise a Hermite series to a positive integer power.
- `hermval` -- evaluate a Hermite series at given points.
- `hermval2d` -- evaluate a 2D Hermite series at given points.
- `hermval3d` -- evaluate a 3D Hermite series at given points.
- `hermgrid2d` -- evaluate a 2D Hermite series on a Cartesian product.
- `hermgrid3d` -- evaluate a 3D Hermite series on a Cartesian product.

Calculus
--------
- `hermder` -- differentiate a Hermite series.
- `hermint` -- integrate a Hermite series.

Misc Functions
--------------
- `hermfromroots` -- create a Hermite series with specified roots.
- `hermroots` -- find the roots of a Hermite series.
- `hermvander` -- Vandermonde-like matrix for Hermite polynomials.
- `hermvander2d` -- Vandermonde-like matrix for 2D power series.
- `hermvander3d` -- Vandermonde-like matrix for 3D power series.
- `hermgauss` -- Gauss-Hermite quadrature, points and weights.
- `hermweight` -- Hermite weight function.
- `hermcompanion` -- symmetrized companion matrix in Hermite form.
- `hermfit` -- least-squares fit returning a Hermite series.
- `hermtrim` -- trim leading coefficients from a Hermite series.
- `hermline` -- Hermite series of given straight line.
- `herm2poly` -- convert a Hermite series to a polynomial.
- `poly2herm` -- convert a polynomial to a Hermite series.

Classes
-------
- `Hermite` -- A Hermite series class.

See also
--------
`numpy.polynomial`

"""
from __future__ import division, absolute_import, print_function

import warnings
import numpy as np
import numpy.linalg as la
from numpy.core.multiarray import normalize_axis_index

from . import polyutils as pu
from ._polybase import ABCPolyBase

__all__ = [
    'hermzero', 'hermone', 'hermx', 'hermdomain', 'hermline', 'hermadd',
    'hermsub', 'hermmulx', 'hermmul', 'hermdiv', 'hermpow', 'hermval',
    'hermder', 'hermint', 'herm2poly', 'poly2herm', 'hermfromroots',
    'hermvander', 'hermfit', 'hermtrim', 'hermroots', 'Hermite',
    'hermval2d', 'hermval3d', 'hermgrid2d', 'hermgrid3d', 'hermvander2d',
    'hermvander3d', 'hermcompanion', 'hermgauss', 'hermweight']

hermtrim = pu.trimcoef


def poly2herm(pol):
    """
    poly2herm(pol)

    Convert a polynomial to a Hermite series.

    Convert an array representing the coefficients of a polynomial (relative
    to the "standard" basis) ordered from lowest degree to highest, to an
    array of the coefficients of the equivalent Hermite series, ordered
    from lowest to highest degree.

    Parameters
    ----------
    pol : array_like
        1-D array containing the polynomial coefficients

    Returns
    -------
    c : ndarray
        1-D array containing the coefficients of the equivalent Hermite
        series.

    See Also
    --------
    herm2poly

    Notes
    -----
    The easy way to do conversions between polynomial basis sets
    is to use the convert method of a class instance.

    Examples
    --------
    >>> from numpy.polynomial.hermite import poly2herm
    >>> poly2herm(np.arange(4))
    array([1.   ,  2.75 ,  0.5  ,  0.375])

    """
    [pol] = pu.as_series([pol])
    deg = len(pol) - 1
    res = 0
    for i in range(deg, -1, -1):
        res = hermadd(hermmulx(res), pol[i])
    return res


def herm2poly(c):
    """
    Convert a Hermite series to a polynomial.

    Convert an array representing the coefficients of a Hermite series,
    ordered from lowest degree to highest, to an array of the coefficients
    of the equivalent polynomial (relative to the "standard" basis) ordered
    from lowest to highest degree.

    Parameters
    ----------
    c : array_like
        1-D array containing the Hermite series coefficients, ordered
        from lowest order term to highest.

    Returns
    -------
    pol : ndarray
        1-D array containing the coefficients of the equivalent polynomial
        (relative to the "standard" basis) ordered from lowest order term
        to highest.

    See Also
    --------
    poly2herm

    Notes
    -----
    The easy way to do conversions between polynomial basis sets
    is to use the convert method of a class instance.

    Examples
    --------
    >>> from numpy.polynomial.hermite import herm2poly
    >>> herm2poly([ 1.   ,  2.75 ,  0.5  ,  0.375])
    array([0., 1., 2., 3.])

    """
    from .polynomial import polyadd, polysub, polymulx

    [c] = pu.as_series([c])
    n = len(c)
    if n == 1:
        return c
    if n == 2:
        c[1] *= 2
        return c
    else:
        c0 = c[-2]
        c1 = c[-1]
        # i is the current degree of c1
        for i in range(n - 1, 1, -1):
            tmp = c0
            c0 = polysub(c[i - 2], c1*(2*(i - 1)))
            c1 = polyadd(tmp, polymulx(c1)*2)
        return polyadd(c0, polymulx(c1)*2)

#
# These are constant arrays are of integer type so as to be compatible
# with the widest range of other types, such as Decimal.
#

# Hermite
hermdomain = np.array([-1, 1])

# Hermite coefficients representing zero.
hermzero = np.array([0])

# Hermite coefficients representing one.
hermone = np.array([1])

# Hermite coefficients representing the identity x.
hermx = np.array([0, 1/2])


def hermline(off, scl):
    """
    Hermite series whose graph is a straight line.



    Parameters
    ----------
    off, scl : scalars
        The specified line is given by ``off + scl*x``.

    Returns
    -------
    y : ndarray
        This module's representation of the Hermite series for
        ``off + scl*x``.

    See Also
    --------
    polyline, chebline

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermline, hermval
    >>> hermval(0,hermline(3, 2))
    3.0
    >>> hermval(1,hermline(3, 2))
    5.0

    """
    if scl != 0:
        return np.array([off, scl/2])
    else:
        return np.array([off])


def hermfromroots(roots):
    """
    Generate a Hermite series with given roots.

    The function returns the coefficients of the polynomial

    .. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),

    in Hermite form, where the `r_n` are the roots specified in `roots`.
    If a zero has multiplicity n, then it must appear in `roots` n times.
    For instance, if 2 is a root of multiplicity three and 3 is a root of
    multiplicity 2, then `roots` looks something like [2, 2, 2, 3, 3]. The
    roots can appear in any order.

    If the returned coefficients are `c`, then

    .. math:: p(x) = c_0 + c_1 * H_1(x) + ... +  c_n * H_n(x)

    The coefficient of the last term is not generally 1 for monic
    polynomials in Hermite form.

    Parameters
    ----------
    roots : array_like
        Sequence containing the roots.

    Returns
    -------
    out : ndarray
        1-D array of coefficients.  If all roots are real then `out` is a
        real array, if some of the roots are complex, then `out` is complex
        even if all the coefficients in the result are real (see Examples
        below).

    See Also
    --------
    polyfromroots, legfromroots, lagfromroots, chebfromroots, hermefromroots

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermfromroots, hermval
    >>> coef = hermfromroots((-1, 0, 1))
    >>> hermval((-1, 0, 1), coef)
    array([0.,  0.,  0.])
    >>> coef = hermfromroots((-1j, 1j))
    >>> hermval((-1j, 1j), coef)
    array([0.+0.j, 0.+0.j])

    """
    return pu._fromroots(hermline, hermmul, roots)


def hermadd(c1, c2):
    """
    Add one Hermite series to another.

    Returns the sum of two Hermite series `c1` + `c2`.  The arguments
    are sequences of coefficients ordered from lowest order term to
    highest, i.e., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of Hermite series coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Array representing the Hermite series of their sum.

    See Also
    --------
    hermsub, hermmulx, hermmul, hermdiv, hermpow

    Notes
    -----
    Unlike multiplication, division, etc., the sum of two Hermite series
    is a Hermite series (without having to "reproject" the result onto
    the basis set) so addition, just like that of "standard" polynomials,
    is simply "component-wise."

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermadd
    >>> hermadd([1, 2, 3], [1, 2, 3, 4])
    array([2., 4., 6., 4.])

    """
    return pu._add(c1, c2)


def hermsub(c1, c2):
    """
    Subtract one Hermite series from another.

    Returns the difference of two Hermite series `c1` - `c2`.  The
    sequences of coefficients are from lowest order term to highest, i.e.,
    [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of Hermite series coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Of Hermite series coefficients representing their difference.

    See Also
    --------
    hermadd, hermmulx, hermmul, hermdiv, hermpow

    Notes
    -----
    Unlike multiplication, division, etc., the difference of two Hermite
    series is a Hermite series (without having to "reproject" the result
    onto the basis set) so subtraction, just like that of "standard"
    polynomials, is simply "component-wise."

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermsub
    >>> hermsub([1, 2, 3, 4], [1, 2, 3])
    array([0.,  0.,  0.,  4.])

    """
    return pu._sub(c1, c2)


def hermmulx(c):
    """Multiply a Hermite series by x.

    Multiply the Hermite series `c` by x, where x is the independent
    variable.


    Parameters
    ----------
    c : array_like
        1-D array of Hermite series coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Array representing the result of the multiplication.

    See Also
    --------
    hermadd, hermsub, hermmul, hermdiv, hermpow

    Notes
    -----
    The multiplication uses the recursion relationship for Hermite
    polynomials in the form

    .. math::

    xP_i(x) = (P_{i + 1}(x)/2 + i*P_{i - 1}(x))

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermmulx
    >>> hermmulx([1, 2, 3])
    array([2. , 6.5, 1. , 1.5])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    # The zero series needs special treatment
    if len(c) == 1 and c[0] == 0:
        return c

    prd = np.empty(len(c) + 1, dtype=c.dtype)
    prd[0] = c[0]*0
    prd[1] = c[0]/2
    for i in range(1, len(c)):
        prd[i + 1] = c[i]/2
        prd[i - 1] += c[i]*i
    return prd


def hermmul(c1, c2):
    """
    Multiply one Hermite series by another.

    Returns the product of two Hermite series `c1` * `c2`.  The arguments
    are sequences of coefficients, from lowest order "term" to highest,
    e.g., [1,2,3] represents the series ``P_0 + 2*P_1 + 3*P_2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of Hermite series coefficients ordered from low to
        high.

    Returns
    -------
    out : ndarray
        Of Hermite series coefficients representing their product.

    See Also
    --------
    hermadd, hermsub, hermmulx, hermdiv, hermpow

    Notes
    -----
    In general, the (polynomial) product of two C-series results in terms
    that are not in the Hermite polynomial basis set.  Thus, to express
    the product as a Hermite series, it is necessary to "reproject" the
    product onto said basis set, which may produce "unintuitive" (but
    correct) results; see Examples section below.

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermmul
    >>> hermmul([1, 2, 3], [0, 1, 2])
    array([52.,  29.,  52.,   7.,   6.])

    """
    # s1, s2 are trimmed copies
    [c1, c2] = pu.as_series([c1, c2])

    if len(c1) > len(c2):
        c = c2
        xs = c1
    else:
        c = c1
        xs = c2

    if len(c) == 1:
        c0 = c[0]*xs
        c1 = 0
    elif len(c) == 2:
        c0 = c[0]*xs
        c1 = c[1]*xs
    else:
        nd = len(c)
        c0 = c[-2]*xs
        c1 = c[-1]*xs
        for i in range(3, len(c) + 1):
            tmp = c0
            nd = nd - 1
            c0 = hermsub(c[-i]*xs, c1*(2*(nd - 1)))
            c1 = hermadd(tmp, hermmulx(c1)*2)
    return hermadd(c0, hermmulx(c1)*2)


def hermdiv(c1, c2):
    """
    Divide one Hermite series by another.

    Returns the quotient-with-remainder of two Hermite series
    `c1` / `c2`.  The arguments are sequences of coefficients from lowest
    order "term" to highest, e.g., [1,2,3] represents the series
    ``P_0 + 2*P_1 + 3*P_2``.

    Parameters
    ----------
    c1, c2 : array_like
        1-D arrays of Hermite series coefficients ordered from low to
        high.

    Returns
    -------
    [quo, rem] : ndarrays
        Of Hermite series coefficients representing the quotient and
        remainder.

    See Also
    --------
    hermadd, hermsub, hermmulx, hermmul, hermpow

    Notes
    -----
    In general, the (polynomial) division of one Hermite series by another
    results in quotient and remainder terms that are not in the Hermite
    polynomial basis set.  Thus, to express these results as a Hermite
    series, it is necessary to "reproject" the results onto the Hermite
    basis set, which may produce "unintuitive" (but correct) results; see
    Examples section below.

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermdiv
    >>> hermdiv([ 52.,  29.,  52.,   7.,   6.], [0, 1, 2])
    (array([1., 2., 3.]), array([0.]))
    >>> hermdiv([ 54.,  31.,  52.,   7.,   6.], [0, 1, 2])
    (array([1., 2., 3.]), array([2., 2.]))
    >>> hermdiv([ 53.,  30.,  52.,   7.,   6.], [0, 1, 2])
    (array([1., 2., 3.]), array([1., 1.]))

    """
    return pu._div(hermmul, c1, c2)


def hermpow(c, pow, maxpower=16):
    """Raise a Hermite series to a power.

    Returns the Hermite series `c` raised to the power `pow`. The
    argument `c` is a sequence of coefficients ordered from low to high.
    i.e., [1,2,3] is the series  ``P_0 + 2*P_1 + 3*P_2.``

    Parameters
    ----------
    c : array_like
        1-D array of Hermite series coefficients ordered from low to
        high.
    pow : integer
        Power to which the series will be raised
    maxpower : integer, optional
        Maximum power allowed. This is mainly to limit growth of the series
        to unmanageable size. Default is 16

    Returns
    -------
    coef : ndarray
        Hermite series of power.

    See Also
    --------
    hermadd, hermsub, hermmulx, hermmul, hermdiv

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermpow
    >>> hermpow([1, 2, 3], 2)
    array([81.,  52.,  82.,  12.,   9.])

    """
    return pu._pow(hermmul, c, pow, maxpower)


def hermder(c, m=1, scl=1, axis=0):
    """
    Differentiate a Hermite series.

    Returns the Hermite series coefficients `c` differentiated `m` times
    along `axis`.  At each iteration the result is multiplied by `scl` (the
    scaling factor is for use in a linear change of variable). The argument
    `c` is an array of coefficients from low to high degree along each
    axis, e.g., [1,2,3] represents the series ``1*H_0 + 2*H_1 + 3*H_2``
    while [[1,2],[1,2]] represents ``1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) +
    2*H_0(x)*H_1(y) + 2*H_1(x)*H_1(y)`` if axis=0 is ``x`` and axis=1 is
    ``y``.

    Parameters
    ----------
    c : array_like
        Array of Hermite series coefficients. If `c` is multidimensional the
        different axis correspond to different variables with the degree in
        each axis given by the corresponding index.
    m : int, optional
        Number of derivatives taken, must be non-negative. (Default: 1)
    scl : scalar, optional
        Each differentiation is multiplied by `scl`.  The end result is
        multiplication by ``scl**m``.  This is for use in a linear change of
        variable. (Default: 1)
    axis : int, optional
        Axis over which the derivative is taken. (Default: 0).

        .. versionadded:: 1.7.0

    Returns
    -------
    der : ndarray
        Hermite series of the derivative.

    See Also
    --------
    hermint

    Notes
    -----
    In general, the result of differentiating a Hermite series does not
    resemble the same operation on a power series. Thus the result of this
    function may be "unintuitive," albeit correct; see Examples section
    below.

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermder
    >>> hermder([ 1. ,  0.5,  0.5,  0.5])
    array([1., 2., 3.])
    >>> hermder([-0.5,  1./2.,  1./8.,  1./12.,  1./16.], m=2)
    array([1., 2., 3.])

    """
    c = np.array(c, ndmin=1, copy=True)
    if c.dtype.char in '?bBhHiIlLqQpP':
        c = c.astype(np.double)
    cnt = pu._deprecate_as_int(m, "the order of derivation")
    iaxis = pu._deprecate_as_int(axis, "the axis")
    if cnt < 0:
        raise ValueError("The order of derivation must be non-negative")
    iaxis = normalize_axis_index(iaxis, c.ndim)

    if cnt == 0:
        return c

    c = np.moveaxis(c, iaxis, 0)
    n = len(c)
    if cnt >= n:
        c = c[:1]*0
    else:
        for i in range(cnt):
            n = n - 1
            c *= scl
            der = np.empty((n,) + c.shape[1:], dtype=c.dtype)
            for j in range(n, 0, -1):
                der[j - 1] = (2*j)*c[j]
            c = der
    c = np.moveaxis(c, 0, iaxis)
    return c


def hermint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
    """
    Integrate a Hermite series.

    Returns the Hermite series coefficients `c` integrated `m` times from
    `lbnd` along `axis`. At each iteration the resulting series is
    **multiplied** by `scl` and an integration constant, `k`, is added.
    The scaling factor is for use in a linear change of variable.  ("Buyer
    beware": note that, depending on what one is doing, one may want `scl`
    to be the reciprocal of what one might expect; for more information,
    see the Notes section below.)  The argument `c` is an array of
    coefficients from low to high degree along each axis, e.g., [1,2,3]
    represents the series ``H_0 + 2*H_1 + 3*H_2`` while [[1,2],[1,2]]
    represents ``1*H_0(x)*H_0(y) + 1*H_1(x)*H_0(y) + 2*H_0(x)*H_1(y) +
    2*H_1(x)*H_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``.

    Parameters
    ----------
    c : array_like
        Array of Hermite series coefficients. If c is multidimensional the
        different axis correspond to different variables with the degree in
        each axis given by the corresponding index.
    m : int, optional
        Order of integration, must be positive. (Default: 1)
    k : {[], list, scalar}, optional
        Integration constant(s).  The value of the first integral at
        ``lbnd`` is the first value in the list, the value of the second
        integral at ``lbnd`` is the second value, etc.  If ``k == []`` (the
        default), all constants are set to zero.  If ``m == 1``, a single
        scalar can be given instead of a list.
    lbnd : scalar, optional
        The lower bound of the integral. (Default: 0)
    scl : scalar, optional
        Following each integration the result is *multiplied* by `scl`
        before the integration constant is added. (Default: 1)
    axis : int, optional
        Axis over which the integral is taken. (Default: 0).

        .. versionadded:: 1.7.0

    Returns
    -------
    S : ndarray
        Hermite series coefficients of the integral.

    Raises
    ------
    ValueError
        If ``m < 0``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
        ``np.ndim(scl) != 0``.

    See Also
    --------
    hermder

    Notes
    -----
    Note that the result of each integration is *multiplied* by `scl`.
    Why is this important to note?  Say one is making a linear change of
    variable :math:`u = ax + b` in an integral relative to `x`.  Then
    :math:`dx = du/a`, so one will need to set `scl` equal to
    :math:`1/a` - perhaps not what one would have first thought.

    Also note that, in general, the result of integrating a C-series needs
    to be "reprojected" onto the C-series basis set.  Thus, typically,
    the result of this function is "unintuitive," albeit correct; see
    Examples section below.

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermint
    >>> hermint([1,2,3]) # integrate once, value 0 at 0.
    array([1. , 0.5, 0.5, 0.5])
    >>> hermint([1,2,3], m=2) # integrate twice, value & deriv 0 at 0
    array([-0.5       ,  0.5       ,  0.125     ,  0.08333333,  0.0625    ]) # may vary
    >>> hermint([1,2,3], k=1) # integrate once, value 1 at 0.
    array([2. , 0.5, 0.5, 0.5])
    >>> hermint([1,2,3], lbnd=-1) # integrate once, value 0 at -1
    array([-2. ,  0.5,  0.5,  0.5])
    >>> hermint([1,2,3], m=2, k=[1,2], lbnd=-1)
    array([ 1.66666667, -0.5       ,  0.125     ,  0.08333333,  0.0625    ]) # may vary

    """
    c = np.array(c, ndmin=1, copy=True)
    if c.dtype.char in '?bBhHiIlLqQpP':
        c = c.astype(np.double)
    if not np.iterable(k):
        k = [k]
    cnt = pu._deprecate_as_int(m, "the order of integration")
    iaxis = pu._deprecate_as_int(axis, "the axis")
    if cnt < 0:
        raise ValueError("The order of integration must be non-negative")
    if len(k) > cnt:
        raise ValueError("Too many integration constants")
    if np.ndim(lbnd) != 0:
        raise ValueError("lbnd must be a scalar.")
    if np.ndim(scl) != 0:
        raise ValueError("scl must be a scalar.")
    iaxis = normalize_axis_index(iaxis, c.ndim)

    if cnt == 0:
        return c

    c = np.moveaxis(c, iaxis, 0)
    k = list(k) + [0]*(cnt - len(k))
    for i in range(cnt):
        n = len(c)
        c *= scl
        if n == 1 and np.all(c[0] == 0):
            c[0] += k[i]
        else:
            tmp = np.empty((n + 1,) + c.shape[1:], dtype=c.dtype)
            tmp[0] = c[0]*0
            tmp[1] = c[0]/2
            for j in range(1, n):
                tmp[j + 1] = c[j]/(2*(j + 1))
            tmp[0] += k[i] - hermval(lbnd, tmp)
            c = tmp
    c = np.moveaxis(c, 0, iaxis)
    return c


def hermval(x, c, tensor=True):
    """
    Evaluate an Hermite series at points x.

    If `c` is of length `n + 1`, this function returns the value:

    .. math:: p(x) = c_0 * H_0(x) + c_1 * H_1(x) + ... + c_n * H_n(x)

    The parameter `x` is converted to an array only if it is a tuple or a
    list, otherwise it is treated as a scalar. In either case, either `x`
    or its elements must support multiplication and addition both with
    themselves and with the elements of `c`.

    If `c` is a 1-D array, then `p(x)` will have the same shape as `x`.  If
    `c` is multidimensional, then the shape of the result depends on the
    value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
    x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
    scalars have shape (,).

    Trailing zeros in the coefficients will be used in the evaluation, so
    they should be avoided if efficiency is a concern.

    Parameters
    ----------
    x : array_like, compatible object
        If `x` is a list or tuple, it is converted to an ndarray, otherwise
        it is left unchanged and treated as a scalar. In either case, `x`
        or its elements must support addition and multiplication with
        with themselves and with the elements of `c`.
    c : array_like
        Array of coefficients ordered so that the coefficients for terms of
        degree n are contained in c[n]. If `c` is multidimensional the
        remaining indices enumerate multiple polynomials. In the two
        dimensional case the coefficients may be thought of as stored in
        the columns of `c`.
    tensor : boolean, optional
        If True, the shape of the coefficient array is extended with ones
        on the right, one for each dimension of `x`. Scalars have dimension 0
        for this action. The result is that every column of coefficients in
        `c` is evaluated for every element of `x`. If False, `x` is broadcast
        over the columns of `c` for the evaluation.  This keyword is useful
        when `c` is multidimensional. The default value is True.

        .. versionadded:: 1.7.0

    Returns
    -------
    values : ndarray, algebra_like
        The shape of the return value is described above.

    See Also
    --------
    hermval2d, hermgrid2d, hermval3d, hermgrid3d

    Notes
    -----
    The evaluation uses Clenshaw recursion, aka synthetic division.

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermval
    >>> coef = [1,2,3]
    >>> hermval(1, coef)
    11.0
    >>> hermval([[1,2],[3,4]], coef)
    array([[ 11.,   51.],
           [115.,  203.]])

    """
    c = np.array(c, ndmin=1, copy=False)
    if c.dtype.char in '?bBhHiIlLqQpP':
        c = c.astype(np.double)
    if isinstance(x, (tuple, list)):
        x = np.asarray(x)
    if isinstance(x, np.ndarray) and tensor:
        c = c.reshape(c.shape + (1,)*x.ndim)

    x2 = x*2
    if len(c) == 1:
        c0 = c[0]
        c1 = 0
    elif len(c) == 2:
        c0 = c[0]
        c1 = c[1]
    else:
        nd = len(c)
        c0 = c[-2]
        c1 = c[-1]
        for i in range(3, len(c) + 1):
            tmp = c0
            nd = nd - 1
            c0 = c[-i] - c1*(2*(nd - 1))
            c1 = tmp + c1*x2
    return c0 + c1*x2


def hermval2d(x, y, c):
    """
    Evaluate a 2-D Hermite series at points (x, y).

    This function returns the values:

    .. math:: p(x,y) = \\sum_{i,j} c_{i,j} * H_i(x) * H_j(y)

    The parameters `x` and `y` are converted to arrays only if they are
    tuples or a lists, otherwise they are treated as a scalars and they
    must have the same shape after conversion. In either case, either `x`
    and `y` or their elements must support multiplication and addition both
    with themselves and with the elements of `c`.

    If `c` is a 1-D array a one is implicitly appended to its shape to make
    it 2-D. The shape of the result will be c.shape[2:] + x.shape.

    Parameters
    ----------
    x, y : array_like, compatible objects
        The two dimensional series is evaluated at the points `(x, y)`,
        where `x` and `y` must have the same shape. If `x` or `y` is a list
        or tuple, it is first converted to an ndarray, otherwise it is left
        unchanged and if it isn't an ndarray it is treated as a scalar.
    c : array_like
        Array of coefficients ordered so that the coefficient of the term
        of multi-degree i,j is contained in ``c[i,j]``. If `c` has
        dimension greater than two the remaining indices enumerate multiple
        sets of coefficients.

    Returns
    -------
    values : ndarray, compatible object
        The values of the two dimensional polynomial at points formed with
        pairs of corresponding values from `x` and `y`.

    See Also
    --------
    hermval, hermgrid2d, hermval3d, hermgrid3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._valnd(hermval, c, x, y)


def hermgrid2d(x, y, c):
    """
    Evaluate a 2-D Hermite series on the Cartesian product of x and y.

    This function returns the values:

    .. math:: p(a,b) = \\sum_{i,j} c_{i,j} * H_i(a) * H_j(b)

    where the points `(a, b)` consist of all pairs formed by taking
    `a` from `x` and `b` from `y`. The resulting points form a grid with
    `x` in the first dimension and `y` in the second.

    The parameters `x` and `y` are converted to arrays only if they are
    tuples or a lists, otherwise they are treated as a scalars. In either
    case, either `x` and `y` or their elements must support multiplication
    and addition both with themselves and with the elements of `c`.

    If `c` has fewer than two dimensions, ones are implicitly appended to
    its shape to make it 2-D. The shape of the result will be c.shape[2:] +
    x.shape.

    Parameters
    ----------
    x, y : array_like, compatible objects
        The two dimensional series is evaluated at the points in the
        Cartesian product of `x` and `y`.  If `x` or `y` is a list or
        tuple, it is first converted to an ndarray, otherwise it is left
        unchanged and, if it isn't an ndarray, it is treated as a scalar.
    c : array_like
        Array of coefficients ordered so that the coefficients for terms of
        degree i,j are contained in ``c[i,j]``. If `c` has dimension
        greater than two the remaining indices enumerate multiple sets of
        coefficients.

    Returns
    -------
    values : ndarray, compatible object
        The values of the two dimensional polynomial at points in the Cartesian
        product of `x` and `y`.

    See Also
    --------
    hermval, hermval2d, hermval3d, hermgrid3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._gridnd(hermval, c, x, y)


def hermval3d(x, y, z, c):
    """
    Evaluate a 3-D Hermite series at points (x, y, z).

    This function returns the values:

    .. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * H_i(x) * H_j(y) * H_k(z)

    The parameters `x`, `y`, and `z` are converted to arrays only if
    they are tuples or a lists, otherwise they are treated as a scalars and
    they must have the same shape after conversion. In either case, either
    `x`, `y`, and `z` or their elements must support multiplication and
    addition both with themselves and with the elements of `c`.

    If `c` has fewer than 3 dimensions, ones are implicitly appended to its
    shape to make it 3-D. The shape of the result will be c.shape[3:] +
    x.shape.

    Parameters
    ----------
    x, y, z : array_like, compatible object
        The three dimensional series is evaluated at the points
        `(x, y, z)`, where `x`, `y`, and `z` must have the same shape.  If
        any of `x`, `y`, or `z` is a list or tuple, it is first converted
        to an ndarray, otherwise it is left unchanged and if it isn't an
        ndarray it is  treated as a scalar.
    c : array_like
        Array of coefficients ordered so that the coefficient of the term of
        multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
        greater than 3 the remaining indices enumerate multiple sets of
        coefficients.

    Returns
    -------
    values : ndarray, compatible object
        The values of the multidimensional polynomial on points formed with
        triples of corresponding values from `x`, `y`, and `z`.

    See Also
    --------
    hermval, hermval2d, hermgrid2d, hermgrid3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._valnd(hermval, c, x, y, z)


def hermgrid3d(x, y, z, c):
    """
    Evaluate a 3-D Hermite series on the Cartesian product of x, y, and z.

    This function returns the values:

    .. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * H_i(a) * H_j(b) * H_k(c)

    where the points `(a, b, c)` consist of all triples formed by taking
    `a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
    a grid with `x` in the first dimension, `y` in the second, and `z` in
    the third.

    The parameters `x`, `y`, and `z` are converted to arrays only if they
    are tuples or a lists, otherwise they are treated as a scalars. In
    either case, either `x`, `y`, and `z` or their elements must support
    multiplication and addition both with themselves and with the elements
    of `c`.

    If `c` has fewer than three dimensions, ones are implicitly appended to
    its shape to make it 3-D. The shape of the result will be c.shape[3:] +
    x.shape + y.shape + z.shape.

    Parameters
    ----------
    x, y, z : array_like, compatible objects
        The three dimensional series is evaluated at the points in the
        Cartesian product of `x`, `y`, and `z`.  If `x`,`y`, or `z` is a
        list or tuple, it is first converted to an ndarray, otherwise it is
        left unchanged and, if it isn't an ndarray, it is treated as a
        scalar.
    c : array_like
        Array of coefficients ordered so that the coefficients for terms of
        degree i,j are contained in ``c[i,j]``. If `c` has dimension
        greater than two the remaining indices enumerate multiple sets of
        coefficients.

    Returns
    -------
    values : ndarray, compatible object
        The values of the two dimensional polynomial at points in the Cartesian
        product of `x` and `y`.

    See Also
    --------
    hermval, hermval2d, hermgrid2d, hermval3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._gridnd(hermval, c, x, y, z)


def hermvander(x, deg):
    """Pseudo-Vandermonde matrix of given degree.

    Returns the pseudo-Vandermonde matrix of degree `deg` and sample points
    `x`. The pseudo-Vandermonde matrix is defined by

    .. math:: V[..., i] = H_i(x),

    where `0 <= i <= deg`. The leading indices of `V` index the elements of
    `x` and the last index is the degree of the Hermite polynomial.

    If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
    array ``V = hermvander(x, n)``, then ``np.dot(V, c)`` and
    ``hermval(x, c)`` are the same up to roundoff. This equivalence is
    useful both for least squares fitting and for the evaluation of a large
    number of Hermite series of the same degree and sample points.

    Parameters
    ----------
    x : array_like
        Array of points. The dtype is converted to float64 or complex128
        depending on whether any of the elements are complex. If `x` is
        scalar it is converted to a 1-D array.
    deg : int
        Degree of the resulting matrix.

    Returns
    -------
    vander : ndarray
        The pseudo-Vandermonde matrix. The shape of the returned matrix is
        ``x.shape + (deg + 1,)``, where The last index is the degree of the
        corresponding Hermite polynomial.  The dtype will be the same as
        the converted `x`.

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermvander
    >>> x = np.array([-1, 0, 1])
    >>> hermvander(x, 3)
    array([[ 1., -2.,  2.,  4.],
           [ 1.,  0., -2., -0.],
           [ 1.,  2.,  2., -4.]])

    """
    ideg = pu._deprecate_as_int(deg, "deg")
    if ideg < 0:
        raise ValueError("deg must be non-negative")

    x = np.array(x, copy=False, ndmin=1) + 0.0
    dims = (ideg + 1,) + x.shape
    dtyp = x.dtype
    v = np.empty(dims, dtype=dtyp)
    v[0] = x*0 + 1
    if ideg > 0:
        x2 = x*2
        v[1] = x2
        for i in range(2, ideg + 1):
            v[i] = (v[i-1]*x2 - v[i-2]*(2*(i - 1)))
    return np.moveaxis(v, 0, -1)


def hermvander2d(x, y, deg):
    """Pseudo-Vandermonde matrix of given degrees.

    Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
    points `(x, y)`. The pseudo-Vandermonde matrix is defined by

    .. math:: V[..., (deg[1] + 1)*i + j] = H_i(x) * H_j(y),

    where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
    `V` index the points `(x, y)` and the last index encodes the degrees of
    the Hermite polynomials.

    If ``V = hermvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
    correspond to the elements of a 2-D coefficient array `c` of shape
    (xdeg + 1, ydeg + 1) in the order

    .. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...

    and ``np.dot(V, c.flat)`` and ``hermval2d(x, y, c)`` will be the same
    up to roundoff. This equivalence is useful both for least squares
    fitting and for the evaluation of a large number of 2-D Hermite
    series of the same degrees and sample points.

    Parameters
    ----------
    x, y : array_like
        Arrays of point coordinates, all of the same shape. The dtypes
        will be converted to either float64 or complex128 depending on
        whether any of the elements are complex. Scalars are converted to 1-D
        arrays.
    deg : list of ints
        List of maximum degrees of the form [x_deg, y_deg].

    Returns
    -------
    vander2d : ndarray
        The shape of the returned matrix is ``x.shape + (order,)``, where
        :math:`order = (deg[0]+1)*(deg([1]+1)`.  The dtype will be the same
        as the converted `x` and `y`.

    See Also
    --------
    hermvander, hermvander3d, hermval2d, hermval3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._vander_nd_flat((hermvander, hermvander), (x, y), deg)


def hermvander3d(x, y, z, deg):
    """Pseudo-Vandermonde matrix of given degrees.

    Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
    points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
    then The pseudo-Vandermonde matrix is defined by

    .. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = H_i(x)*H_j(y)*H_k(z),

    where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`.  The leading
    indices of `V` index the points `(x, y, z)` and the last index encodes
    the degrees of the Hermite polynomials.

    If ``V = hermvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
    of `V` correspond to the elements of a 3-D coefficient array `c` of
    shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order

    .. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...

    and  ``np.dot(V, c.flat)`` and ``hermval3d(x, y, z, c)`` will be the
    same up to roundoff. This equivalence is useful both for least squares
    fitting and for the evaluation of a large number of 3-D Hermite
    series of the same degrees and sample points.

    Parameters
    ----------
    x, y, z : array_like
        Arrays of point coordinates, all of the same shape. The dtypes will
        be converted to either float64 or complex128 depending on whether
        any of the elements are complex. Scalars are converted to 1-D
        arrays.
    deg : list of ints
        List of maximum degrees of the form [x_deg, y_deg, z_deg].

    Returns
    -------
    vander3d : ndarray
        The shape of the returned matrix is ``x.shape + (order,)``, where
        :math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`.  The dtype will
        be the same as the converted `x`, `y`, and `z`.

    See Also
    --------
    hermvander, hermvander3d, hermval2d, hermval3d

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    return pu._vander_nd_flat((hermvander, hermvander, hermvander), (x, y, z), deg)


def hermfit(x, y, deg, rcond=None, full=False, w=None):
    """
    Least squares fit of Hermite series to data.

    Return the coefficients of a Hermite series of degree `deg` that is the
    least squares fit to the data values `y` given at points `x`. If `y` is
    1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
    fits are done, one for each column of `y`, and the resulting
    coefficients are stored in the corresponding columns of a 2-D return.
    The fitted polynomial(s) are in the form

    .. math::  p(x) = c_0 + c_1 * H_1(x) + ... + c_n * H_n(x),

    where `n` is `deg`.

    Parameters
    ----------
    x : array_like, shape (M,)
        x-coordinates of the M sample points ``(x[i], y[i])``.
    y : array_like, shape (M,) or (M, K)
        y-coordinates of the sample points. Several data sets of sample
        points sharing the same x-coordinates can be fitted at once by
        passing in a 2D-array that contains one dataset per column.
    deg : int or 1-D array_like
        Degree(s) of the fitting polynomials. If `deg` is a single integer
        all terms up to and including the `deg`'th term are included in the
        fit. For NumPy versions >= 1.11.0 a list of integers specifying the
        degrees of the terms to include may be used instead.
    rcond : float, optional
        Relative condition number of the fit. Singular values smaller than
        this relative to the largest singular value will be ignored. The
        default value is len(x)*eps, where eps is the relative precision of
        the float type, about 2e-16 in most cases.
    full : bool, optional
        Switch determining nature of return value. When it is False (the
        default) just the coefficients are returned, when True diagnostic
        information from the singular value decomposition is also returned.
    w : array_like, shape (`M`,), optional
        Weights. If not None, the contribution of each point
        ``(x[i],y[i])`` to the fit is weighted by `w[i]`. Ideally the
        weights are chosen so that the errors of the products ``w[i]*y[i]``
        all have the same variance.  The default value is None.

    Returns
    -------
    coef : ndarray, shape (M,) or (M, K)
        Hermite coefficients ordered from low to high. If `y` was 2-D,
        the coefficients for the data in column k  of `y` are in column
        `k`.

    [residuals, rank, singular_values, rcond] : list
        These values are only returned if `full` = True

        resid -- sum of squared residuals of the least squares fit
        rank -- the numerical rank of the scaled Vandermonde matrix
        sv -- singular values of the scaled Vandermonde matrix
        rcond -- value of `rcond`.

        For more details, see `linalg.lstsq`.

    Warns
    -----
    RankWarning
        The rank of the coefficient matrix in the least-squares fit is
        deficient. The warning is only raised if `full` = False.  The
        warnings can be turned off by

        >>> import warnings
        >>> warnings.simplefilter('ignore', np.RankWarning)

    See Also
    --------
    chebfit, legfit, lagfit, polyfit, hermefit
    hermval : Evaluates a Hermite series.
    hermvander : Vandermonde matrix of Hermite series.
    hermweight : Hermite weight function
    linalg.lstsq : Computes a least-squares fit from the matrix.
    scipy.interpolate.UnivariateSpline : Computes spline fits.

    Notes
    -----
    The solution is the coefficients of the Hermite series `p` that
    minimizes the sum of the weighted squared errors

    .. math:: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,

    where the :math:`w_j` are the weights. This problem is solved by
    setting up the (typically) overdetermined matrix equation

    .. math:: V(x) * c = w * y,

    where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
    coefficients to be solved for, `w` are the weights, `y` are the
    observed values.  This equation is then solved using the singular value
    decomposition of `V`.

    If some of the singular values of `V` are so small that they are
    neglected, then a `RankWarning` will be issued. This means that the
    coefficient values may be poorly determined. Using a lower order fit
    will usually get rid of the warning.  The `rcond` parameter can also be
    set to a value smaller than its default, but the resulting fit may be
    spurious and have large contributions from roundoff error.

    Fits using Hermite series are probably most useful when the data can be
    approximated by ``sqrt(w(x)) * p(x)``, where `w(x)` is the Hermite
    weight. In that case the weight ``sqrt(w(x[i])`` should be used
    together with data values ``y[i]/sqrt(w(x[i])``. The weight function is
    available as `hermweight`.

    References
    ----------
    .. [1] Wikipedia, "Curve fitting",
           https://en.wikipedia.org/wiki/Curve_fitting

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermfit, hermval
    >>> x = np.linspace(-10, 10)
    >>> err = np.random.randn(len(x))/10
    >>> y = hermval(x, [1, 2, 3]) + err
    >>> hermfit(x, y, 2)
    array([1.0218, 1.9986, 2.9999]) # may vary

    """
    return pu._fit(hermvander, x, y, deg, rcond, full, w)


def hermcompanion(c):
    """Return the scaled companion matrix of c.

    The basis polynomials are scaled so that the companion matrix is
    symmetric when `c` is an Hermite basis polynomial. This provides
    better eigenvalue estimates than the unscaled case and for basis
    polynomials the eigenvalues are guaranteed to be real if
    `numpy.linalg.eigvalsh` is used to obtain them.

    Parameters
    ----------
    c : array_like
        1-D array of Hermite series coefficients ordered from low to high
        degree.

    Returns
    -------
    mat : ndarray
        Scaled companion matrix of dimensions (deg, deg).

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) < 2:
        raise ValueError('Series must have maximum degree of at least 1.')
    if len(c) == 2:
        return np.array([[-.5*c[0]/c[1]]])

    n = len(c) - 1
    mat = np.zeros((n, n), dtype=c.dtype)
    scl = np.hstack((1., 1./np.sqrt(2.*np.arange(n - 1, 0, -1))))
    scl = np.multiply.accumulate(scl)[::-1]
    top = mat.reshape(-1)[1::n+1]
    bot = mat.reshape(-1)[n::n+1]
    top[...] = np.sqrt(.5*np.arange(1, n))
    bot[...] = top
    mat[:, -1] -= scl*c[:-1]/(2.0*c[-1])
    return mat


def hermroots(c):
    """
    Compute the roots of a Hermite series.

    Return the roots (a.k.a. "zeros") of the polynomial

    .. math:: p(x) = \\sum_i c[i] * H_i(x).

    Parameters
    ----------
    c : 1-D array_like
        1-D array of coefficients.

    Returns
    -------
    out : ndarray
        Array of the roots of the series. If all the roots are real,
        then `out` is also real, otherwise it is complex.

    See Also
    --------
    polyroots, legroots, lagroots, chebroots, hermeroots

    Notes
    -----
    The root estimates are obtained as the eigenvalues of the companion
    matrix, Roots far from the origin of the complex plane may have large
    errors due to the numerical instability of the series for such
    values. Roots with multiplicity greater than 1 will also show larger
    errors as the value of the series near such points is relatively
    insensitive to errors in the roots. Isolated roots near the origin can
    be improved by a few iterations of Newton's method.

    The Hermite series basis polynomials aren't powers of `x` so the
    results of this function may seem unintuitive.

    Examples
    --------
    >>> from numpy.polynomial.hermite import hermroots, hermfromroots
    >>> coef = hermfromroots([-1, 0, 1])
    >>> coef
    array([0.   ,  0.25 ,  0.   ,  0.125])
    >>> hermroots(coef)
    array([-1.00000000e+00, -1.38777878e-17,  1.00000000e+00])

    """
    # c is a trimmed copy
    [c] = pu.as_series([c])
    if len(c) <= 1:
        return np.array([], dtype=c.dtype)
    if len(c) == 2:
        return np.array([-.5*c[0]/c[1]])

    # rotated companion matrix reduces error
    m = hermcompanion(c)[::-1,::-1]
    r = la.eigvals(m)
    r.sort()
    return r


def _normed_hermite_n(x, n):
    """
    Evaluate a normalized Hermite polynomial.

    Compute the value of the normalized Hermite polynomial of degree ``n``
    at the points ``x``.


    Parameters
    ----------
    x : ndarray of double.
        Points at which to evaluate the function
    n : int
        Degree of the normalized Hermite function to be evaluated.

    Returns
    -------
    values : ndarray
        The shape of the return value is described above.

    Notes
    -----
    .. versionadded:: 1.10.0

    This function is needed for finding the Gauss points and integration
    weights for high degrees. The values of the standard Hermite functions
    overflow when n >= 207.

    """
    if n == 0:
        return np.full(x.shape, 1/np.sqrt(np.sqrt(np.pi)))

    c0 = 0.
    c1 = 1./np.sqrt(np.sqrt(np.pi))
    nd = float(n)
    for i in range(n - 1):
        tmp = c0
        c0 = -c1*np.sqrt((nd - 1.)/nd)
        c1 = tmp + c1*x*np.sqrt(2./nd)
        nd = nd - 1.0
    return c0 + c1*x*np.sqrt(2)


def hermgauss(deg):
    """
    Gauss-Hermite quadrature.

    Computes the sample points and weights for Gauss-Hermite quadrature.
    These sample points and weights will correctly integrate polynomials of
    degree :math:`2*deg - 1` or less over the interval :math:`[-\\inf, \\inf]`
    with the weight function :math:`f(x) = \\exp(-x^2)`.

    Parameters
    ----------
    deg : int
        Number of sample points and weights. It must be >= 1.

    Returns
    -------
    x : ndarray
        1-D ndarray containing the sample points.
    y : ndarray
        1-D ndarray containing the weights.

    Notes
    -----

    .. versionadded:: 1.7.0

    The results have only been tested up to degree 100, higher degrees may
    be problematic. The weights are determined by using the fact that

    .. math:: w_k = c / (H'_n(x_k) * H_{n-1}(x_k))

    where :math:`c` is a constant independent of :math:`k` and :math:`x_k`
    is the k'th root of :math:`H_n`, and then scaling the results to get
    the right value when integrating 1.

    """
    ideg = pu._deprecate_as_int(deg, "deg")
    if ideg <= 0:
        raise ValueError("deg must be a positive integer")

    # first approximation of roots. We use the fact that the companion
    # matrix is symmetric in this case in order to obtain better zeros.
    c = np.array([0]*deg + [1], dtype=np.float64)
    m = hermcompanion(c)
    x = la.eigvalsh(m)

    # improve roots by one application of Newton
    dy = _normed_hermite_n(x, ideg)
    df = _normed_hermite_n(x, ideg - 1) * np.sqrt(2*ideg)
    x -= dy/df

    # compute the weights. We scale the factor to avoid possible numerical
    # overflow.
    fm = _normed_hermite_n(x, ideg - 1)
    fm /= np.abs(fm).max()
    w = 1/(fm * fm)

    # for Hermite we can also symmetrize
    w = (w + w[::-1])/2
    x = (x - x[::-1])/2

    # scale w to get the right value
    w *= np.sqrt(np.pi) / w.sum()

    return x, w


def hermweight(x):
    """
    Weight function of the Hermite polynomials.

    The weight function is :math:`\\exp(-x^2)` and the interval of
    integration is :math:`[-\\inf, \\inf]`. the Hermite polynomials are
    orthogonal, but not normalized, with respect to this weight function.

    Parameters
    ----------
    x : array_like
       Values at which the weight function will be computed.

    Returns
    -------
    w : ndarray
       The weight function at `x`.

    Notes
    -----

    .. versionadded:: 1.7.0

    """
    w = np.exp(-x**2)
    return w


#
# Hermite series class
#

class Hermite(ABCPolyBase):
    """An Hermite series class.

    The Hermite class provides the standard Python numerical methods
    '+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
    attributes and methods listed in the `ABCPolyBase` documentation.

    Parameters
    ----------
    coef : array_like
        Hermite coefficients in order of increasing degree, i.e,
        ``(1, 2, 3)`` gives ``1*H_0(x) + 2*H_1(X) + 3*H_2(x)``.
    domain : (2,) array_like, optional
        Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
        to the interval ``[window[0], window[1]]`` by shifting and scaling.
        The default value is [-1, 1].
    window : (2,) array_like, optional
        Window, see `domain` for its use. The default value is [-1, 1].

        .. versionadded:: 1.6.0

    """
    # Virtual Functions
    _add = staticmethod(hermadd)
    _sub = staticmethod(hermsub)
    _mul = staticmethod(hermmul)
    _div = staticmethod(hermdiv)
    _pow = staticmethod(hermpow)
    _val = staticmethod(hermval)
    _int = staticmethod(hermint)
    _der = staticmethod(hermder)
    _fit = staticmethod(hermfit)
    _line = staticmethod(hermline)
    _roots = staticmethod(hermroots)
    _fromroots = staticmethod(hermfromroots)

    # Virtual properties
    nickname = 'herm'
    domain = np.array(hermdomain)
    window = np.array(hermdomain)
    basis_name = 'H'