윤혜원

README 수정

Showing 1 changed file with 18 additions and 18 deletions
# LMS using Machine Learning Base Station Selection and Edge Contents Caching
머신러닝 기반 최적 기지국 선택기법과 엣지 콘텐츠 캐싱을 활용한 LMS </br>
2020-1 Capstone Design2 Project </br>
머신러닝 기반 최적 기지국 선택기법과 엣지 콘텐츠 캐싱을 활용한 LMS <br/>
2020-1 Capstone Design2 Project <br/>
https://github.com/yhye97/lms <br/>
### Motivation:
......@@ -13,27 +13,27 @@ LMS that provides effective mobile traffic distribution and increase contents de
* Base Stations have MEC(Mobile Edge Computing) Server
### Requirement:
* Dataset: </br>
Telecom Italia Big Data Challenge set (https://dandelion.eu/datamine/open-big-data/) </br>
(Grid 1,2,3 == BS 1,2,3) </br>
* Dataset: <br/>
Telecom Italia Big Data Challenge set (https://dandelion.eu/datamine/open-big-data/) <br/>
(Grid 1,2,3 == BS 1,2,3) <br/>
### Background:
* Mobile Traffic Prediction & BS Selection Algorithm: </br>
Python 3.5 </br>
Jupyter Notebook </br>
Keras </br>
* Mobile Traffic Prediction & BS Selection Algorithm: <br/>
Python 3.5<br/>
Jupyter Notebook <br/>
Keras <br/>
* WEB:
Express Framework </br>
Back-end : Node JS </br>
Front-end: HTML/CSS/JS </br>
Express Framework <br/>
Back-end : Node JS<br/>
Front-end: HTML/CSS/JS <br/>
* AWS: </br>
* AWS: <br/>
![image](https://user-images.githubusercontent.com/17666783/82525977-b1814100-9b6d-11ea-81c6-36e0321daaa7.png)
EC2 instance: LMS Web Server, Controller </br>
S3: Contents Storage </br>
RDS : Database </br>
CloudFront: CDN Service </br>
Edge Location: Base Station </br>
\ No newline at end of file
EC2 instance: LMS Web Server, Controller <br/>
S3: Contents Storage <br/>
RDS : Database <br/>
CloudFront: CDN Service <br/>
Edge Location: Base Station <br/>
\ No newline at end of file
......