callbacks.py 50.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
"""Callbacks: utilities called at certain points during model training.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import csv
import six

import numpy as np
import time
import json
import warnings
import io
import sys

from collections import deque
from collections import OrderedDict
from collections import Iterable
from .utils.generic_utils import Progbar
from . import backend as K
from .engine.training_utils import standardize_input_data

try:
    import requests
except ImportError:
    requests = None


class CallbackList(object):
    """Container abstracting a list of callbacks.

    # Arguments
        callbacks: List of `Callback` instances.
        queue_length: Queue length for keeping
            running statistics over callback execution time.
    """

    def __init__(self, callbacks=None, queue_length=10):
        callbacks = callbacks or []
        self.callbacks = [c for c in callbacks]
        self.queue_length = queue_length

    def append(self, callback):
        self.callbacks.append(callback)

    def set_params(self, params):
        for callback in self.callbacks:
            callback.set_params(params)

    def set_model(self, model):
        for callback in self.callbacks:
            callback.set_model(model)

    def on_epoch_begin(self, epoch, logs=None):
        """Called at the start of an epoch.

        # Arguments
            epoch: integer, index of epoch.
            logs: dictionary of logs.
        """
        logs = logs or {}
        for callback in self.callbacks:
            callback.on_epoch_begin(epoch, logs)
        self._delta_t_batch = 0.
        self._delta_ts_batch_begin = deque([], maxlen=self.queue_length)
        self._delta_ts_batch_end = deque([], maxlen=self.queue_length)

    def on_epoch_end(self, epoch, logs=None):
        """Called at the end of an epoch.

        # Arguments
            epoch: integer, index of epoch.
            logs: dictionary of logs.
        """
        logs = logs or {}
        for callback in self.callbacks:
            callback.on_epoch_end(epoch, logs)

    def on_batch_begin(self, batch, logs=None):
        """Called right before processing a batch.

        # Arguments
            batch: integer, index of batch within the current epoch.
            logs: dictionary of logs.
        """
        logs = logs or {}
        t_before_callbacks = time.time()
        for callback in self.callbacks:
            callback.on_batch_begin(batch, logs)
        self._delta_ts_batch_begin.append(time.time() - t_before_callbacks)
        delta_t_median = np.median(self._delta_ts_batch_begin)
        if (self._delta_t_batch > 0. and
           delta_t_median > 0.95 * self._delta_t_batch and
           delta_t_median > 0.1):
            warnings.warn('Method on_batch_begin() is slow compared '
                          'to the batch update (%f). Check your callbacks.'
                          % delta_t_median)
        self._t_enter_batch = time.time()

    def on_batch_end(self, batch, logs=None):
        """Called at the end of a batch.

        # Arguments
            batch: integer, index of batch within the current epoch.
            logs: dictionary of logs.
        """
        logs = logs or {}
        if not hasattr(self, '_t_enter_batch'):
            self._t_enter_batch = time.time()
        self._delta_t_batch = time.time() - self._t_enter_batch
        t_before_callbacks = time.time()
        for callback in self.callbacks:
            callback.on_batch_end(batch, logs)
        self._delta_ts_batch_end.append(time.time() - t_before_callbacks)
        delta_t_median = np.median(self._delta_ts_batch_end)
        if (self._delta_t_batch > 0. and
           (delta_t_median > 0.95 * self._delta_t_batch and delta_t_median > 0.1)):
            warnings.warn('Method on_batch_end() is slow compared '
                          'to the batch update (%f). Check your callbacks.'
                          % delta_t_median)

    def on_train_begin(self, logs=None):
        """Called at the beginning of training.

        # Arguments
            logs: dictionary of logs.
        """
        logs = logs or {}
        for callback in self.callbacks:
            callback.on_train_begin(logs)

    def on_train_end(self, logs=None):
        """Called at the end of training.

        # Arguments
            logs: dictionary of logs.
        """
        logs = logs or {}
        for callback in self.callbacks:
            callback.on_train_end(logs)

    def __iter__(self):
        return iter(self.callbacks)


class Callback(object):
    """Abstract base class used to build new callbacks.

    # Properties
        params: dict. Training parameters
            (eg. verbosity, batch size, number of epochs...).
        model: instance of `keras.models.Model`.
            Reference of the model being trained.

    The `logs` dictionary that callback methods
    take as argument will contain keys for quantities relevant to
    the current batch or epoch.

    Currently, the `.fit()` method of the `Sequential` model class
    will include the following quantities in the `logs` that
    it passes to its callbacks:

        on_epoch_end: logs include `acc` and `loss`, and
            optionally include `val_loss`
            (if validation is enabled in `fit`), and `val_acc`
            (if validation and accuracy monitoring are enabled).
        on_batch_begin: logs include `size`,
            the number of samples in the current batch.
        on_batch_end: logs include `loss`, and optionally `acc`
            (if accuracy monitoring is enabled).
    """

    def __init__(self):
        self.validation_data = None
        self.model = None

    def set_params(self, params):
        self.params = params

    def set_model(self, model):
        self.model = model

    def on_epoch_begin(self, epoch, logs=None):
        pass

    def on_epoch_end(self, epoch, logs=None):
        pass

    def on_batch_begin(self, batch, logs=None):
        pass

    def on_batch_end(self, batch, logs=None):
        pass

    def on_train_begin(self, logs=None):
        pass

    def on_train_end(self, logs=None):
        pass


class BaseLogger(Callback):
    """Callback that accumulates epoch averages of metrics.

    This callback is automatically applied to every Keras model.

    # Arguments
        stateful_metrics: Iterable of string names of metrics that
            should *not* be averaged over an epoch.
            Metrics in this list will be logged as-is in `on_epoch_end`.
            All others will be averaged in `on_epoch_end`.
    """

    def __init__(self, stateful_metrics=None):
        if stateful_metrics:
            self.stateful_metrics = set(stateful_metrics)
        else:
            self.stateful_metrics = set()

    def on_epoch_begin(self, epoch, logs=None):
        self.seen = 0
        self.totals = {}

    def on_batch_end(self, batch, logs=None):
        logs = logs or {}
        batch_size = logs.get('size', 0)
        self.seen += batch_size

        for k, v in logs.items():
            if k in self.stateful_metrics:
                self.totals[k] = v
            else:
                if k in self.totals:
                    self.totals[k] += v * batch_size
                else:
                    self.totals[k] = v * batch_size

    def on_epoch_end(self, epoch, logs=None):
        if logs is not None:
            for k in self.params['metrics']:
                if k in self.totals:
                    # Make value available to next callbacks.
                    if k in self.stateful_metrics:
                        logs[k] = self.totals[k]
                    else:
                        logs[k] = self.totals[k] / self.seen


class TerminateOnNaN(Callback):
    """Callback that terminates training when a NaN loss is encountered.
    """

    def on_batch_end(self, batch, logs=None):
        logs = logs or {}
        loss = logs.get('loss')
        if loss is not None:
            if np.isnan(loss) or np.isinf(loss):
                print('Batch %d: Invalid loss, terminating training' % (batch))
                self.model.stop_training = True


class ProgbarLogger(Callback):
    """Callback that prints metrics to stdout.

    # Arguments
        count_mode: One of "steps" or "samples".
            Whether the progress bar should
            count samples seen or steps (batches) seen.
        stateful_metrics: Iterable of string names of metrics that
            should *not* be averaged over an epoch.
            Metrics in this list will be logged as-is.
            All others will be averaged over time (e.g. loss, etc).

    # Raises
        ValueError: In case of invalid `count_mode`.
    """

    def __init__(self, count_mode='samples',
                 stateful_metrics=None):
        super(ProgbarLogger, self).__init__()
        if count_mode == 'samples':
            self.use_steps = False
        elif count_mode == 'steps':
            self.use_steps = True
        else:
            raise ValueError('Unknown `count_mode`: ' + str(count_mode))
        if stateful_metrics:
            self.stateful_metrics = set(stateful_metrics)
        else:
            self.stateful_metrics = set()

    def on_train_begin(self, logs=None):
        self.verbose = self.params['verbose']
        self.epochs = self.params['epochs']

    def on_epoch_begin(self, epoch, logs=None):
        if self.verbose:
            print('Epoch %d/%d' % (epoch + 1, self.epochs))
            if self.use_steps:
                target = self.params['steps']
            else:
                target = self.params['samples']
            self.target = target
            self.progbar = Progbar(target=self.target,
                                   verbose=self.verbose,
                                   stateful_metrics=self.stateful_metrics)
        self.seen = 0

    def on_batch_begin(self, batch, logs=None):
        if self.seen < self.target:
            self.log_values = []

    def on_batch_end(self, batch, logs=None):
        logs = logs or {}
        batch_size = logs.get('size', 0)
        if self.use_steps:
            self.seen += 1
        else:
            self.seen += batch_size

        for k in self.params['metrics']:
            if k in logs:
                self.log_values.append((k, logs[k]))

        # Skip progbar update for the last batch;
        # will be handled by on_epoch_end.
        if self.verbose and self.seen < self.target:
            self.progbar.update(self.seen, self.log_values)

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        for k in self.params['metrics']:
            if k in logs:
                self.log_values.append((k, logs[k]))
        if self.verbose:
            self.progbar.update(self.seen, self.log_values)


class History(Callback):
    """Callback that records events into a `History` object.

    This callback is automatically applied to
    every Keras model. The `History` object
    gets returned by the `fit` method of models.
    """

    def on_train_begin(self, logs=None):
        self.epoch = []
        self.history = {}

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        self.epoch.append(epoch)
        for k, v in logs.items():
            self.history.setdefault(k, []).append(v)


class ModelCheckpoint(Callback):
    """Save the model after every epoch.

    `filepath` can contain named formatting options,
    which will be filled the value of `epoch` and
    keys in `logs` (passed in `on_epoch_end`).

    For example: if `filepath` is `weights.{epoch:02d}-{val_loss:.2f}.hdf5`,
    then the model checkpoints will be saved with the epoch number and
    the validation loss in the filename.

    # Arguments
        filepath: string, path to save the model file.
        monitor: quantity to monitor.
        verbose: verbosity mode, 0 or 1.
        save_best_only: if `save_best_only=True`,
            the latest best model according to
            the quantity monitored will not be overwritten.
        mode: one of {auto, min, max}.
            If `save_best_only=True`, the decision
            to overwrite the current save file is made
            based on either the maximization or the
            minimization of the monitored quantity. For `val_acc`,
            this should be `max`, for `val_loss` this should
            be `min`, etc. In `auto` mode, the direction is
            automatically inferred from the name of the monitored quantity.
        save_weights_only: if True, then only the model's weights will be
            saved (`model.save_weights(filepath)`), else the full model
            is saved (`model.save(filepath)`).
        period: Interval (number of epochs) between checkpoints.
    """

    def __init__(self, filepath, monitor='val_loss', verbose=0,
                 save_best_only=False, save_weights_only=False,
                 mode='auto', period=1):
        super(ModelCheckpoint, self).__init__()
        self.monitor = monitor
        self.verbose = verbose
        self.filepath = filepath
        self.save_best_only = save_best_only
        self.save_weights_only = save_weights_only
        self.period = period
        self.epochs_since_last_save = 0

        if mode not in ['auto', 'min', 'max']:
            warnings.warn('ModelCheckpoint mode %s is unknown, '
                          'fallback to auto mode.' % (mode),
                          RuntimeWarning)
            mode = 'auto'

        if mode == 'min':
            self.monitor_op = np.less
            self.best = np.Inf
        elif mode == 'max':
            self.monitor_op = np.greater
            self.best = -np.Inf
        else:
            if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
                self.monitor_op = np.greater
                self.best = -np.Inf
            else:
                self.monitor_op = np.less
                self.best = np.Inf

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        self.epochs_since_last_save += 1
        if self.epochs_since_last_save >= self.period:
            self.epochs_since_last_save = 0
            filepath = self.filepath.format(epoch=epoch + 1, **logs)
            if self.save_best_only:
                current = logs.get(self.monitor)
                if current is None:
                    warnings.warn('Can save best model only with %s available, '
                                  'skipping.' % (self.monitor), RuntimeWarning)
                else:
                    if self.monitor_op(current, self.best):
                        if self.verbose > 0:
                            print('\nEpoch %05d: %s improved from %0.5f to %0.5f,'
                                  ' saving model to %s'
                                  % (epoch + 1, self.monitor, self.best,
                                     current, filepath))
                        self.best = current
                        if self.save_weights_only:
                            self.model.save_weights(filepath, overwrite=True)
                        else:
                            self.model.save(filepath, overwrite=True)
                    else:
                        if self.verbose > 0:
                            print('\nEpoch %05d: %s did not improve from %0.5f' %
                                  (epoch + 1, self.monitor, self.best))
            else:
                if self.verbose > 0:
                    print('\nEpoch %05d: saving model to %s' % (epoch + 1, filepath))
                if self.save_weights_only:
                    self.model.save_weights(filepath, overwrite=True)
                else:
                    self.model.save(filepath, overwrite=True)


class EarlyStopping(Callback):
    """Stop training when a monitored quantity has stopped improving.

    # Arguments
        monitor: quantity to be monitored.
        min_delta: minimum change in the monitored quantity
            to qualify as an improvement, i.e. an absolute
            change of less than min_delta, will count as no
            improvement.
        patience: number of epochs with no improvement
            after which training will be stopped.
        verbose: verbosity mode.
        mode: one of {auto, min, max}. In `min` mode,
            training will stop when the quantity
            monitored has stopped decreasing; in `max`
            mode it will stop when the quantity
            monitored has stopped increasing; in `auto`
            mode, the direction is automatically inferred
            from the name of the monitored quantity.
        baseline: Baseline value for the monitored quantity to reach.
            Training will stop if the model doesn't show improvement
            over the baseline.
        restore_best_weights: whether to restore model weights from
            the epoch with the best value of the monitored quantity.
            If False, the model weights obtained at the last step of
            training are used.
    """

    def __init__(self,
                 monitor='val_loss',
                 min_delta=0,
                 patience=0,
                 verbose=0,
                 mode='auto',
                 baseline=None,
                 restore_best_weights=False):
        super(EarlyStopping, self).__init__()

        self.monitor = monitor
        self.baseline = baseline
        self.patience = patience
        self.verbose = verbose
        self.min_delta = min_delta
        self.wait = 0
        self.stopped_epoch = 0
        self.restore_best_weights = restore_best_weights
        self.best_weights = None

        if mode not in ['auto', 'min', 'max']:
            warnings.warn('EarlyStopping mode %s is unknown, '
                          'fallback to auto mode.' % mode,
                          RuntimeWarning)
            mode = 'auto'

        if mode == 'min':
            self.monitor_op = np.less
        elif mode == 'max':
            self.monitor_op = np.greater
        else:
            if 'acc' in self.monitor:
                self.monitor_op = np.greater
            else:
                self.monitor_op = np.less

        if self.monitor_op == np.greater:
            self.min_delta *= 1
        else:
            self.min_delta *= -1

    def on_train_begin(self, logs=None):
        # Allow instances to be re-used
        self.wait = 0
        self.stopped_epoch = 0
        if self.baseline is not None:
            self.best = self.baseline
        else:
            self.best = np.Inf if self.monitor_op == np.less else -np.Inf

    def on_epoch_end(self, epoch, logs=None):
        current = self.get_monitor_value(logs)
        if current is None:
            return

        if self.monitor_op(current - self.min_delta, self.best):
            self.best = current
            self.wait = 0
            if self.restore_best_weights:
                self.best_weights = self.model.get_weights()
        else:
            self.wait += 1
            if self.wait >= self.patience:
                self.stopped_epoch = epoch
                self.model.stop_training = True
                if self.restore_best_weights:
                    if self.verbose > 0:
                        print('Restoring model weights from the end of '
                              'the best epoch')
                    self.model.set_weights(self.best_weights)

    def on_train_end(self, logs=None):
        if self.stopped_epoch > 0 and self.verbose > 0:
            print('Epoch %05d: early stopping' % (self.stopped_epoch + 1))

    def get_monitor_value(self, logs):
        monitor_value = logs.get(self.monitor)
        if monitor_value is None:
            warnings.warn(
                'Early stopping conditioned on metric `%s` '
                'which is not available. Available metrics are: %s' %
                (self.monitor, ','.join(list(logs.keys()))), RuntimeWarning
            )
        return monitor_value


class RemoteMonitor(Callback):
    """Callback used to stream events to a server.

    Requires the `requests` library.
    Events are sent to `root + '/publish/epoch/end/'` by default. Calls are
    HTTP POST, with a `data` argument which is a
    JSON-encoded dictionary of event data.
    If send_as_json is set to True, the content type of the request will be
    application/json. Otherwise the serialized JSON will be send within a form

    # Arguments
        root: String; root url of the target server.
        path: String; path relative to `root` to which the events will be sent.
        field: String; JSON field under which the data will be stored.
            The field is used only if the payload is sent within a form
            (i.e. send_as_json is set to False).
        headers: Dictionary; optional custom HTTP headers.
        send_as_json: Boolean; whether the request should be send as
            application/json.
    """

    def __init__(self,
                 root='http://localhost:9000',
                 path='/publish/epoch/end/',
                 field='data',
                 headers=None,
                 send_as_json=False):
        super(RemoteMonitor, self).__init__()

        self.root = root
        self.path = path
        self.field = field
        self.headers = headers
        self.send_as_json = send_as_json

    def on_epoch_end(self, epoch, logs=None):
        if requests is None:
            raise ImportError('RemoteMonitor requires '
                              'the `requests` library.')
        logs = logs or {}
        send = {}
        send['epoch'] = epoch
        for k, v in logs.items():
            if isinstance(v, (np.ndarray, np.generic)):
                send[k] = v.item()
            else:
                send[k] = v
        try:
            if self.send_as_json:
                requests.post(self.root + self.path, json=send, headers=self.headers)
            else:
                requests.post(self.root + self.path,
                              {self.field: json.dumps(send)},
                              headers=self.headers)
        except requests.exceptions.RequestException:
            warnings.warn('Warning: could not reach RemoteMonitor '
                          'root server at ' + str(self.root))


class LearningRateScheduler(Callback):
    """Learning rate scheduler.

    # Arguments
        schedule: a function that takes an epoch index as input
            (integer, indexed from 0) and current learning rate
            and returns a new learning rate as output (float).
        verbose: int. 0: quiet, 1: update messages.
    """

    def __init__(self, schedule, verbose=0):
        super(LearningRateScheduler, self).__init__()
        self.schedule = schedule
        self.verbose = verbose

    def on_epoch_begin(self, epoch, logs=None):
        if not hasattr(self.model.optimizer, 'lr'):
            raise ValueError('Optimizer must have a "lr" attribute.')
        lr = float(K.get_value(self.model.optimizer.lr))
        try:  # new API
            lr = self.schedule(epoch, lr)
        except TypeError:  # old API for backward compatibility
            lr = self.schedule(epoch)
        if not isinstance(lr, (float, np.float32, np.float64)):
            raise ValueError('The output of the "schedule" function '
                             'should be float.')
        K.set_value(self.model.optimizer.lr, lr)
        if self.verbose > 0:
            print('\nEpoch %05d: LearningRateScheduler setting learning '
                  'rate to %s.' % (epoch + 1, lr))

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        logs['lr'] = K.get_value(self.model.optimizer.lr)


class TensorBoard(Callback):
    """TensorBoard basic visualizations.

    [TensorBoard](https://www.tensorflow.org/get_started/summaries_and_tensorboard)
    is a visualization tool provided with TensorFlow.

    This callback writes a log for TensorBoard, which allows
    you to visualize dynamic graphs of your training and test
    metrics, as well as activation histograms for the different
    layers in your model.

    If you have installed TensorFlow with pip, you should be able
    to launch TensorBoard from the command line:
    ```sh
    tensorboard --logdir=/full_path_to_your_logs
    ```

    When using a backend other than TensorFlow, TensorBoard will still work
    (if you have TensorFlow installed), but the only feature available will
    be the display of the losses and metrics plots.

    # Arguments
        log_dir: the path of the directory where to save the log
            files to be parsed by TensorBoard.
        histogram_freq: frequency (in epochs) at which to compute activation
            and weight histograms for the layers of the model. If set to 0,
            histograms won't be computed. Validation data (or split) must be
            specified for histogram visualizations.
        write_graph: whether to visualize the graph in TensorBoard.
            The log file can become quite large when
            write_graph is set to True.
        write_grads: whether to visualize gradient histograms in TensorBoard.
            `histogram_freq` must be greater than 0.
        batch_size: size of batch of inputs to feed to the network
            for histograms computation.
        write_images: whether to write model weights to visualize as
            image in TensorBoard.
        embeddings_freq: frequency (in epochs) at which selected embedding
            layers will be saved. If set to 0, embeddings won't be computed.
            Data to be visualized in TensorBoard's Embedding tab must be passed
            as `embeddings_data`.
        embeddings_layer_names: a list of names of layers to keep eye on. If
            None or empty list all the embedding layer will be watched.
        embeddings_metadata: a dictionary which maps layer name to a file name
            in which metadata for this embedding layer is saved. See the
            [details](https://www.tensorflow.org/how_tos/embedding_viz/#metadata_optional)
            about metadata files format. In case if the same metadata file is
            used for all embedding layers, string can be passed.
        embeddings_data: data to be embedded at layers specified in
            `embeddings_layer_names`. Numpy array (if the model has a single
            input) or list of Numpy arrays (if the model has multiple inputs).
            Learn [more about embeddings]
            (https://www.tensorflow.org/programmers_guide/embedding).
        update_freq: `'batch'` or `'epoch'` or integer. When using `'batch'`, writes
            the losses and metrics to TensorBoard after each batch. The same
            applies for `'epoch'`. If using an integer, let's say `10000`,
            the callback will write the metrics and losses to TensorBoard every
            10000 samples. Note that writing too frequently to TensorBoard
            can slow down your training.
    """

    def __init__(self, log_dir='./logs',
                 histogram_freq=0,
                 batch_size=32,
                 write_graph=True,
                 write_grads=False,
                 write_images=False,
                 embeddings_freq=0,
                 embeddings_layer_names=None,
                 embeddings_metadata=None,
                 embeddings_data=None,
                 update_freq='epoch'):
        super(TensorBoard, self).__init__()
        global tf, projector
        try:
            import tensorflow as tf
            from tensorflow.contrib.tensorboard.plugins import projector
        except ImportError:
            raise ImportError('You need the TensorFlow module installed to '
                              'use TensorBoard.')

        if K.backend() != 'tensorflow':
            if histogram_freq != 0:
                warnings.warn('You are not using the TensorFlow backend. '
                              'histogram_freq was set to 0')
                histogram_freq = 0
            if write_graph:
                warnings.warn('You are not using the TensorFlow backend. '
                              'write_graph was set to False')
                write_graph = False
            if write_images:
                warnings.warn('You are not using the TensorFlow backend. '
                              'write_images was set to False')
                write_images = False
            if embeddings_freq != 0:
                warnings.warn('You are not using the TensorFlow backend. '
                              'embeddings_freq was set to 0')
                embeddings_freq = 0

        self.log_dir = log_dir
        self.histogram_freq = histogram_freq
        self.merged = None
        self.write_graph = write_graph
        self.write_grads = write_grads
        self.write_images = write_images
        self.embeddings_freq = embeddings_freq
        self.embeddings_layer_names = embeddings_layer_names
        self.embeddings_metadata = embeddings_metadata or {}
        self.batch_size = batch_size
        self.embeddings_data = embeddings_data
        if update_freq == 'batch':
            # It is the same as writing as frequently as possible.
            self.update_freq = 1
        else:
            self.update_freq = update_freq
        self.samples_seen = 0
        self.samples_seen_at_last_write = 0

    def set_model(self, model):
        self.model = model
        if K.backend() == 'tensorflow':
            self.sess = K.get_session()
        if self.histogram_freq and self.merged is None:
            for layer in self.model.layers:

                for weight in layer.weights:
                    mapped_weight_name = weight.name.replace(':', '_')
                    tf.summary.histogram(mapped_weight_name, weight)
                    if self.write_grads:
                        grads = model.optimizer.get_gradients(model.total_loss,
                                                              weight)

                        def is_indexed_slices(grad):
                            return type(grad).__name__ == 'IndexedSlices'
                        grads = [
                            grad.values if is_indexed_slices(grad) else grad
                            for grad in grads]
                        tf.summary.histogram('{}_grad'.format(mapped_weight_name),
                                             grads)
                    if self.write_images:
                        w_img = tf.squeeze(weight)
                        shape = K.int_shape(w_img)
                        if len(shape) == 2:  # dense layer kernel case
                            if shape[0] > shape[1]:
                                w_img = tf.transpose(w_img)
                                shape = K.int_shape(w_img)
                            w_img = tf.reshape(w_img, [1,
                                                       shape[0],
                                                       shape[1],
                                                       1])
                        elif len(shape) == 3:  # convnet case
                            if K.image_data_format() == 'channels_last':
                                # switch to channels_first to display
                                # every kernel as a separate image
                                w_img = tf.transpose(w_img, perm=[2, 0, 1])
                                shape = K.int_shape(w_img)
                            w_img = tf.reshape(w_img, [shape[0],
                                                       shape[1],
                                                       shape[2],
                                                       1])
                        elif len(shape) == 1:  # bias case
                            w_img = tf.reshape(w_img, [1,
                                                       shape[0],
                                                       1,
                                                       1])
                        else:
                            # not possible to handle 3D convnets etc.
                            continue

                        shape = K.int_shape(w_img)
                        assert len(shape) == 4 and shape[-1] in [1, 3, 4]
                        tf.summary.image(mapped_weight_name, w_img)

                if hasattr(layer, 'output'):
                    if isinstance(layer.output, list):
                        for i, output in enumerate(layer.output):
                            tf.summary.histogram('{}_out_{}'.format(layer.name, i),
                                                 output)
                    else:
                        tf.summary.histogram('{}_out'.format(layer.name),
                                             layer.output)
        self.merged = tf.summary.merge_all()

        if self.write_graph:
            self.writer = tf.summary.FileWriter(self.log_dir,
                                                self.sess.graph)
        else:
            self.writer = tf.summary.FileWriter(self.log_dir)

        if self.embeddings_freq and self.embeddings_data is not None:
            self.embeddings_data = standardize_input_data(self.embeddings_data,
                                                          model.input_names)

            embeddings_layer_names = self.embeddings_layer_names

            if not embeddings_layer_names:
                embeddings_layer_names = [layer.name for layer in self.model.layers
                                          if type(layer).__name__ == 'Embedding']
            self.assign_embeddings = []
            embeddings_vars = {}

            self.batch_id = batch_id = tf.placeholder(tf.int32)
            self.step = step = tf.placeholder(tf.int32)

            for layer in self.model.layers:
                if layer.name in embeddings_layer_names:
                    embedding_input = self.model.get_layer(layer.name).output
                    embedding_size = np.prod(embedding_input.shape[1:])
                    embedding_input = tf.reshape(embedding_input,
                                                 (step, int(embedding_size)))
                    shape = (self.embeddings_data[0].shape[0], int(embedding_size))
                    embedding = tf.Variable(tf.zeros(shape),
                                            name=layer.name + '_embedding')
                    embeddings_vars[layer.name] = embedding
                    batch = tf.assign(embedding[batch_id:batch_id + step],
                                      embedding_input)
                    self.assign_embeddings.append(batch)

            self.saver = tf.train.Saver(list(embeddings_vars.values()))

            embeddings_metadata = {}

            if not isinstance(self.embeddings_metadata, str):
                embeddings_metadata = self.embeddings_metadata
            else:
                embeddings_metadata = {layer_name: self.embeddings_metadata
                                       for layer_name in embeddings_vars.keys()}

            config = projector.ProjectorConfig()

            for layer_name, tensor in embeddings_vars.items():
                embedding = config.embeddings.add()
                embedding.tensor_name = tensor.name

                if layer_name in embeddings_metadata:
                    embedding.metadata_path = embeddings_metadata[layer_name]

            projector.visualize_embeddings(self.writer, config)

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}

        if not self.validation_data and self.histogram_freq:
            raise ValueError("If printing histograms, validation_data must be "
                             "provided, and cannot be a generator.")
        if self.embeddings_data is None and self.embeddings_freq:
            raise ValueError("To visualize embeddings, embeddings_data must "
                             "be provided.")
        if self.validation_data and self.histogram_freq:
            if epoch % self.histogram_freq == 0:

                val_data = self.validation_data
                tensors = (self.model.inputs +
                           self.model.targets +
                           self.model.sample_weights)

                if self.model.uses_learning_phase:
                    tensors += [K.learning_phase()]

                assert len(val_data) == len(tensors)
                val_size = val_data[0].shape[0]
                i = 0
                while i < val_size:
                    step = min(self.batch_size, val_size - i)
                    if self.model.uses_learning_phase:
                        # do not slice the learning phase
                        batch_val = [x[i:i + step] for x in val_data[:-1]]
                        batch_val.append(val_data[-1])
                    else:
                        batch_val = [x[i:i + step] for x in val_data]
                    assert len(batch_val) == len(tensors)
                    feed_dict = dict(zip(tensors, batch_val))
                    result = self.sess.run([self.merged], feed_dict=feed_dict)
                    summary_str = result[0]
                    self.writer.add_summary(summary_str, epoch)
                    i += self.batch_size

        if self.embeddings_freq and self.embeddings_data is not None:
            if epoch % self.embeddings_freq == 0:
                # We need a second forward-pass here because we're passing
                # the `embeddings_data` explicitly. This design allows to pass
                # arbitrary data as `embeddings_data` and results from the fact
                # that we need to know the size of the `tf.Variable`s which
                # hold the embeddings in `set_model`. At this point, however,
                # the `validation_data` is not yet set.

                # More details in this discussion:
                # https://github.com/keras-team/keras/pull/7766#issuecomment-329195622

                embeddings_data = self.embeddings_data
                n_samples = embeddings_data[0].shape[0]

                i = 0
                while i < n_samples:
                    step = min(self.batch_size, n_samples - i)
                    batch = slice(i, i + step)

                    if type(self.model.input) == list:
                        feed_dict = {_input: embeddings_data[idx][batch]
                                     for idx, _input in enumerate(self.model.input)}
                    else:
                        feed_dict = {self.model.input: embeddings_data[0][batch]}

                    feed_dict.update({self.batch_id: i, self.step: step})

                    if self.model.uses_learning_phase:
                        feed_dict[K.learning_phase()] = False

                    self.sess.run(self.assign_embeddings, feed_dict=feed_dict)
                    self.saver.save(self.sess,
                                    os.path.join(self.log_dir,
                                                 'keras_embedding.ckpt'),
                                    epoch)

                    i += self.batch_size

        if self.update_freq == 'epoch':
            index = epoch
        else:
            index = self.samples_seen
        self._write_logs(logs, index)

    def _write_logs(self, logs, index):
        for name, value in logs.items():
            if name in ['batch', 'size']:
                continue
            summary = tf.Summary()
            summary_value = summary.value.add()
            if isinstance(value, np.ndarray):
                summary_value.simple_value = value.item()
            else:
                summary_value.simple_value = value
            summary_value.tag = name
            self.writer.add_summary(summary, index)
        self.writer.flush()

    def on_train_end(self, _):
        self.writer.close()

    def on_batch_end(self, batch, logs=None):
        if self.update_freq != 'epoch':
            self.samples_seen += logs['size']
            samples_seen_since = self.samples_seen - self.samples_seen_at_last_write
            if samples_seen_since >= self.update_freq:
                self._write_logs(logs, self.samples_seen)
                self.samples_seen_at_last_write = self.samples_seen


class ReduceLROnPlateau(Callback):
    """Reduce learning rate when a metric has stopped improving.

    Models often benefit from reducing the learning rate by a factor
    of 2-10 once learning stagnates. This callback monitors a
    quantity and if no improvement is seen for a 'patience' number
    of epochs, the learning rate is reduced.

    # Example

    ```python
    reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2,
                                  patience=5, min_lr=0.001)
    model.fit(X_train, Y_train, callbacks=[reduce_lr])
    ```

    # Arguments
        monitor: quantity to be monitored.
        factor: factor by which the learning rate will
            be reduced. new_lr = lr * factor
        patience: number of epochs with no improvement
            after which learning rate will be reduced.
        verbose: int. 0: quiet, 1: update messages.
        mode: one of {auto, min, max}. In `min` mode,
            lr will be reduced when the quantity
            monitored has stopped decreasing; in `max`
            mode it will be reduced when the quantity
            monitored has stopped increasing; in `auto`
            mode, the direction is automatically inferred
            from the name of the monitored quantity.
        min_delta: threshold for measuring the new optimum,
            to only focus on significant changes.
        cooldown: number of epochs to wait before resuming
            normal operation after lr has been reduced.
        min_lr: lower bound on the learning rate.
    """

    def __init__(self, monitor='val_loss', factor=0.1, patience=10,
                 verbose=0, mode='auto', min_delta=1e-4, cooldown=0, min_lr=0,
                 **kwargs):
        super(ReduceLROnPlateau, self).__init__()

        self.monitor = monitor
        if factor >= 1.0:
            raise ValueError('ReduceLROnPlateau '
                             'does not support a factor >= 1.0.')
        if 'epsilon' in kwargs:
            min_delta = kwargs.pop('epsilon')
            warnings.warn('`epsilon` argument is deprecated and '
                          'will be removed, use `min_delta` instead.')
        self.factor = factor
        self.min_lr = min_lr
        self.min_delta = min_delta
        self.patience = patience
        self.verbose = verbose
        self.cooldown = cooldown
        self.cooldown_counter = 0  # Cooldown counter.
        self.wait = 0
        self.best = 0
        self.mode = mode
        self.monitor_op = None
        self._reset()

    def _reset(self):
        """Resets wait counter and cooldown counter.
        """
        if self.mode not in ['auto', 'min', 'max']:
            warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
                          'fallback to auto mode.' % (self.mode),
                          RuntimeWarning)
            self.mode = 'auto'
        if (self.mode == 'min' or
           (self.mode == 'auto' and 'acc' not in self.monitor)):
            self.monitor_op = lambda a, b: np.less(a, b - self.min_delta)
            self.best = np.Inf
        else:
            self.monitor_op = lambda a, b: np.greater(a, b + self.min_delta)
            self.best = -np.Inf
        self.cooldown_counter = 0
        self.wait = 0

    def on_train_begin(self, logs=None):
        self._reset()

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        logs['lr'] = K.get_value(self.model.optimizer.lr)
        current = logs.get(self.monitor)
        if current is None:
            warnings.warn(
                'Reduce LR on plateau conditioned on metric `%s` '
                'which is not available. Available metrics are: %s' %
                (self.monitor, ','.join(list(logs.keys()))), RuntimeWarning
            )

        else:
            if self.in_cooldown():
                self.cooldown_counter -= 1
                self.wait = 0

            if self.monitor_op(current, self.best):
                self.best = current
                self.wait = 0
            elif not self.in_cooldown():
                self.wait += 1
                if self.wait >= self.patience:
                    old_lr = float(K.get_value(self.model.optimizer.lr))
                    if old_lr > self.min_lr:
                        new_lr = old_lr * self.factor
                        new_lr = max(new_lr, self.min_lr)
                        K.set_value(self.model.optimizer.lr, new_lr)
                        if self.verbose > 0:
                            print('\nEpoch %05d: ReduceLROnPlateau reducing '
                                  'learning rate to %s.' % (epoch + 1, new_lr))
                        self.cooldown_counter = self.cooldown
                        self.wait = 0

    def in_cooldown(self):
        return self.cooldown_counter > 0


class CSVLogger(Callback):
    """Callback that streams epoch results to a csv file.

    Supports all values that can be represented as a string,
    including 1D iterables such as np.ndarray.

    # Example

    ```python
    csv_logger = CSVLogger('training.log')
    model.fit(X_train, Y_train, callbacks=[csv_logger])
    ```

    # Arguments
        filename: filename of the csv file, e.g. 'run/log.csv'.
        separator: string used to separate elements in the csv file.
        append: True: append if file exists (useful for continuing
            training). False: overwrite existing file,
    """

    def __init__(self, filename, separator=',', append=False):
        self.sep = separator
        self.filename = filename
        self.append = append
        self.writer = None
        self.keys = None
        self.append_header = True
        if six.PY2:
            self.file_flags = 'b'
            self._open_args = {}
        else:
            self.file_flags = ''
            self._open_args = {'newline': '\n'}
        super(CSVLogger, self).__init__()

    def on_train_begin(self, logs=None):
        if self.append:
            if os.path.exists(self.filename):
                with open(self.filename, 'r' + self.file_flags) as f:
                    self.append_header = not bool(len(f.readline()))
            mode = 'a'
        else:
            mode = 'w'
        self.csv_file = io.open(self.filename,
                                mode + self.file_flags,
                                **self._open_args)

    def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}

        def handle_value(k):
            is_zero_dim_ndarray = isinstance(k, np.ndarray) and k.ndim == 0
            if isinstance(k, six.string_types):
                return k
            elif isinstance(k, Iterable) and not is_zero_dim_ndarray:
                return '"[%s]"' % (', '.join(map(str, k)))
            else:
                return k

        if self.keys is None:
            self.keys = sorted(logs.keys())

        if self.model.stop_training:
            # We set NA so that csv parsers do not fail for this last epoch.
            logs = dict([(k, logs[k] if k in logs else 'NA') for k in self.keys])

        if not self.writer:
            class CustomDialect(csv.excel):
                delimiter = self.sep
            fieldnames = ['epoch'] + self.keys
            if six.PY2:
                fieldnames = [unicode(x) for x in fieldnames]
            self.writer = csv.DictWriter(self.csv_file,
                                         fieldnames=fieldnames,
                                         dialect=CustomDialect)
            if self.append_header:
                self.writer.writeheader()

        row_dict = OrderedDict({'epoch': epoch})
        row_dict.update((key, handle_value(logs[key])) for key in self.keys)
        self.writer.writerow(row_dict)
        self.csv_file.flush()

    def on_train_end(self, logs=None):
        self.csv_file.close()
        self.writer = None


class LambdaCallback(Callback):
    r"""Callback for creating simple, custom callbacks on-the-fly.

    This callback is constructed with anonymous functions that will be called
    at the appropriate time. Note that the callbacks expects positional
    arguments, as:

     - `on_epoch_begin` and `on_epoch_end` expect two positional arguments:
        `epoch`, `logs`
     - `on_batch_begin` and `on_batch_end` expect two positional arguments:
        `batch`, `logs`
     - `on_train_begin` and `on_train_end` expect one positional argument:
        `logs`

    # Arguments
        on_epoch_begin: called at the beginning of every epoch.
        on_epoch_end: called at the end of every epoch.
        on_batch_begin: called at the beginning of every batch.
        on_batch_end: called at the end of every batch.
        on_train_begin: called at the beginning of model training.
        on_train_end: called at the end of model training.

    # Example

    ```python
    # Print the batch number at the beginning of every batch.
    batch_print_callback = LambdaCallback(
        on_batch_begin=lambda batch,logs: print(batch))

    # Stream the epoch loss to a file in JSON format. The file content
    # is not well-formed JSON but rather has a JSON object per line.
    import json
    json_log = open('loss_log.json', mode='wt', buffering=1)
    json_logging_callback = LambdaCallback(
        on_epoch_end=lambda epoch, logs: json_log.write(
            json.dumps({'epoch': epoch, 'loss': logs['loss']}) + '\n'),
        on_train_end=lambda logs: json_log.close()
    )

    # Terminate some processes after having finished model training.
    processes = ...
    cleanup_callback = LambdaCallback(
        on_train_end=lambda logs: [
            p.terminate() for p in processes if p.is_alive()])

    model.fit(...,
              callbacks=[batch_print_callback,
                         json_logging_callback,
                         cleanup_callback])
    ```
    """

    def __init__(self,
                 on_epoch_begin=None,
                 on_epoch_end=None,
                 on_batch_begin=None,
                 on_batch_end=None,
                 on_train_begin=None,
                 on_train_end=None,
                 **kwargs):
        super(LambdaCallback, self).__init__()
        self.__dict__.update(kwargs)
        if on_epoch_begin is not None:
            self.on_epoch_begin = on_epoch_begin
        else:
            self.on_epoch_begin = lambda epoch, logs: None
        if on_epoch_end is not None:
            self.on_epoch_end = on_epoch_end
        else:
            self.on_epoch_end = lambda epoch, logs: None
        if on_batch_begin is not None:
            self.on_batch_begin = on_batch_begin
        else:
            self.on_batch_begin = lambda batch, logs: None
        if on_batch_end is not None:
            self.on_batch_end = on_batch_end
        else:
            self.on_batch_end = lambda batch, logs: None
        if on_train_begin is not None:
            self.on_train_begin = on_train_begin
        else:
            self.on_train_begin = lambda logs: None
        if on_train_end is not None:
            self.on_train_end = on_train_end
        else:
            self.on_train_end = lambda logs: None