vq.py 26.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
"""
K-means clustering and vector quantization (:mod:`scipy.cluster.vq`)
====================================================================

Provides routines for k-means clustering, generating code books
from k-means models, and quantizing vectors by comparing them with
centroids in a code book.

.. autosummary::
   :toctree: generated/

   whiten -- Normalize a group of observations so each feature has unit variance
   vq -- Calculate code book membership of a set of observation vectors
   kmeans -- Performs k-means on a set of observation vectors forming k clusters
   kmeans2 -- A different implementation of k-means with more methods
           -- for initializing centroids

Background information
----------------------
The k-means algorithm takes as input the number of clusters to
generate, k, and a set of observation vectors to cluster.  It
returns a set of centroids, one for each of the k clusters.  An
observation vector is classified with the cluster number or
centroid index of the centroid closest to it.

A vector v belongs to cluster i if it is closer to centroid i than
any other centroids. If v belongs to i, we say centroid i is the
dominating centroid of v. The k-means algorithm tries to
minimize distortion, which is defined as the sum of the squared distances
between each observation vector and its dominating centroid.
The minimization is achieved by iteratively reclassifying
the observations into clusters and recalculating the centroids until
a configuration is reached in which the centroids are stable. One can
also define a maximum number of iterations.

Since vector quantization is a natural application for k-means,
information theory terminology is often used.  The centroid index
or cluster index is also referred to as a "code" and the table
mapping codes to centroids and vice versa is often referred as a
"code book". The result of k-means, a set of centroids, can be
used to quantize vectors. Quantization aims to find an encoding of
vectors that reduces the expected distortion.

All routines expect obs to be a M by N array where the rows are
the observation vectors. The codebook is a k by N array where the
i'th row is the centroid of code word i. The observation vectors
and centroids have the same feature dimension.

As an example, suppose we wish to compress a 24-bit color image
(each pixel is represented by one byte for red, one for blue, and
one for green) before sending it over the web.  By using a smaller
8-bit encoding, we can reduce the amount of data by two
thirds. Ideally, the colors for each of the 256 possible 8-bit
encoding values should be chosen to minimize distortion of the
color. Running k-means with k=256 generates a code book of 256
codes, which fills up all possible 8-bit sequences.  Instead of
sending a 3-byte value for each pixel, the 8-bit centroid index
(or code word) of the dominating centroid is transmitted. The code
book is also sent over the wire so each 8-bit code can be
translated back to a 24-bit pixel value representation. If the
image of interest was of an ocean, we would expect many 24-bit
blues to be represented by 8-bit codes. If it was an image of a
human face, more flesh tone colors would be represented in the
code book.

"""
from __future__ import division, print_function, absolute_import

import warnings
import numpy as np
from collections import deque
from scipy._lib._util import _asarray_validated
from scipy._lib.six import xrange
from scipy.spatial.distance import cdist

from . import _vq

__docformat__ = 'restructuredtext'

__all__ = ['whiten', 'vq', 'kmeans', 'kmeans2']


class ClusterError(Exception):
    pass


def whiten(obs, check_finite=True):
    """
    Normalize a group of observations on a per feature basis.

    Before running k-means, it is beneficial to rescale each feature
    dimension of the observation set with whitening. Each feature is
    divided by its standard deviation across all observations to give
    it unit variance.

    Parameters
    ----------
    obs : ndarray
        Each row of the array is an observation.  The
        columns are the features seen during each observation.

        >>> #         f0    f1    f2
        >>> obs = [[  1.,   1.,   1.],  #o0
        ...        [  2.,   2.,   2.],  #o1
        ...        [  3.,   3.,   3.],  #o2
        ...        [  4.,   4.,   4.]]  #o3

    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
        Default: True

    Returns
    -------
    result : ndarray
        Contains the values in `obs` scaled by the standard deviation
        of each column.

    Examples
    --------
    >>> from scipy.cluster.vq import whiten
    >>> features  = np.array([[1.9, 2.3, 1.7],
    ...                       [1.5, 2.5, 2.2],
    ...                       [0.8, 0.6, 1.7,]])
    >>> whiten(features)
    array([[ 4.17944278,  2.69811351,  7.21248917],
           [ 3.29956009,  2.93273208,  9.33380951],
           [ 1.75976538,  0.7038557 ,  7.21248917]])

    """
    obs = _asarray_validated(obs, check_finite=check_finite)
    std_dev = obs.std(axis=0)
    zero_std_mask = std_dev == 0
    if zero_std_mask.any():
        std_dev[zero_std_mask] = 1.0
        warnings.warn("Some columns have standard deviation zero. "
                      "The values of these columns will not change.",
                      RuntimeWarning)
    return obs / std_dev


def vq(obs, code_book, check_finite=True):
    """
    Assign codes from a code book to observations.

    Assigns a code from a code book to each observation. Each
    observation vector in the 'M' by 'N' `obs` array is compared with the
    centroids in the code book and assigned the code of the closest
    centroid.

    The features in `obs` should have unit variance, which can be
    achieved by passing them through the whiten function.  The code
    book can be created with the k-means algorithm or a different
    encoding algorithm.

    Parameters
    ----------
    obs : ndarray
        Each row of the 'M' x 'N' array is an observation.  The columns are
        the "features" seen during each observation. The features must be
        whitened first using the whiten function or something equivalent.
    code_book : ndarray
        The code book is usually generated using the k-means algorithm.
        Each row of the array holds a different code, and the columns are
        the features of the code.

         >>> #              f0    f1    f2   f3
         >>> code_book = [
         ...             [  1.,   2.,   3.,   4.],  #c0
         ...             [  1.,   2.,   3.,   4.],  #c1
         ...             [  1.,   2.,   3.,   4.]]  #c2

    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
        Default: True

    Returns
    -------
    code : ndarray
        A length M array holding the code book index for each observation.
    dist : ndarray
        The distortion (distance) between the observation and its nearest
        code.

    Examples
    --------
    >>> from numpy import array
    >>> from scipy.cluster.vq import vq
    >>> code_book = array([[1.,1.,1.],
    ...                    [2.,2.,2.]])
    >>> features  = array([[  1.9,2.3,1.7],
    ...                    [  1.5,2.5,2.2],
    ...                    [  0.8,0.6,1.7]])
    >>> vq(features,code_book)
    (array([1, 1, 0],'i'), array([ 0.43588989,  0.73484692,  0.83066239]))

    """
    obs = _asarray_validated(obs, check_finite=check_finite)
    code_book = _asarray_validated(code_book, check_finite=check_finite)
    ct = np.common_type(obs, code_book)

    c_obs = obs.astype(ct, copy=False)
    c_code_book = code_book.astype(ct, copy=False)

    if np.issubdtype(ct, np.float64) or np.issubdtype(ct, np.float32):
        return _vq.vq(c_obs, c_code_book)
    return py_vq(obs, code_book, check_finite=False)


def py_vq(obs, code_book, check_finite=True):
    """ Python version of vq algorithm.

    The algorithm computes the euclidian distance between each
    observation and every frame in the code_book.

    Parameters
    ----------
    obs : ndarray
        Expects a rank 2 array. Each row is one observation.
    code_book : ndarray
        Code book to use. Same format than obs. Should have same number of
        features (eg columns) than obs.
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
        Default: True

    Returns
    -------
    code : ndarray
        code[i] gives the label of the ith obversation, that its code is
        code_book[code[i]].
    mind_dist : ndarray
        min_dist[i] gives the distance between the ith observation and its
        corresponding code.

    Notes
    -----
    This function is slower than the C version but works for
    all input types.  If the inputs have the wrong types for the
    C versions of the function, this one is called as a last resort.

    It is about 20 times slower than the C version.

    """
    obs = _asarray_validated(obs, check_finite=check_finite)
    code_book = _asarray_validated(code_book, check_finite=check_finite)

    if obs.ndim != code_book.ndim:
        raise ValueError("Observation and code_book should have the same rank")

    if obs.ndim == 1:
        obs = obs[:, np.newaxis]
        code_book = code_book[:, np.newaxis]

    dist = cdist(obs, code_book)
    code = dist.argmin(axis=1)
    min_dist = dist[np.arange(len(code)), code]
    return code, min_dist


# py_vq2 was equivalent to py_vq
py_vq2 = np.deprecate(py_vq, old_name='py_vq2', new_name='py_vq')


def _kmeans(obs, guess, thresh=1e-5):
    """ "raw" version of k-means.

    Returns
    -------
    code_book
        the lowest distortion codebook found.
    avg_dist
        the average distance a observation is from a code in the book.
        Lower means the code_book matches the data better.

    See Also
    --------
    kmeans : wrapper around k-means

    Examples
    --------
    Note: not whitened in this example.

    >>> from numpy import array
    >>> from scipy.cluster.vq import _kmeans
    >>> features  = array([[ 1.9,2.3],
    ...                    [ 1.5,2.5],
    ...                    [ 0.8,0.6],
    ...                    [ 0.4,1.8],
    ...                    [ 1.0,1.0]])
    >>> book = array((features[0],features[2]))
    >>> _kmeans(features,book)
    (array([[ 1.7       ,  2.4       ],
           [ 0.73333333,  1.13333333]]), 0.40563916697728591)

    """

    code_book = np.asarray(guess)
    diff = np.inf
    prev_avg_dists = deque([diff], maxlen=2)
    while diff > thresh:
        # compute membership and distances between obs and code_book
        obs_code, distort = vq(obs, code_book, check_finite=False)
        prev_avg_dists.append(distort.mean(axis=-1))
        # recalc code_book as centroids of associated obs
        code_book, has_members = _vq.update_cluster_means(obs, obs_code,
                                                          code_book.shape[0])
        code_book = code_book[has_members]
        diff = prev_avg_dists[0] - prev_avg_dists[1]

    return code_book, prev_avg_dists[1]


def kmeans(obs, k_or_guess, iter=20, thresh=1e-5, check_finite=True):
    """
    Performs k-means on a set of observation vectors forming k clusters.

    The k-means algorithm adjusts the classification of the observations
    into clusters and updates the cluster centroids until the position of
    the centroids is stable over successive iterations. In this
    implementation of the algorithm, the stability of the centroids is
    determined by comparing the absolute value of the change in the average
    Euclidean distance between the observations and their corresponding
    centroids against a threshold. This yields
    a code book mapping centroids to codes and vice versa.

    Parameters
    ----------
    obs : ndarray
       Each row of the M by N array is an observation vector. The
       columns are the features seen during each observation.
       The features must be whitened first with the `whiten` function.

    k_or_guess : int or ndarray
       The number of centroids to generate. A code is assigned to
       each centroid, which is also the row index of the centroid
       in the code_book matrix generated.

       The initial k centroids are chosen by randomly selecting
       observations from the observation matrix. Alternatively,
       passing a k by N array specifies the initial k centroids.

    iter : int, optional
       The number of times to run k-means, returning the codebook
       with the lowest distortion. This argument is ignored if
       initial centroids are specified with an array for the
       ``k_or_guess`` parameter. This parameter does not represent the
       number of iterations of the k-means algorithm.

    thresh : float, optional
       Terminates the k-means algorithm if the change in
       distortion since the last k-means iteration is less than
       or equal to thresh.

    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
        Default: True

    Returns
    -------
    codebook : ndarray
       A k by N array of k centroids. The i'th centroid
       codebook[i] is represented with the code i. The centroids
       and codes generated represent the lowest distortion seen,
       not necessarily the globally minimal distortion.

    distortion : float
       The mean (non-squared) Euclidean distance between the observations
       passed and the centroids generated. Note the difference to the standard
       definition of distortion in the context of the K-means algorithm, which
       is the sum of the squared distances.

    See Also
    --------
    kmeans2 : a different implementation of k-means clustering
       with more methods for generating initial centroids but without
       using a distortion change threshold as a stopping criterion.

    whiten : must be called prior to passing an observation matrix
       to kmeans.

    Examples
    --------
    >>> from numpy import array
    >>> from scipy.cluster.vq import vq, kmeans, whiten
    >>> import matplotlib.pyplot as plt
    >>> features  = array([[ 1.9,2.3],
    ...                    [ 1.5,2.5],
    ...                    [ 0.8,0.6],
    ...                    [ 0.4,1.8],
    ...                    [ 0.1,0.1],
    ...                    [ 0.2,1.8],
    ...                    [ 2.0,0.5],
    ...                    [ 0.3,1.5],
    ...                    [ 1.0,1.0]])
    >>> whitened = whiten(features)
    >>> book = np.array((whitened[0],whitened[2]))
    >>> kmeans(whitened,book)
    (array([[ 2.3110306 ,  2.86287398],    # random
           [ 0.93218041,  1.24398691]]), 0.85684700941625547)

    >>> from numpy import random
    >>> random.seed((1000,2000))
    >>> codes = 3
    >>> kmeans(whitened,codes)
    (array([[ 2.3110306 ,  2.86287398],    # random
           [ 1.32544402,  0.65607529],
           [ 0.40782893,  2.02786907]]), 0.5196582527686241)

    >>> # Create 50 datapoints in two clusters a and b
    >>> pts = 50
    >>> a = np.random.multivariate_normal([0, 0], [[4, 1], [1, 4]], size=pts)
    >>> b = np.random.multivariate_normal([30, 10],
    ...                                   [[10, 2], [2, 1]],
    ...                                   size=pts)
    >>> features = np.concatenate((a, b))
    >>> # Whiten data
    >>> whitened = whiten(features)
    >>> # Find 2 clusters in the data
    >>> codebook, distortion = kmeans(whitened, 2)
    >>> # Plot whitened data and cluster centers in red
    >>> plt.scatter(whitened[:, 0], whitened[:, 1])
    >>> plt.scatter(codebook[:, 0], codebook[:, 1], c='r')
    >>> plt.show()
    """
    obs = _asarray_validated(obs, check_finite=check_finite)
    if iter < 1:
        raise ValueError("iter must be at least 1, got %s" % iter)

    # Determine whether a count (scalar) or an initial guess (array) was passed.
    if not np.isscalar(k_or_guess):
        guess = _asarray_validated(k_or_guess, check_finite=check_finite)
        if guess.size < 1:
            raise ValueError("Asked for 0 clusters. Initial book was %s" %
                             guess)
        return _kmeans(obs, guess, thresh=thresh)

    # k_or_guess is a scalar, now verify that it's an integer
    k = int(k_or_guess)
    if k != k_or_guess:
        raise ValueError("If k_or_guess is a scalar, it must be an integer.")
    if k < 1:
        raise ValueError("Asked for %d clusters." % k)

    # initialize best distance value to a large value
    best_dist = np.inf
    for i in xrange(iter):
        # the initial code book is randomly selected from observations
        guess = _kpoints(obs, k)
        book, dist = _kmeans(obs, guess, thresh=thresh)
        if dist < best_dist:
            best_book = book
            best_dist = dist
    return best_book, best_dist


def _kpoints(data, k):
    """Pick k points at random in data (one row = one observation).

    Parameters
    ----------
    data : ndarray
        Expect a rank 1 or 2 array. Rank 1 are assumed to describe one
        dimensional data, rank 2 multidimensional data, in which case one
        row is one observation.
    k : int
        Number of samples to generate.

   Returns
    -------
    x : ndarray
        A 'k' by 'N' containing the initial centroids

    """
    idx = np.random.choice(data.shape[0], size=k, replace=False)
    return data[idx]


def _krandinit(data, k):
    """Returns k samples of a random variable which parameters depend on data.

    More precisely, it returns k observations sampled from a Gaussian random
    variable which mean and covariances are the one estimated from data.

    Parameters
    ----------
    data : ndarray
        Expect a rank 1 or 2 array. Rank 1 are assumed to describe one
        dimensional data, rank 2 multidimensional data, in which case one
        row is one observation.
    k : int
        Number of samples to generate.

    Returns
    -------
    x : ndarray
        A 'k' by 'N' containing the initial centroids

    """
    mu = data.mean(axis=0)

    if data.ndim == 1:
        cov = np.cov(data)
        x = np.random.randn(k)
        x *= np.sqrt(cov)
    elif data.shape[1] > data.shape[0]:
        # initialize when the covariance matrix is rank deficient
        _, s, vh = np.linalg.svd(data - mu, full_matrices=False)
        x = np.random.randn(k, s.size)
        sVh = s[:, None] * vh / np.sqrt(data.shape[0] - 1)
        x = x.dot(sVh)
    else:
        cov = np.atleast_2d(np.cov(data, rowvar=False))

        # k rows, d cols (one row = one obs)
        # Generate k sample of a random variable ~ Gaussian(mu, cov)
        x = np.random.randn(k, mu.size)
        x = x.dot(np.linalg.cholesky(cov).T)

    x += mu
    return x


def _kpp(data, k):
    """ Picks k points in data based on the kmeans++ method

    Parameters
    ----------
    data : ndarray
        Expect a rank 1 or 2 array. Rank 1 are assumed to describe one
        dimensional data, rank 2 multidimensional data, in which case one
        row is one observation.
    k : int
        Number of samples to generate.

    Returns
    -------
    init : ndarray
        A 'k' by 'N' containing the initial centroids

    References
    ----------
    .. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of
       careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium
       on Discrete Algorithms, 2007.
    """

    dims = data.shape[1] if len(data.shape) > 1 else 1
    init = np.ndarray((k, dims))

    for i in range(k):
        if i == 0:
            init[i, :] = data[np.random.randint(dims)]

        else:
            D2 = np.array([min(
                            [np.inner(init[j]-x, init[j]-x) for j in range(i)]
                            ) for x in data])
            probs = D2/D2.sum()
            cumprobs = probs.cumsum()
            r = np.random.rand()
            init[i, :] = data[np.searchsorted(cumprobs, r)]

    return init


_valid_init_meth = {'random': _krandinit, 'points': _kpoints, '++': _kpp}


def _missing_warn():
    """Print a warning when called."""
    warnings.warn("One of the clusters is empty. "
                  "Re-run kmeans with a different initialization.")


def _missing_raise():
    """raise a ClusterError when called."""
    raise ClusterError("One of the clusters is empty. "
                       "Re-run kmeans with a different initialization.")


_valid_miss_meth = {'warn': _missing_warn, 'raise': _missing_raise}


def kmeans2(data, k, iter=10, thresh=1e-5, minit='random',
            missing='warn', check_finite=True):
    """
    Classify a set of observations into k clusters using the k-means algorithm.

    The algorithm attempts to minimize the Euclidian distance between
    observations and centroids. Several initialization methods are
    included.

    Parameters
    ----------
    data : ndarray
        A 'M' by 'N' array of 'M' observations in 'N' dimensions or a length
        'M' array of 'M' one-dimensional observations.
    k : int or ndarray
        The number of clusters to form as well as the number of
        centroids to generate. If `minit` initialization string is
        'matrix', or if a ndarray is given instead, it is
        interpreted as initial cluster to use instead.
    iter : int, optional
        Number of iterations of the k-means algorithm to run. Note
        that this differs in meaning from the iters parameter to
        the kmeans function.
    thresh : float, optional
        (not used yet)
    minit : str, optional
        Method for initialization. Available methods are 'random',
        'points', '++' and 'matrix':

        'random': generate k centroids from a Gaussian with mean and
        variance estimated from the data.

        'points': choose k observations (rows) at random from data for
        the initial centroids.

        '++': choose k observations accordingly to the kmeans++ method
        (careful seeding)

        'matrix': interpret the k parameter as a k by M (or length k
        array for one-dimensional data) array of initial centroids.
    missing : str, optional
        Method to deal with empty clusters. Available methods are
        'warn' and 'raise':

        'warn': give a warning and continue.

        'raise': raise an ClusterError and terminate the algorithm.
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
        Default: True

    Returns
    -------
    centroid : ndarray
        A 'k' by 'N' array of centroids found at the last iteration of
        k-means.
    label : ndarray
        label[i] is the code or index of the centroid the
        i'th observation is closest to.

    See Also
    --------
    kmeans

    References
    ----------
    .. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of
       careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium
       on Discrete Algorithms, 2007.

    Examples
    --------
    >>> from scipy.cluster.vq import kmeans2
    >>> import matplotlib.pyplot as plt

    Create z, an array with shape (100, 2) containing a mixture of samples
    from three multivariate normal distributions.

    >>> np.random.seed(12345678)
    >>> a = np.random.multivariate_normal([0, 6], [[2, 1], [1, 1.5]], size=45)
    >>> b = np.random.multivariate_normal([2, 0], [[1, -1], [-1, 3]], size=30)
    >>> c = np.random.multivariate_normal([6, 4], [[5, 0], [0, 1.2]], size=25)
    >>> z = np.concatenate((a, b, c))
    >>> np.random.shuffle(z)

    Compute three clusters.

    >>> centroid, label = kmeans2(z, 3, minit='points')
    >>> centroid
    array([[-0.35770296,  5.31342524],
           [ 2.32210289, -0.50551972],
           [ 6.17653859,  4.16719247]])

    How many points are in each cluster?

    >>> counts = np.bincount(label)
    >>> counts
    array([52, 27, 21])

    Plot the clusters.

    >>> w0 = z[label == 0]
    >>> w1 = z[label == 1]
    >>> w2 = z[label == 2]
    >>> plt.plot(w0[:, 0], w0[:, 1], 'o', alpha=0.5, label='cluster 0')
    >>> plt.plot(w1[:, 0], w1[:, 1], 'd', alpha=0.5, label='cluster 1')
    >>> plt.plot(w2[:, 0], w2[:, 1], 's', alpha=0.5, label='cluster 2')
    >>> plt.plot(centroid[:, 0], centroid[:, 1], 'k*', label='centroids')
    >>> plt.axis('equal')
    >>> plt.legend(shadow=True)
    >>> plt.show()

    """
    if int(iter) < 1:
        raise ValueError("Invalid iter (%s), "
                         "must be a positive integer." % iter)
    try:
        miss_meth = _valid_miss_meth[missing]
    except KeyError:
        raise ValueError("Unknown missing method %r" % (missing,))

    data = _asarray_validated(data, check_finite=check_finite)
    if data.ndim == 1:
        d = 1
    elif data.ndim == 2:
        d = data.shape[1]
    else:
        raise ValueError("Input of rank > 2 is not supported.")

    if data.size < 1:
        raise ValueError("Empty input is not supported.")

    # If k is not a single value it should be compatible with data's shape
    if minit == 'matrix' or not np.isscalar(k):
        code_book = np.array(k, copy=True)
        if data.ndim != code_book.ndim:
            raise ValueError("k array doesn't match data rank")
        nc = len(code_book)
        if data.ndim > 1 and code_book.shape[1] != d:
            raise ValueError("k array doesn't match data dimension")
    else:
        nc = int(k)

        if nc < 1:
            raise ValueError("Cannot ask kmeans2 for %d clusters"
                             " (k was %s)" % (nc, k))
        elif nc != k:
            warnings.warn("k was not an integer, was converted.")

        try:
            init_meth = _valid_init_meth[minit]
        except KeyError:
            raise ValueError("Unknown init method %r" % (minit,))
        else:
            code_book = init_meth(data, k)

    for i in xrange(iter):
        # Compute the nearest neighbor for each obs using the current code book
        label = vq(data, code_book)[0]
        # Update the code book by computing centroids
        new_code_book, has_members = _vq.update_cluster_means(data, label, nc)
        if not has_members.all():
            miss_meth()
            # Set the empty clusters to their previous positions
            new_code_book[~has_members] = code_book[~has_members]
        code_book = new_code_book

    return code_book, label