shape_base.py
37.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
from __future__ import division, absolute_import, print_function
import functools
import numpy.core.numeric as _nx
from numpy.core.numeric import (
asarray, zeros, outer, concatenate, array, asanyarray
)
from numpy.core.fromnumeric import reshape, transpose
from numpy.core.multiarray import normalize_axis_index
from numpy.core import overrides
from numpy.core import vstack, atleast_3d
from numpy.core.numeric import normalize_axis_tuple
from numpy.core.shape_base import _arrays_for_stack_dispatcher
from numpy.lib.index_tricks import ndindex
from numpy.matrixlib.defmatrix import matrix # this raises all the right alarm bells
__all__ = [
'column_stack', 'row_stack', 'dstack', 'array_split', 'split',
'hsplit', 'vsplit', 'dsplit', 'apply_over_axes', 'expand_dims',
'apply_along_axis', 'kron', 'tile', 'get_array_wrap', 'take_along_axis',
'put_along_axis'
]
array_function_dispatch = functools.partial(
overrides.array_function_dispatch, module='numpy')
def _make_along_axis_idx(arr_shape, indices, axis):
# compute dimensions to iterate over
if not _nx.issubdtype(indices.dtype, _nx.integer):
raise IndexError('`indices` must be an integer array')
if len(arr_shape) != indices.ndim:
raise ValueError(
"`indices` and `arr` must have the same number of dimensions")
shape_ones = (1,) * indices.ndim
dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))
# build a fancy index, consisting of orthogonal aranges, with the
# requested index inserted at the right location
fancy_index = []
for dim, n in zip(dest_dims, arr_shape):
if dim is None:
fancy_index.append(indices)
else:
ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
fancy_index.append(_nx.arange(n).reshape(ind_shape))
return tuple(fancy_index)
def _take_along_axis_dispatcher(arr, indices, axis):
return (arr, indices)
@array_function_dispatch(_take_along_axis_dispatcher)
def take_along_axis(arr, indices, axis):
"""
Take values from the input array by matching 1d index and data slices.
This iterates over matching 1d slices oriented along the specified axis in
the index and data arrays, and uses the former to look up values in the
latter. These slices can be different lengths.
Functions returning an index along an axis, like `argsort` and
`argpartition`, produce suitable indices for this function.
.. versionadded:: 1.15.0
Parameters
----------
arr: ndarray (Ni..., M, Nk...)
Source array
indices: ndarray (Ni..., J, Nk...)
Indices to take along each 1d slice of `arr`. This must match the
dimension of arr, but dimensions Ni and Nj only need to broadcast
against `arr`.
axis: int
The axis to take 1d slices along. If axis is None, the input array is
treated as if it had first been flattened to 1d, for consistency with
`sort` and `argsort`.
Returns
-------
out: ndarray (Ni..., J, Nk...)
The indexed result.
Notes
-----
This is equivalent to (but faster than) the following use of `ndindex` and
`s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices::
Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
J = indices.shape[axis] # Need not equal M
out = np.empty(Ni + (J,) + Nk)
for ii in ndindex(Ni):
for kk in ndindex(Nk):
a_1d = a [ii + s_[:,] + kk]
indices_1d = indices[ii + s_[:,] + kk]
out_1d = out [ii + s_[:,] + kk]
for j in range(J):
out_1d[j] = a_1d[indices_1d[j]]
Equivalently, eliminating the inner loop, the last two lines would be::
out_1d[:] = a_1d[indices_1d]
See Also
--------
take : Take along an axis, using the same indices for every 1d slice
put_along_axis :
Put values into the destination array by matching 1d index and data slices
Examples
--------
For this sample array
>>> a = np.array([[10, 30, 20], [60, 40, 50]])
We can sort either by using sort directly, or argsort and this function
>>> np.sort(a, axis=1)
array([[10, 20, 30],
[40, 50, 60]])
>>> ai = np.argsort(a, axis=1); ai
array([[0, 2, 1],
[1, 2, 0]])
>>> np.take_along_axis(a, ai, axis=1)
array([[10, 20, 30],
[40, 50, 60]])
The same works for max and min, if you expand the dimensions:
>>> np.expand_dims(np.max(a, axis=1), axis=1)
array([[30],
[60]])
>>> ai = np.expand_dims(np.argmax(a, axis=1), axis=1)
>>> ai
array([[1],
[0]])
>>> np.take_along_axis(a, ai, axis=1)
array([[30],
[60]])
If we want to get the max and min at the same time, we can stack the
indices first
>>> ai_min = np.expand_dims(np.argmin(a, axis=1), axis=1)
>>> ai_max = np.expand_dims(np.argmax(a, axis=1), axis=1)
>>> ai = np.concatenate([ai_min, ai_max], axis=1)
>>> ai
array([[0, 1],
[1, 0]])
>>> np.take_along_axis(a, ai, axis=1)
array([[10, 30],
[40, 60]])
"""
# normalize inputs
if axis is None:
arr = arr.flat
arr_shape = (len(arr),) # flatiter has no .shape
axis = 0
else:
axis = normalize_axis_index(axis, arr.ndim)
arr_shape = arr.shape
# use the fancy index
return arr[_make_along_axis_idx(arr_shape, indices, axis)]
def _put_along_axis_dispatcher(arr, indices, values, axis):
return (arr, indices, values)
@array_function_dispatch(_put_along_axis_dispatcher)
def put_along_axis(arr, indices, values, axis):
"""
Put values into the destination array by matching 1d index and data slices.
This iterates over matching 1d slices oriented along the specified axis in
the index and data arrays, and uses the former to place values into the
latter. These slices can be different lengths.
Functions returning an index along an axis, like `argsort` and
`argpartition`, produce suitable indices for this function.
.. versionadded:: 1.15.0
Parameters
----------
arr: ndarray (Ni..., M, Nk...)
Destination array.
indices: ndarray (Ni..., J, Nk...)
Indices to change along each 1d slice of `arr`. This must match the
dimension of arr, but dimensions in Ni and Nj may be 1 to broadcast
against `arr`.
values: array_like (Ni..., J, Nk...)
values to insert at those indices. Its shape and dimension are
broadcast to match that of `indices`.
axis: int
The axis to take 1d slices along. If axis is None, the destination
array is treated as if a flattened 1d view had been created of it.
Notes
-----
This is equivalent to (but faster than) the following use of `ndindex` and
`s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices::
Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
J = indices.shape[axis] # Need not equal M
for ii in ndindex(Ni):
for kk in ndindex(Nk):
a_1d = a [ii + s_[:,] + kk]
indices_1d = indices[ii + s_[:,] + kk]
values_1d = values [ii + s_[:,] + kk]
for j in range(J):
a_1d[indices_1d[j]] = values_1d[j]
Equivalently, eliminating the inner loop, the last two lines would be::
a_1d[indices_1d] = values_1d
See Also
--------
take_along_axis :
Take values from the input array by matching 1d index and data slices
Examples
--------
For this sample array
>>> a = np.array([[10, 30, 20], [60, 40, 50]])
We can replace the maximum values with:
>>> ai = np.expand_dims(np.argmax(a, axis=1), axis=1)
>>> ai
array([[1],
[0]])
>>> np.put_along_axis(a, ai, 99, axis=1)
>>> a
array([[10, 99, 20],
[99, 40, 50]])
"""
# normalize inputs
if axis is None:
arr = arr.flat
axis = 0
arr_shape = (len(arr),) # flatiter has no .shape
else:
axis = normalize_axis_index(axis, arr.ndim)
arr_shape = arr.shape
# use the fancy index
arr[_make_along_axis_idx(arr_shape, indices, axis)] = values
def _apply_along_axis_dispatcher(func1d, axis, arr, *args, **kwargs):
return (arr,)
@array_function_dispatch(_apply_along_axis_dispatcher)
def apply_along_axis(func1d, axis, arr, *args, **kwargs):
"""
Apply a function to 1-D slices along the given axis.
Execute `func1d(a, *args)` where `func1d` operates on 1-D arrays and `a`
is a 1-D slice of `arr` along `axis`.
This is equivalent to (but faster than) the following use of `ndindex` and
`s_`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of indices::
Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):
for kk in ndindex(Nk):
f = func1d(arr[ii + s_[:,] + kk])
Nj = f.shape
for jj in ndindex(Nj):
out[ii + jj + kk] = f[jj]
Equivalently, eliminating the inner loop, this can be expressed as::
Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):
for kk in ndindex(Nk):
out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk])
Parameters
----------
func1d : function (M,) -> (Nj...)
This function should accept 1-D arrays. It is applied to 1-D
slices of `arr` along the specified axis.
axis : integer
Axis along which `arr` is sliced.
arr : ndarray (Ni..., M, Nk...)
Input array.
args : any
Additional arguments to `func1d`.
kwargs : any
Additional named arguments to `func1d`.
.. versionadded:: 1.9.0
Returns
-------
out : ndarray (Ni..., Nj..., Nk...)
The output array. The shape of `out` is identical to the shape of
`arr`, except along the `axis` dimension. This axis is removed, and
replaced with new dimensions equal to the shape of the return value
of `func1d`. So if `func1d` returns a scalar `out` will have one
fewer dimensions than `arr`.
See Also
--------
apply_over_axes : Apply a function repeatedly over multiple axes.
Examples
--------
>>> def my_func(a):
... \"\"\"Average first and last element of a 1-D array\"\"\"
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
array([4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
array([2., 5., 8.])
For a function that returns a 1D array, the number of dimensions in
`outarr` is the same as `arr`.
>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
>>> np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],
[3, 4, 9],
[2, 5, 6]])
For a function that returns a higher dimensional array, those dimensions
are inserted in place of the `axis` dimension.
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(np.diag, -1, b)
array([[[1, 0, 0],
[0, 2, 0],
[0, 0, 3]],
[[4, 0, 0],
[0, 5, 0],
[0, 0, 6]],
[[7, 0, 0],
[0, 8, 0],
[0, 0, 9]]])
"""
# handle negative axes
arr = asanyarray(arr)
nd = arr.ndim
axis = normalize_axis_index(axis, nd)
# arr, with the iteration axis at the end
in_dims = list(range(nd))
inarr_view = transpose(arr, in_dims[:axis] + in_dims[axis+1:] + [axis])
# compute indices for the iteration axes, and append a trailing ellipsis to
# prevent 0d arrays decaying to scalars, which fixes gh-8642
inds = ndindex(inarr_view.shape[:-1])
inds = (ind + (Ellipsis,) for ind in inds)
# invoke the function on the first item
try:
ind0 = next(inds)
except StopIteration:
raise ValueError('Cannot apply_along_axis when any iteration dimensions are 0')
res = asanyarray(func1d(inarr_view[ind0], *args, **kwargs))
# build a buffer for storing evaluations of func1d.
# remove the requested axis, and add the new ones on the end.
# laid out so that each write is contiguous.
# for a tuple index inds, buff[inds] = func1d(inarr_view[inds])
buff = zeros(inarr_view.shape[:-1] + res.shape, res.dtype)
# permutation of axes such that out = buff.transpose(buff_permute)
buff_dims = list(range(buff.ndim))
buff_permute = (
buff_dims[0 : axis] +
buff_dims[buff.ndim-res.ndim : buff.ndim] +
buff_dims[axis : buff.ndim-res.ndim]
)
# matrices have a nasty __array_prepare__ and __array_wrap__
if not isinstance(res, matrix):
buff = res.__array_prepare__(buff)
# save the first result, then compute and save all remaining results
buff[ind0] = res
for ind in inds:
buff[ind] = asanyarray(func1d(inarr_view[ind], *args, **kwargs))
if not isinstance(res, matrix):
# wrap the array, to preserve subclasses
buff = res.__array_wrap__(buff)
# finally, rotate the inserted axes back to where they belong
return transpose(buff, buff_permute)
else:
# matrices have to be transposed first, because they collapse dimensions!
out_arr = transpose(buff, buff_permute)
return res.__array_wrap__(out_arr)
def _apply_over_axes_dispatcher(func, a, axes):
return (a,)
@array_function_dispatch(_apply_over_axes_dispatcher)
def apply_over_axes(func, a, axes):
"""
Apply a function repeatedly over multiple axes.
`func` is called as `res = func(a, axis)`, where `axis` is the first
element of `axes`. The result `res` of the function call must have
either the same dimensions as `a` or one less dimension. If `res`
has one less dimension than `a`, a dimension is inserted before
`axis`. The call to `func` is then repeated for each axis in `axes`,
with `res` as the first argument.
Parameters
----------
func : function
This function must take two arguments, `func(a, axis)`.
a : array_like
Input array.
axes : array_like
Axes over which `func` is applied; the elements must be integers.
Returns
-------
apply_over_axis : ndarray
The output array. The number of dimensions is the same as `a`,
but the shape can be different. This depends on whether `func`
changes the shape of its output with respect to its input.
See Also
--------
apply_along_axis :
Apply a function to 1-D slices of an array along the given axis.
Notes
------
This function is equivalent to tuple axis arguments to reorderable ufuncs
with keepdims=True. Tuple axis arguments to ufuncs have been available since
version 1.7.0.
Examples
--------
>>> a = np.arange(24).reshape(2,3,4)
>>> a
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
Sum over axes 0 and 2. The result has same number of dimensions
as the original array:
>>> np.apply_over_axes(np.sum, a, [0,2])
array([[[ 60],
[ 92],
[124]]])
Tuple axis arguments to ufuncs are equivalent:
>>> np.sum(a, axis=(0,2), keepdims=True)
array([[[ 60],
[ 92],
[124]]])
"""
val = asarray(a)
N = a.ndim
if array(axes).ndim == 0:
axes = (axes,)
for axis in axes:
if axis < 0:
axis = N + axis
args = (val, axis)
res = func(*args)
if res.ndim == val.ndim:
val = res
else:
res = expand_dims(res, axis)
if res.ndim == val.ndim:
val = res
else:
raise ValueError("function is not returning "
"an array of the correct shape")
return val
def _expand_dims_dispatcher(a, axis):
return (a,)
@array_function_dispatch(_expand_dims_dispatcher)
def expand_dims(a, axis):
"""
Expand the shape of an array.
Insert a new axis that will appear at the `axis` position in the expanded
array shape.
Parameters
----------
a : array_like
Input array.
axis : int or tuple of ints
Position in the expanded axes where the new axis (or axes) is placed.
.. deprecated:: 1.13.0
Passing an axis where ``axis > a.ndim`` will be treated as
``axis == a.ndim``, and passing ``axis < -a.ndim - 1`` will
be treated as ``axis == 0``. This behavior is deprecated.
.. versionchanged:: 1.18.0
A tuple of axes is now supported. Out of range axes as
described above are now forbidden and raise an `AxisError`.
Returns
-------
result : ndarray
View of `a` with the number of dimensions increased.
See Also
--------
squeeze : The inverse operation, removing singleton dimensions
reshape : Insert, remove, and combine dimensions, and resize existing ones
doc.indexing, atleast_1d, atleast_2d, atleast_3d
Examples
--------
>>> x = np.array([1, 2])
>>> x.shape
(2,)
The following is equivalent to ``x[np.newaxis, :]`` or ``x[np.newaxis]``:
>>> y = np.expand_dims(x, axis=0)
>>> y
array([[1, 2]])
>>> y.shape
(1, 2)
The following is equivalent to ``x[:, np.newaxis]``:
>>> y = np.expand_dims(x, axis=1)
>>> y
array([[1],
[2]])
>>> y.shape
(2, 1)
``axis`` may also be a tuple:
>>> y = np.expand_dims(x, axis=(0, 1))
>>> y
array([[[1, 2]]])
>>> y = np.expand_dims(x, axis=(2, 0))
>>> y
array([[[1],
[2]]])
Note that some examples may use ``None`` instead of ``np.newaxis``. These
are the same objects:
>>> np.newaxis is None
True
"""
if isinstance(a, matrix):
a = asarray(a)
else:
a = asanyarray(a)
if type(axis) not in (tuple, list):
axis = (axis,)
out_ndim = len(axis) + a.ndim
axis = normalize_axis_tuple(axis, out_ndim)
shape_it = iter(a.shape)
shape = [1 if ax in axis else next(shape_it) for ax in range(out_ndim)]
return a.reshape(shape)
row_stack = vstack
def _column_stack_dispatcher(tup):
return _arrays_for_stack_dispatcher(tup)
@array_function_dispatch(_column_stack_dispatcher)
def column_stack(tup):
"""
Stack 1-D arrays as columns into a 2-D array.
Take a sequence of 1-D arrays and stack them as columns
to make a single 2-D array. 2-D arrays are stacked as-is,
just like with `hstack`. 1-D arrays are turned into 2-D columns
first.
Parameters
----------
tup : sequence of 1-D or 2-D arrays.
Arrays to stack. All of them must have the same first dimension.
Returns
-------
stacked : 2-D array
The array formed by stacking the given arrays.
See Also
--------
stack, hstack, vstack, concatenate
Examples
--------
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
"""
if not overrides.ARRAY_FUNCTION_ENABLED:
# raise warning if necessary
_arrays_for_stack_dispatcher(tup, stacklevel=2)
arrays = []
for v in tup:
arr = array(v, copy=False, subok=True)
if arr.ndim < 2:
arr = array(arr, copy=False, subok=True, ndmin=2).T
arrays.append(arr)
return _nx.concatenate(arrays, 1)
def _dstack_dispatcher(tup):
return _arrays_for_stack_dispatcher(tup)
@array_function_dispatch(_dstack_dispatcher)
def dstack(tup):
"""
Stack arrays in sequence depth wise (along third axis).
This is equivalent to concatenation along the third axis after 2-D arrays
of shape `(M,N)` have been reshaped to `(M,N,1)` and 1-D arrays of shape
`(N,)` have been reshaped to `(1,N,1)`. Rebuilds arrays divided by
`dsplit`.
This function makes most sense for arrays with up to 3 dimensions. For
instance, for pixel-data with a height (first axis), width (second axis),
and r/g/b channels (third axis). The functions `concatenate`, `stack` and
`block` provide more general stacking and concatenation operations.
Parameters
----------
tup : sequence of arrays
The arrays must have the same shape along all but the third axis.
1-D or 2-D arrays must have the same shape.
Returns
-------
stacked : ndarray
The array formed by stacking the given arrays, will be at least 3-D.
See Also
--------
stack : Join a sequence of arrays along a new axis.
vstack : Stack along first axis.
hstack : Stack along second axis.
concatenate : Join a sequence of arrays along an existing axis.
dsplit : Split array along third axis.
Examples
--------
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],
[2, 3],
[3, 4]]])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],
[[2, 3]],
[[3, 4]]])
"""
if not overrides.ARRAY_FUNCTION_ENABLED:
# raise warning if necessary
_arrays_for_stack_dispatcher(tup, stacklevel=2)
arrs = atleast_3d(*tup)
if not isinstance(arrs, list):
arrs = [arrs]
return _nx.concatenate(arrs, 2)
def _replace_zero_by_x_arrays(sub_arys):
for i in range(len(sub_arys)):
if _nx.ndim(sub_arys[i]) == 0:
sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype)
elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]), 0)):
sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype)
return sub_arys
def _array_split_dispatcher(ary, indices_or_sections, axis=None):
return (ary, indices_or_sections)
@array_function_dispatch(_array_split_dispatcher)
def array_split(ary, indices_or_sections, axis=0):
"""
Split an array into multiple sub-arrays.
Please refer to the ``split`` documentation. The only difference
between these functions is that ``array_split`` allows
`indices_or_sections` to be an integer that does *not* equally
divide the axis. For an array of length l that should be split
into n sections, it returns l % n sub-arrays of size l//n + 1
and the rest of size l//n.
See Also
--------
split : Split array into multiple sub-arrays of equal size.
Examples
--------
>>> x = np.arange(8.0)
>>> np.array_split(x, 3)
[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])]
>>> x = np.arange(7.0)
>>> np.array_split(x, 3)
[array([0., 1., 2.]), array([3., 4.]), array([5., 6.])]
"""
try:
Ntotal = ary.shape[axis]
except AttributeError:
Ntotal = len(ary)
try:
# handle array case.
Nsections = len(indices_or_sections) + 1
div_points = [0] + list(indices_or_sections) + [Ntotal]
except TypeError:
# indices_or_sections is a scalar, not an array.
Nsections = int(indices_or_sections)
if Nsections <= 0:
raise ValueError('number sections must be larger than 0.')
Neach_section, extras = divmod(Ntotal, Nsections)
section_sizes = ([0] +
extras * [Neach_section+1] +
(Nsections-extras) * [Neach_section])
div_points = _nx.array(section_sizes, dtype=_nx.intp).cumsum()
sub_arys = []
sary = _nx.swapaxes(ary, axis, 0)
for i in range(Nsections):
st = div_points[i]
end = div_points[i + 1]
sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))
return sub_arys
def _split_dispatcher(ary, indices_or_sections, axis=None):
return (ary, indices_or_sections)
@array_function_dispatch(_split_dispatcher)
def split(ary, indices_or_sections, axis=0):
"""
Split an array into multiple sub-arrays as views into `ary`.
Parameters
----------
ary : ndarray
Array to be divided into sub-arrays.
indices_or_sections : int or 1-D array
If `indices_or_sections` is an integer, N, the array will be divided
into N equal arrays along `axis`. If such a split is not possible,
an error is raised.
If `indices_or_sections` is a 1-D array of sorted integers, the entries
indicate where along `axis` the array is split. For example,
``[2, 3]`` would, for ``axis=0``, result in
- ary[:2]
- ary[2:3]
- ary[3:]
If an index exceeds the dimension of the array along `axis`,
an empty sub-array is returned correspondingly.
axis : int, optional
The axis along which to split, default is 0.
Returns
-------
sub-arrays : list of ndarrays
A list of sub-arrays as views into `ary`.
Raises
------
ValueError
If `indices_or_sections` is given as an integer, but
a split does not result in equal division.
See Also
--------
array_split : Split an array into multiple sub-arrays of equal or
near-equal size. Does not raise an exception if
an equal division cannot be made.
hsplit : Split array into multiple sub-arrays horizontally (column-wise).
vsplit : Split array into multiple sub-arrays vertically (row wise).
dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
concatenate : Join a sequence of arrays along an existing axis.
stack : Join a sequence of arrays along a new axis.
hstack : Stack arrays in sequence horizontally (column wise).
vstack : Stack arrays in sequence vertically (row wise).
dstack : Stack arrays in sequence depth wise (along third dimension).
Examples
--------
>>> x = np.arange(9.0)
>>> np.split(x, 3)
[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])]
>>> x = np.arange(8.0)
>>> np.split(x, [3, 5, 6, 10])
[array([0., 1., 2.]),
array([3., 4.]),
array([5.]),
array([6., 7.]),
array([], dtype=float64)]
"""
try:
len(indices_or_sections)
except TypeError:
sections = indices_or_sections
N = ary.shape[axis]
if N % sections:
raise ValueError(
'array split does not result in an equal division')
return array_split(ary, indices_or_sections, axis)
def _hvdsplit_dispatcher(ary, indices_or_sections):
return (ary, indices_or_sections)
@array_function_dispatch(_hvdsplit_dispatcher)
def hsplit(ary, indices_or_sections):
"""
Split an array into multiple sub-arrays horizontally (column-wise).
Please refer to the `split` documentation. `hsplit` is equivalent
to `split` with ``axis=1``, the array is always split along the second
axis regardless of the array dimension.
See Also
--------
split : Split an array into multiple sub-arrays of equal size.
Examples
--------
>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]])
>>> np.hsplit(x, 2)
[array([[ 0., 1.],
[ 4., 5.],
[ 8., 9.],
[12., 13.]]),
array([[ 2., 3.],
[ 6., 7.],
[10., 11.],
[14., 15.]])]
>>> np.hsplit(x, np.array([3, 6]))
[array([[ 0., 1., 2.],
[ 4., 5., 6.],
[ 8., 9., 10.],
[12., 13., 14.]]),
array([[ 3.],
[ 7.],
[11.],
[15.]]),
array([], shape=(4, 0), dtype=float64)]
With a higher dimensional array the split is still along the second axis.
>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0., 1.],
[2., 3.]],
[[4., 5.],
[6., 7.]]])
>>> np.hsplit(x, 2)
[array([[[0., 1.]],
[[4., 5.]]]),
array([[[2., 3.]],
[[6., 7.]]])]
"""
if _nx.ndim(ary) == 0:
raise ValueError('hsplit only works on arrays of 1 or more dimensions')
if ary.ndim > 1:
return split(ary, indices_or_sections, 1)
else:
return split(ary, indices_or_sections, 0)
@array_function_dispatch(_hvdsplit_dispatcher)
def vsplit(ary, indices_or_sections):
"""
Split an array into multiple sub-arrays vertically (row-wise).
Please refer to the ``split`` documentation. ``vsplit`` is equivalent
to ``split`` with `axis=0` (default), the array is always split along the
first axis regardless of the array dimension.
See Also
--------
split : Split an array into multiple sub-arrays of equal size.
Examples
--------
>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]])
>>> np.vsplit(x, 2)
[array([[0., 1., 2., 3.],
[4., 5., 6., 7.]]), array([[ 8., 9., 10., 11.],
[12., 13., 14., 15.]])]
>>> np.vsplit(x, np.array([3, 6]))
[array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]]), array([[12., 13., 14., 15.]]), array([], shape=(0, 4), dtype=float64)]
With a higher dimensional array the split is still along the first axis.
>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0., 1.],
[2., 3.]],
[[4., 5.],
[6., 7.]]])
>>> np.vsplit(x, 2)
[array([[[0., 1.],
[2., 3.]]]), array([[[4., 5.],
[6., 7.]]])]
"""
if _nx.ndim(ary) < 2:
raise ValueError('vsplit only works on arrays of 2 or more dimensions')
return split(ary, indices_or_sections, 0)
@array_function_dispatch(_hvdsplit_dispatcher)
def dsplit(ary, indices_or_sections):
"""
Split array into multiple sub-arrays along the 3rd axis (depth).
Please refer to the `split` documentation. `dsplit` is equivalent
to `split` with ``axis=2``, the array is always split along the third
axis provided the array dimension is greater than or equal to 3.
See Also
--------
split : Split an array into multiple sub-arrays of equal size.
Examples
--------
>>> x = np.arange(16.0).reshape(2, 2, 4)
>>> x
array([[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.]],
[[ 8., 9., 10., 11.],
[12., 13., 14., 15.]]])
>>> np.dsplit(x, 2)
[array([[[ 0., 1.],
[ 4., 5.]],
[[ 8., 9.],
[12., 13.]]]), array([[[ 2., 3.],
[ 6., 7.]],
[[10., 11.],
[14., 15.]]])]
>>> np.dsplit(x, np.array([3, 6]))
[array([[[ 0., 1., 2.],
[ 4., 5., 6.]],
[[ 8., 9., 10.],
[12., 13., 14.]]]),
array([[[ 3.],
[ 7.]],
[[11.],
[15.]]]),
array([], shape=(2, 2, 0), dtype=float64)]
"""
if _nx.ndim(ary) < 3:
raise ValueError('dsplit only works on arrays of 3 or more dimensions')
return split(ary, indices_or_sections, 2)
def get_array_prepare(*args):
"""Find the wrapper for the array with the highest priority.
In case of ties, leftmost wins. If no wrapper is found, return None
"""
wrappers = sorted((getattr(x, '__array_priority__', 0), -i,
x.__array_prepare__) for i, x in enumerate(args)
if hasattr(x, '__array_prepare__'))
if wrappers:
return wrappers[-1][-1]
return None
def get_array_wrap(*args):
"""Find the wrapper for the array with the highest priority.
In case of ties, leftmost wins. If no wrapper is found, return None
"""
wrappers = sorted((getattr(x, '__array_priority__', 0), -i,
x.__array_wrap__) for i, x in enumerate(args)
if hasattr(x, '__array_wrap__'))
if wrappers:
return wrappers[-1][-1]
return None
def _kron_dispatcher(a, b):
return (a, b)
@array_function_dispatch(_kron_dispatcher)
def kron(a, b):
"""
Kronecker product of two arrays.
Computes the Kronecker product, a composite array made of blocks of the
second array scaled by the first.
Parameters
----------
a, b : array_like
Returns
-------
out : ndarray
See Also
--------
outer : The outer product
Notes
-----
The function assumes that the number of dimensions of `a` and `b`
are the same, if necessary prepending the smallest with ones.
If `a.shape = (r0,r1,..,rN)` and `b.shape = (s0,s1,...,sN)`,
the Kronecker product has shape `(r0*s0, r1*s1, ..., rN*SN)`.
The elements are products of elements from `a` and `b`, organized
explicitly by::
kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]
where::
kt = it * st + jt, t = 0,...,N
In the common 2-D case (N=1), the block structure can be visualized::
[[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ],
[ ... ... ],
[ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]]
Examples
--------
>>> np.kron([1,10,100], [5,6,7])
array([ 5, 6, 7, ..., 500, 600, 700])
>>> np.kron([5,6,7], [1,10,100])
array([ 5, 50, 500, ..., 7, 70, 700])
>>> np.kron(np.eye(2), np.ones((2,2)))
array([[1., 1., 0., 0.],
[1., 1., 0., 0.],
[0., 0., 1., 1.],
[0., 0., 1., 1.]])
>>> a = np.arange(100).reshape((2,5,2,5))
>>> b = np.arange(24).reshape((2,3,4))
>>> c = np.kron(a,b)
>>> c.shape
(2, 10, 6, 20)
>>> I = (1,3,0,2)
>>> J = (0,2,1)
>>> J1 = (0,) + J # extend to ndim=4
>>> S1 = (1,) + b.shape
>>> K = tuple(np.array(I) * np.array(S1) + np.array(J1))
>>> c[K] == a[I]*b[J]
True
"""
b = asanyarray(b)
a = array(a, copy=False, subok=True, ndmin=b.ndim)
ndb, nda = b.ndim, a.ndim
if (nda == 0 or ndb == 0):
return _nx.multiply(a, b)
as_ = a.shape
bs = b.shape
if not a.flags.contiguous:
a = reshape(a, as_)
if not b.flags.contiguous:
b = reshape(b, bs)
nd = ndb
if (ndb != nda):
if (ndb > nda):
as_ = (1,)*(ndb-nda) + as_
else:
bs = (1,)*(nda-ndb) + bs
nd = nda
result = outer(a, b).reshape(as_+bs)
axis = nd-1
for _ in range(nd):
result = concatenate(result, axis=axis)
wrapper = get_array_prepare(a, b)
if wrapper is not None:
result = wrapper(result)
wrapper = get_array_wrap(a, b)
if wrapper is not None:
result = wrapper(result)
return result
def _tile_dispatcher(A, reps):
return (A, reps)
@array_function_dispatch(_tile_dispatcher)
def tile(A, reps):
"""
Construct an array by repeating A the number of times given by reps.
If `reps` has length ``d``, the result will have dimension of
``max(d, A.ndim)``.
If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new
axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication,
or shape (1, 1, 3) for 3-D replication. If this is not the desired
behavior, promote `A` to d-dimensions manually before calling this
function.
If ``A.ndim > d``, `reps` is promoted to `A`.ndim by pre-pending 1's to it.
Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as
(1, 1, 2, 2).
Note : Although tile may be used for broadcasting, it is strongly
recommended to use numpy's broadcasting operations and functions.
Parameters
----------
A : array_like
The input array.
reps : array_like
The number of repetitions of `A` along each axis.
Returns
-------
c : ndarray
The tiled output array.
See Also
--------
repeat : Repeat elements of an array.
broadcast_to : Broadcast an array to a new shape
Examples
--------
>>> a = np.array([0, 1, 2])
>>> np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
>>> np.tile(a, (2, 2))
array([[0, 1, 2, 0, 1, 2],
[0, 1, 2, 0, 1, 2]])
>>> np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],
[[0, 1, 2, 0, 1, 2]]])
>>> b = np.array([[1, 2], [3, 4]])
>>> np.tile(b, 2)
array([[1, 2, 1, 2],
[3, 4, 3, 4]])
>>> np.tile(b, (2, 1))
array([[1, 2],
[3, 4],
[1, 2],
[3, 4]])
>>> c = np.array([1,2,3,4])
>>> np.tile(c,(4,1))
array([[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]])
"""
try:
tup = tuple(reps)
except TypeError:
tup = (reps,)
d = len(tup)
if all(x == 1 for x in tup) and isinstance(A, _nx.ndarray):
# Fixes the problem that the function does not make a copy if A is a
# numpy array and the repetitions are 1 in all dimensions
return _nx.array(A, copy=True, subok=True, ndmin=d)
else:
# Note that no copy of zero-sized arrays is made. However since they
# have no data there is no risk of an inadvertent overwrite.
c = _nx.array(A, copy=False, subok=True, ndmin=d)
if (d < c.ndim):
tup = (1,)*(c.ndim-d) + tup
shape_out = tuple(s*t for s, t in zip(c.shape, tup))
n = c.size
if n > 0:
for dim_in, nrep in zip(c.shape, tup):
if nrep != 1:
c = c.reshape(-1, n).repeat(nrep, 0)
n //= dim_in
return c.reshape(shape_out)