fitpack2.py
61.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
"""
fitpack --- curve and surface fitting with splines
fitpack is based on a collection of Fortran routines DIERCKX
by P. Dierckx (see http://www.netlib.org/dierckx/) transformed
to double routines by Pearu Peterson.
"""
# Created by Pearu Peterson, June,August 2003
from __future__ import division, print_function, absolute_import
__all__ = [
'UnivariateSpline',
'InterpolatedUnivariateSpline',
'LSQUnivariateSpline',
'BivariateSpline',
'LSQBivariateSpline',
'SmoothBivariateSpline',
'LSQSphereBivariateSpline',
'SmoothSphereBivariateSpline',
'RectBivariateSpline',
'RectSphereBivariateSpline']
import warnings
from numpy import zeros, concatenate, ravel, diff, array, ones
import numpy as np
from . import fitpack
from . import dfitpack
# ############### Univariate spline ####################
_curfit_messages = {1: """
The required storage space exceeds the available storage space, as
specified by the parameter nest: nest too small. If nest is already
large (say nest > m/2), it may also indicate that s is too small.
The approximation returned is the weighted least-squares spline
according to the knots t[0],t[1],...,t[n-1]. (n=nest) the parameter fp
gives the corresponding weighted sum of squared residuals (fp>s).
""",
2: """
A theoretically impossible result was found during the iteration
process for finding a smoothing spline with fp = s: s too small.
There is an approximation returned but the corresponding weighted sum
of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""",
3: """
The maximal number of iterations maxit (set to 20 by the program)
allowed for finding a smoothing spline with fp=s has been reached: s
too small.
There is an approximation returned but the corresponding weighted sum
of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""",
10: """
Error on entry, no approximation returned. The following conditions
must hold:
xb<=x[0]<x[1]<...<x[m-1]<=xe, w[i]>0, i=0..m-1
if iopt=-1:
xb<t[k+1]<t[k+2]<...<t[n-k-2]<xe"""
}
# UnivariateSpline, ext parameter can be an int or a string
_extrap_modes = {0: 0, 'extrapolate': 0,
1: 1, 'zeros': 1,
2: 2, 'raise': 2,
3: 3, 'const': 3}
class UnivariateSpline(object):
"""
One-dimensional smoothing spline fit to a given set of data points.
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `s`
specifies the number of knots by specifying a smoothing condition.
Parameters
----------
x : (N,) array_like
1-D array of independent input data. Must be increasing;
must be strictly increasing if `s` is 0.
y : (N,) array_like
1-D array of dependent input data, of the same length as `x`.
w : (N,) array_like, optional
Weights for spline fitting. Must be positive. If None (default),
weights are all equal.
bbox : (2,) array_like, optional
2-sequence specifying the boundary of the approximation interval. If
None (default), ``bbox=[x[0], x[-1]]``.
k : int, optional
Degree of the smoothing spline. Must be <= 5.
Default is k=3, a cubic spline.
s : float or None, optional
Positive smoothing factor used to choose the number of knots. Number
of knots will be increased until the smoothing condition is satisfied::
sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) <= s
If None (default), ``s = len(w)`` which should be a good value if
``1/w[i]`` is an estimate of the standard deviation of ``y[i]``.
If 0, spline will interpolate through all data points.
ext : int or str, optional
Controls the extrapolation mode for elements
not in the interval defined by the knot sequence.
* if ext=0 or 'extrapolate', return the extrapolated value.
* if ext=1 or 'zeros', return 0
* if ext=2 or 'raise', raise a ValueError
* if ext=3 of 'const', return the boundary value.
The default value is 0.
check_finite : bool, optional
Whether to check that the input arrays contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination or non-sensical results) if the inputs
do contain infinities or NaNs.
Default is False.
See Also
--------
InterpolatedUnivariateSpline : Subclass with smoothing forced to 0
LSQUnivariateSpline : Subclass in which knots are user-selected instead of
being set by smoothing condition
splrep : An older, non object-oriented wrapping of FITPACK
splev, sproot, splint, spalde
BivariateSpline : A similar class for two-dimensional spline interpolation
Notes
-----
The number of data points must be larger than the spline degree `k`.
**NaN handling**: If the input arrays contain ``nan`` values, the result
is not useful, since the underlying spline fitting routines cannot deal
with ``nan`` . A workaround is to use zero weights for not-a-number
data points:
>>> from scipy.interpolate import UnivariateSpline
>>> x, y = np.array([1, 2, 3, 4]), np.array([1, np.nan, 3, 4])
>>> w = np.isnan(y)
>>> y[w] = 0.
>>> spl = UnivariateSpline(x, y, w=~w)
Notice the need to replace a ``nan`` by a numerical value (precise value
does not matter as long as the corresponding weight is zero.)
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)
>>> plt.plot(x, y, 'ro', ms=5)
Use the default value for the smoothing parameter:
>>> spl = UnivariateSpline(x, y)
>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(xs, spl(xs), 'g', lw=3)
Manually change the amount of smoothing:
>>> spl.set_smoothing_factor(0.5)
>>> plt.plot(xs, spl(xs), 'b', lw=3)
>>> plt.show()
"""
def __init__(self, x, y, w=None, bbox=[None]*2, k=3, s=None,
ext=0, check_finite=False):
if check_finite:
w_finite = np.isfinite(w).all() if w is not None else True
if (not np.isfinite(x).all() or not np.isfinite(y).all() or
not w_finite):
raise ValueError("x and y array must not contain "
"NaNs or infs.")
if s is None or s > 0:
if not np.all(diff(x) >= 0.0):
raise ValueError("x must be increasing if s > 0")
else:
if not np.all(diff(x) > 0.0):
raise ValueError("x must be strictly increasing if s = 0")
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
try:
self.ext = _extrap_modes[ext]
except KeyError:
raise ValueError("Unknown extrapolation mode %s." % ext)
data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0],
xe=bbox[1], s=s)
if data[-1] == 1:
# nest too small, setting to maximum bound
data = self._reset_nest(data)
self._data = data
self._reset_class()
@classmethod
def _from_tck(cls, tck, ext=0):
"""Construct a spline object from given tck"""
self = cls.__new__(cls)
t, c, k = tck
self._eval_args = tck
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
self._data = (None, None, None, None, None, k, None, len(t), t,
c, None, None, None, None)
self.ext = ext
return self
def _reset_class(self):
data = self._data
n, t, c, k, ier = data[7], data[8], data[9], data[5], data[-1]
self._eval_args = t[:n], c[:n], k
if ier == 0:
# the spline returned has a residual sum of squares fp
# such that abs(fp-s)/s <= tol with tol a relative
# tolerance set to 0.001 by the program
pass
elif ier == -1:
# the spline returned is an interpolating spline
self._set_class(InterpolatedUnivariateSpline)
elif ier == -2:
# the spline returned is the weighted least-squares
# polynomial of degree k. In this extreme case fp gives
# the upper bound fp0 for the smoothing factor s.
self._set_class(LSQUnivariateSpline)
else:
# error
if ier == 1:
self._set_class(LSQUnivariateSpline)
message = _curfit_messages.get(ier, 'ier=%s' % (ier))
warnings.warn(message)
def _set_class(self, cls):
self._spline_class = cls
if self.__class__ in (UnivariateSpline, InterpolatedUnivariateSpline,
LSQUnivariateSpline):
self.__class__ = cls
else:
# It's an unknown subclass -- don't change class. cf. #731
pass
def _reset_nest(self, data, nest=None):
n = data[10]
if nest is None:
k, m = data[5], len(data[0])
nest = m+k+1 # this is the maximum bound for nest
else:
if not n <= nest:
raise ValueError("`nest` can only be increased")
t, c, fpint, nrdata = [np.resize(data[j], nest) for j in
[8, 9, 11, 12]]
args = data[:8] + (t, c, n, fpint, nrdata, data[13])
data = dfitpack.fpcurf1(*args)
return data
def set_smoothing_factor(self, s):
""" Continue spline computation with the given smoothing
factor s and with the knots found at the last call.
This routine modifies the spline in place.
"""
data = self._data
if data[6] == -1:
warnings.warn('smoothing factor unchanged for'
'LSQ spline with fixed knots')
return
args = data[:6] + (s,) + data[7:]
data = dfitpack.fpcurf1(*args)
if data[-1] == 1:
# nest too small, setting to maximum bound
data = self._reset_nest(data)
self._data = data
self._reset_class()
def __call__(self, x, nu=0, ext=None):
"""
Evaluate spline (or its nu-th derivative) at positions x.
Parameters
----------
x : array_like
A 1-D array of points at which to return the value of the smoothed
spline or its derivatives. Note: x can be unordered but the
evaluation is more efficient if x is (partially) ordered.
nu : int
The order of derivative of the spline to compute.
ext : int
Controls the value returned for elements of ``x`` not in the
interval defined by the knot sequence.
* if ext=0 or 'extrapolate', return the extrapolated value.
* if ext=1 or 'zeros', return 0
* if ext=2 or 'raise', raise a ValueError
* if ext=3 or 'const', return the boundary value.
The default value is 0, passed from the initialization of
UnivariateSpline.
"""
x = np.asarray(x)
# empty input yields empty output
if x.size == 0:
return array([])
# if nu is None:
# return dfitpack.splev(*(self._eval_args+(x,)))
# return dfitpack.splder(nu=nu,*(self._eval_args+(x,)))
if ext is None:
ext = self.ext
else:
try:
ext = _extrap_modes[ext]
except KeyError:
raise ValueError("Unknown extrapolation mode %s." % ext)
return fitpack.splev(x, self._eval_args, der=nu, ext=ext)
def get_knots(self):
""" Return positions of interior knots of the spline.
Internally, the knot vector contains ``2*k`` additional boundary knots.
"""
data = self._data
k, n = data[5], data[7]
return data[8][k:n-k]
def get_coeffs(self):
"""Return spline coefficients."""
data = self._data
k, n = data[5], data[7]
return data[9][:n-k-1]
def get_residual(self):
"""Return weighted sum of squared residuals of the spline approximation.
This is equivalent to::
sum((w[i] * (y[i]-spl(x[i])))**2, axis=0)
"""
return self._data[10]
def integral(self, a, b):
""" Return definite integral of the spline between two given points.
Parameters
----------
a : float
Lower limit of integration.
b : float
Upper limit of integration.
Returns
-------
integral : float
The value of the definite integral of the spline between limits.
Examples
--------
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.integral(0, 3)
9.0
which agrees with :math:`\\int x^2 dx = x^3 / 3` between the limits
of 0 and 3.
A caveat is that this routine assumes the spline to be zero outside of
the data limits:
>>> spl.integral(-1, 4)
9.0
>>> spl.integral(-1, 0)
0.0
"""
return dfitpack.splint(*(self._eval_args+(a, b)))
def derivatives(self, x):
""" Return all derivatives of the spline at the point x.
Parameters
----------
x : float
The point to evaluate the derivatives at.
Returns
-------
der : ndarray, shape(k+1,)
Derivatives of the orders 0 to k.
Examples
--------
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 3, 11)
>>> y = x**2
>>> spl = UnivariateSpline(x, y)
>>> spl.derivatives(1.5)
array([2.25, 3.0, 2.0, 0])
"""
d, ier = dfitpack.spalde(*(self._eval_args+(x,)))
if not ier == 0:
raise ValueError("Error code returned by spalde: %s" % ier)
return d
def roots(self):
""" Return the zeros of the spline.
Restriction: only cubic splines are supported by fitpack.
"""
k = self._data[5]
if k == 3:
z, m, ier = dfitpack.sproot(*self._eval_args[:2])
if not ier == 0:
raise ValueError("Error code returned by spalde: %s" % ier)
return z[:m]
raise NotImplementedError('finding roots unsupported for '
'non-cubic splines')
def derivative(self, n=1):
"""
Construct a new spline representing the derivative of this spline.
Parameters
----------
n : int, optional
Order of derivative to evaluate. Default: 1
Returns
-------
spline : UnivariateSpline
Spline of order k2=k-n representing the derivative of this
spline.
See Also
--------
splder, antiderivative
Notes
-----
.. versionadded:: 0.13.0
Examples
--------
This can be used for finding maxima of a curve:
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, 10, 70)
>>> y = np.sin(x)
>>> spl = UnivariateSpline(x, y, k=4, s=0)
Now, differentiate the spline and find the zeros of the
derivative. (NB: `sproot` only works for order 3 splines, so we
fit an order 4 spline):
>>> spl.derivative().roots() / np.pi
array([ 0.50000001, 1.5 , 2.49999998])
This agrees well with roots :math:`\\pi/2 + n\\pi` of
:math:`\\cos(x) = \\sin'(x)`.
"""
tck = fitpack.splder(self._eval_args, n)
# if self.ext is 'const', derivative.ext will be 'zeros'
ext = 1 if self.ext == 3 else self.ext
return UnivariateSpline._from_tck(tck, ext=ext)
def antiderivative(self, n=1):
"""
Construct a new spline representing the antiderivative of this spline.
Parameters
----------
n : int, optional
Order of antiderivative to evaluate. Default: 1
Returns
-------
spline : UnivariateSpline
Spline of order k2=k+n representing the antiderivative of this
spline.
Notes
-----
.. versionadded:: 0.13.0
See Also
--------
splantider, derivative
Examples
--------
>>> from scipy.interpolate import UnivariateSpline
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
>>> spl = UnivariateSpline(x, y, s=0)
The derivative is the inverse operation of the antiderivative,
although some floating point error accumulates:
>>> spl(1.7), spl.antiderivative().derivative()(1.7)
(array(2.1565429877197317), array(2.1565429877201865))
Antiderivative can be used to evaluate definite integrals:
>>> ispl = spl.antiderivative()
>>> ispl(np.pi/2) - ispl(0)
2.2572053588768486
This is indeed an approximation to the complete elliptic integral
:math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`:
>>> from scipy.special import ellipk
>>> ellipk(0.8)
2.2572053268208538
"""
tck = fitpack.splantider(self._eval_args, n)
return UnivariateSpline._from_tck(tck, self.ext)
class InterpolatedUnivariateSpline(UnivariateSpline):
"""
One-dimensional interpolating spline for a given set of data points.
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data.
Spline function passes through all provided points. Equivalent to
`UnivariateSpline` with s=0.
Parameters
----------
x : (N,) array_like
Input dimension of data points -- must be strictly increasing
y : (N,) array_like
input dimension of data points
w : (N,) array_like, optional
Weights for spline fitting. Must be positive. If None (default),
weights are all equal.
bbox : (2,) array_like, optional
2-sequence specifying the boundary of the approximation interval. If
None (default), ``bbox=[x[0], x[-1]]``.
k : int, optional
Degree of the smoothing spline. Must be 1 <= `k` <= 5.
ext : int or str, optional
Controls the extrapolation mode for elements
not in the interval defined by the knot sequence.
* if ext=0 or 'extrapolate', return the extrapolated value.
* if ext=1 or 'zeros', return 0
* if ext=2 or 'raise', raise a ValueError
* if ext=3 of 'const', return the boundary value.
The default value is 0.
check_finite : bool, optional
Whether to check that the input arrays contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination or non-sensical results) if the inputs
do contain infinities or NaNs.
Default is False.
See Also
--------
UnivariateSpline : Superclass -- allows knots to be selected by a
smoothing condition
LSQUnivariateSpline : spline for which knots are user-selected
splrep : An older, non object-oriented wrapping of FITPACK
splev, sproot, splint, spalde
BivariateSpline : A similar class for two-dimensional spline interpolation
Notes
-----
The number of data points must be larger than the spline degree `k`.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import InterpolatedUnivariateSpline
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)
>>> spl = InterpolatedUnivariateSpline(x, y)
>>> plt.plot(x, y, 'ro', ms=5)
>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(xs, spl(xs), 'g', lw=3, alpha=0.7)
>>> plt.show()
Notice that the ``spl(x)`` interpolates `y`:
>>> spl.get_residual()
0.0
"""
def __init__(self, x, y, w=None, bbox=[None]*2, k=3,
ext=0, check_finite=False):
if check_finite:
w_finite = np.isfinite(w).all() if w is not None else True
if (not np.isfinite(x).all() or not np.isfinite(y).all() or
not w_finite):
raise ValueError("Input must not contain NaNs or infs.")
if not np.all(diff(x) > 0.0):
raise ValueError('x must be strictly increasing')
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
self._data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0],
xe=bbox[1], s=0)
self._reset_class()
try:
self.ext = _extrap_modes[ext]
except KeyError:
raise ValueError("Unknown extrapolation mode %s." % ext)
_fpchec_error_string = """The input parameters have been rejected by fpchec. \
This means that at least one of the following conditions is violated:
1) k+1 <= n-k-1 <= m
2) t(1) <= t(2) <= ... <= t(k+1)
t(n-k) <= t(n-k+1) <= ... <= t(n)
3) t(k+1) < t(k+2) < ... < t(n-k)
4) t(k+1) <= x(i) <= t(n-k)
5) The conditions specified by Schoenberg and Whitney must hold
for at least one subset of data points, i.e., there must be a
subset of data points y(j) such that
t(j) < y(j) < t(j+k+1), j=1,2,...,n-k-1
"""
class LSQUnivariateSpline(UnivariateSpline):
"""
One-dimensional spline with explicit internal knots.
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `t`
specifies the internal knots of the spline
Parameters
----------
x : (N,) array_like
Input dimension of data points -- must be increasing
y : (N,) array_like
Input dimension of data points
t : (M,) array_like
interior knots of the spline. Must be in ascending order and::
bbox[0] < t[0] < ... < t[-1] < bbox[-1]
w : (N,) array_like, optional
weights for spline fitting. Must be positive. If None (default),
weights are all equal.
bbox : (2,) array_like, optional
2-sequence specifying the boundary of the approximation interval. If
None (default), ``bbox = [x[0], x[-1]]``.
k : int, optional
Degree of the smoothing spline. Must be 1 <= `k` <= 5.
Default is k=3, a cubic spline.
ext : int or str, optional
Controls the extrapolation mode for elements
not in the interval defined by the knot sequence.
* if ext=0 or 'extrapolate', return the extrapolated value.
* if ext=1 or 'zeros', return 0
* if ext=2 or 'raise', raise a ValueError
* if ext=3 of 'const', return the boundary value.
The default value is 0.
check_finite : bool, optional
Whether to check that the input arrays contain only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination or non-sensical results) if the inputs
do contain infinities or NaNs.
Default is False.
Raises
------
ValueError
If the interior knots do not satisfy the Schoenberg-Whitney conditions
See Also
--------
UnivariateSpline : Superclass -- knots are specified by setting a
smoothing condition
InterpolatedUnivariateSpline : spline passing through all points
splrep : An older, non object-oriented wrapping of FITPACK
splev, sproot, splint, spalde
BivariateSpline : A similar class for two-dimensional spline interpolation
Notes
-----
The number of data points must be larger than the spline degree `k`.
Knots `t` must satisfy the Schoenberg-Whitney conditions,
i.e., there must be a subset of data points ``x[j]`` such that
``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``.
Examples
--------
>>> from scipy.interpolate import LSQUnivariateSpline, UnivariateSpline
>>> import matplotlib.pyplot as plt
>>> x = np.linspace(-3, 3, 50)
>>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)
Fit a smoothing spline with a pre-defined internal knots:
>>> t = [-1, 0, 1]
>>> spl = LSQUnivariateSpline(x, y, t)
>>> xs = np.linspace(-3, 3, 1000)
>>> plt.plot(x, y, 'ro', ms=5)
>>> plt.plot(xs, spl(xs), 'g-', lw=3)
>>> plt.show()
Check the knot vector:
>>> spl.get_knots()
array([-3., -1., 0., 1., 3.])
Constructing lsq spline using the knots from another spline:
>>> x = np.arange(10)
>>> s = UnivariateSpline(x, x, s=0)
>>> s.get_knots()
array([ 0., 2., 3., 4., 5., 6., 7., 9.])
>>> knt = s.get_knots()
>>> s1 = LSQUnivariateSpline(x, x, knt[1:-1]) # Chop 1st and last knot
>>> s1.get_knots()
array([ 0., 2., 3., 4., 5., 6., 7., 9.])
"""
def __init__(self, x, y, t, w=None, bbox=[None]*2, k=3,
ext=0, check_finite=False):
if check_finite:
w_finite = np.isfinite(w).all() if w is not None else True
if (not np.isfinite(x).all() or not np.isfinite(y).all() or
not w_finite or not np.isfinite(t).all()):
raise ValueError("Input(s) must not contain NaNs or infs.")
if not np.all(diff(x) >= 0.0):
raise ValueError('x must be increasing')
# _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
xb = bbox[0]
xe = bbox[1]
if xb is None:
xb = x[0]
if xe is None:
xe = x[-1]
t = concatenate(([xb]*(k+1), t, [xe]*(k+1)))
n = len(t)
if not np.all(t[k+1:n-k]-t[k:n-k-1] > 0, axis=0):
raise ValueError('Interior knots t must satisfy '
'Schoenberg-Whitney conditions')
if not dfitpack.fpchec(x, t, k) == 0:
raise ValueError(_fpchec_error_string)
data = dfitpack.fpcurfm1(x, y, k, t, w=w, xb=xb, xe=xe)
self._data = data[:-3] + (None, None, data[-1])
self._reset_class()
try:
self.ext = _extrap_modes[ext]
except KeyError:
raise ValueError("Unknown extrapolation mode %s." % ext)
# ############### Bivariate spline ####################
class _BivariateSplineBase(object):
""" Base class for Bivariate spline s(x,y) interpolation on the rectangle
[xb,xe] x [yb, ye] calculated from a given set of data points
(x,y,z).
See Also
--------
bisplrep, bisplev : an older wrapping of FITPACK
BivariateSpline :
implementation of bivariate spline interpolation on a plane grid
SphereBivariateSpline :
implementation of bivariate spline interpolation on a spherical grid
"""
def get_residual(self):
""" Return weighted sum of squared residuals of the spline
approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)
"""
return self.fp
def get_knots(self):
""" Return a tuple (tx,ty) where tx,ty contain knots positions
of the spline with respect to x-, y-variable, respectively.
The position of interior and additional knots are given as
t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e, respectively.
"""
return self.tck[:2]
def get_coeffs(self):
""" Return spline coefficients."""
return self.tck[2]
def __call__(self, x, y, dx=0, dy=0, grid=True):
"""
Evaluate the spline or its derivatives at given positions.
Parameters
----------
x, y : array_like
Input coordinates.
If `grid` is False, evaluate the spline at points ``(x[i],
y[i]), i=0, ..., len(x)-1``. Standard Numpy broadcasting
is obeyed.
If `grid` is True: evaluate spline at the grid points
defined by the coordinate arrays x, y. The arrays must be
sorted to increasing order.
Note that the axis ordering is inverted relative to
the output of meshgrid.
dx : int
Order of x-derivative
.. versionadded:: 0.14.0
dy : int
Order of y-derivative
.. versionadded:: 0.14.0
grid : bool
Whether to evaluate the results on a grid spanned by the
input arrays, or at points specified by the input arrays.
.. versionadded:: 0.14.0
"""
x = np.asarray(x)
y = np.asarray(y)
tx, ty, c = self.tck[:3]
kx, ky = self.degrees
if grid:
if x.size == 0 or y.size == 0:
return np.zeros((x.size, y.size), dtype=self.tck[2].dtype)
if dx or dy:
z, ier = dfitpack.parder(tx, ty, c, kx, ky, dx, dy, x, y)
if not ier == 0:
raise ValueError("Error code returned by parder: %s" % ier)
else:
z, ier = dfitpack.bispev(tx, ty, c, kx, ky, x, y)
if not ier == 0:
raise ValueError("Error code returned by bispev: %s" % ier)
else:
# standard Numpy broadcasting
if x.shape != y.shape:
x, y = np.broadcast_arrays(x, y)
shape = x.shape
x = x.ravel()
y = y.ravel()
if x.size == 0 or y.size == 0:
return np.zeros(shape, dtype=self.tck[2].dtype)
if dx or dy:
z, ier = dfitpack.pardeu(tx, ty, c, kx, ky, dx, dy, x, y)
if not ier == 0:
raise ValueError("Error code returned by pardeu: %s" % ier)
else:
z, ier = dfitpack.bispeu(tx, ty, c, kx, ky, x, y)
if not ier == 0:
raise ValueError("Error code returned by bispeu: %s" % ier)
z = z.reshape(shape)
return z
_surfit_messages = {1: """
The required storage space exceeds the available storage space: nxest
or nyest too small, or s too small.
The weighted least-squares spline corresponds to the current set of
knots.""",
2: """
A theoretically impossible result was found during the iteration
process for finding a smoothing spline with fp = s: s too small or
badly chosen eps.
Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""",
3: """
the maximal number of iterations maxit (set to 20 by the program)
allowed for finding a smoothing spline with fp=s has been reached:
s too small.
Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""",
4: """
No more knots can be added because the number of b-spline coefficients
(nx-kx-1)*(ny-ky-1) already exceeds the number of data points m:
either s or m too small.
The weighted least-squares spline corresponds to the current set of
knots.""",
5: """
No more knots can be added because the additional knot would (quasi)
coincide with an old one: s too small or too large a weight to an
inaccurate data point.
The weighted least-squares spline corresponds to the current set of
knots.""",
10: """
Error on entry, no approximation returned. The following conditions
must hold:
xb<=x[i]<=xe, yb<=y[i]<=ye, w[i]>0, i=0..m-1
If iopt==-1, then
xb<tx[kx+1]<tx[kx+2]<...<tx[nx-kx-2]<xe
yb<ty[ky+1]<ty[ky+2]<...<ty[ny-ky-2]<ye""",
-3: """
The coefficients of the spline returned have been computed as the
minimal norm least-squares solution of a (numerically) rank deficient
system (deficiency=%i). If deficiency is large, the results may be
inaccurate. Deficiency may strongly depend on the value of eps."""
}
class BivariateSpline(_BivariateSplineBase):
"""
Base class for bivariate splines.
This describes a spline ``s(x, y)`` of degrees ``kx`` and ``ky`` on
the rectangle ``[xb, xe] * [yb, ye]`` calculated from a given set
of data points ``(x, y, z)``.
This class is meant to be subclassed, not instantiated directly.
To construct these splines, call either `SmoothBivariateSpline` or
`LSQBivariateSpline`.
See Also
--------
UnivariateSpline :
a similar class for univariate spline interpolation
SmoothBivariateSpline :
to create a BivariateSpline through the given points
LSQBivariateSpline :
to create a BivariateSpline using weighted least-squares fitting
RectSphereBivariateSpline
SmoothSphereBivariateSpline :
LSQSphereBivariateSpline
bisplrep : older wrapping of FITPACK
bisplev : older wrapping of FITPACK
"""
@classmethod
def _from_tck(cls, tck):
"""Construct a spline object from given tck and degree"""
self = cls.__new__(cls)
if len(tck) != 5:
raise ValueError("tck should be a 5 element tuple of tx,"
" ty, c, kx, ky")
self.tck = tck[:3]
self.degrees = tck[3:]
return self
def ev(self, xi, yi, dx=0, dy=0):
"""
Evaluate the spline at points
Returns the interpolated value at ``(xi[i], yi[i]),
i=0,...,len(xi)-1``.
Parameters
----------
xi, yi : array_like
Input coordinates. Standard Numpy broadcasting is obeyed.
dx : int, optional
Order of x-derivative
.. versionadded:: 0.14.0
dy : int, optional
Order of y-derivative
.. versionadded:: 0.14.0
"""
return self.__call__(xi, yi, dx=dx, dy=dy, grid=False)
def integral(self, xa, xb, ya, yb):
"""
Evaluate the integral of the spline over area [xa,xb] x [ya,yb].
Parameters
----------
xa, xb : float
The end-points of the x integration interval.
ya, yb : float
The end-points of the y integration interval.
Returns
-------
integ : float
The value of the resulting integral.
"""
tx, ty, c = self.tck[:3]
kx, ky = self.degrees
return dfitpack.dblint(tx, ty, c, kx, ky, xa, xb, ya, yb)
class SmoothBivariateSpline(BivariateSpline):
"""
Smooth bivariate spline approximation.
Parameters
----------
x, y, z : array_like
1-D sequences of data points (order is not important).
w : array_like, optional
Positive 1-D sequence of weights, of same length as `x`, `y` and `z`.
bbox : array_like, optional
Sequence of length 4 specifying the boundary of the rectangular
approximation domain. By default,
``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``.
kx, ky : ints, optional
Degrees of the bivariate spline. Default is 3.
s : float, optional
Positive smoothing factor defined for estimation condition:
``sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s``
Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an
estimate of the standard deviation of ``z[i]``.
eps : float, optional
A threshold for determining the effective rank of an over-determined
linear system of equations. `eps` should have a value between 0 and 1,
the default is 1e-16.
See Also
--------
bisplrep : an older wrapping of FITPACK
bisplev : an older wrapping of FITPACK
UnivariateSpline : a similar class for univariate spline interpolation
LSQUnivariateSpline : to create a BivariateSpline using weighted
Notes
-----
The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``.
"""
def __init__(self, x, y, z, w=None, bbox=[None] * 4, kx=3, ky=3, s=None,
eps=None):
xb, xe, yb, ye = bbox
nx, tx, ny, ty, c, fp, wrk1, ier = dfitpack.surfit_smth(x, y, z, w,
xb, xe, yb,
ye, kx, ky,
s=s, eps=eps,
lwrk2=1)
if ier > 10: # lwrk2 was to small, re-run
nx, tx, ny, ty, c, fp, wrk1, ier = dfitpack.surfit_smth(x, y, z, w,
xb, xe, yb,
ye, kx, ky,
s=s,
eps=eps,
lwrk2=ier)
if ier in [0, -1, -2]: # normal return
pass
else:
message = _surfit_messages.get(ier, 'ier=%s' % (ier))
warnings.warn(message)
self.fp = fp
self.tck = tx[:nx], ty[:ny], c[:(nx-kx-1)*(ny-ky-1)]
self.degrees = kx, ky
class LSQBivariateSpline(BivariateSpline):
"""
Weighted least-squares bivariate spline approximation.
Parameters
----------
x, y, z : array_like
1-D sequences of data points (order is not important).
tx, ty : array_like
Strictly ordered 1-D sequences of knots coordinates.
w : array_like, optional
Positive 1-D array of weights, of the same length as `x`, `y` and `z`.
bbox : (4,) array_like, optional
Sequence of length 4 specifying the boundary of the rectangular
approximation domain. By default,
``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``.
kx, ky : ints, optional
Degrees of the bivariate spline. Default is 3.
eps : float, optional
A threshold for determining the effective rank of an over-determined
linear system of equations. `eps` should have a value between 0 and 1,
the default is 1e-16.
See Also
--------
bisplrep : an older wrapping of FITPACK
bisplev : an older wrapping of FITPACK
UnivariateSpline : a similar class for univariate spline interpolation
SmoothBivariateSpline : create a smoothing BivariateSpline
Notes
-----
The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``.
"""
def __init__(self, x, y, z, tx, ty, w=None, bbox=[None]*4, kx=3, ky=3,
eps=None):
nx = 2*kx+2+len(tx)
ny = 2*ky+2+len(ty)
tx1 = zeros((nx,), float)
ty1 = zeros((ny,), float)
tx1[kx+1:nx-kx-1] = tx
ty1[ky+1:ny-ky-1] = ty
xb, xe, yb, ye = bbox
tx1, ty1, c, fp, ier = dfitpack.surfit_lsq(x, y, z, tx1, ty1, w,
xb, xe, yb, ye,
kx, ky, eps, lwrk2=1)
if ier > 10:
tx1, ty1, c, fp, ier = dfitpack.surfit_lsq(x, y, z, tx1, ty1, w,
xb, xe, yb, ye,
kx, ky, eps, lwrk2=ier)
if ier in [0, -1, -2]: # normal return
pass
else:
if ier < -2:
deficiency = (nx-kx-1)*(ny-ky-1)+ier
message = _surfit_messages.get(-3) % (deficiency)
else:
message = _surfit_messages.get(ier, 'ier=%s' % (ier))
warnings.warn(message)
self.fp = fp
self.tck = tx1, ty1, c
self.degrees = kx, ky
class RectBivariateSpline(BivariateSpline):
"""
Bivariate spline approximation over a rectangular mesh.
Can be used for both smoothing and interpolating data.
Parameters
----------
x,y : array_like
1-D arrays of coordinates in strictly ascending order.
z : array_like
2-D array of data with shape (x.size,y.size).
bbox : array_like, optional
Sequence of length 4 specifying the boundary of the rectangular
approximation domain. By default,
``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``.
kx, ky : ints, optional
Degrees of the bivariate spline. Default is 3.
s : float, optional
Positive smoothing factor defined for estimation condition:
``sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s``
Default is ``s=0``, which is for interpolation.
See Also
--------
SmoothBivariateSpline : a smoothing bivariate spline for scattered data
bisplrep : an older wrapping of FITPACK
bisplev : an older wrapping of FITPACK
UnivariateSpline : a similar class for univariate spline interpolation
"""
def __init__(self, x, y, z, bbox=[None] * 4, kx=3, ky=3, s=0):
x, y = ravel(x), ravel(y)
if not np.all(diff(x) > 0.0):
raise ValueError('x must be strictly increasing')
if not np.all(diff(y) > 0.0):
raise ValueError('y must be strictly increasing')
if not ((x.min() == x[0]) and (x.max() == x[-1])):
raise ValueError('x must be strictly ascending')
if not ((y.min() == y[0]) and (y.max() == y[-1])):
raise ValueError('y must be strictly ascending')
if not x.size == z.shape[0]:
raise ValueError('x dimension of z must have same number of '
'elements as x')
if not y.size == z.shape[1]:
raise ValueError('y dimension of z must have same number of '
'elements as y')
z = ravel(z)
xb, xe, yb, ye = bbox
nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth(x, y, z, xb, xe, yb,
ye, kx, ky, s)
if ier not in [0, -1, -2]:
msg = _surfit_messages.get(ier, 'ier=%s' % (ier))
raise ValueError(msg)
self.fp = fp
self.tck = tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)]
self.degrees = kx, ky
_spherefit_messages = _surfit_messages.copy()
_spherefit_messages[10] = """
ERROR. On entry, the input data are controlled on validity. The following
restrictions must be satisfied:
-1<=iopt<=1, m>=2, ntest>=8 ,npest >=8, 0<eps<1,
0<=teta(i)<=pi, 0<=phi(i)<=2*pi, w(i)>0, i=1,...,m
lwrk1 >= 185+52*v+10*u+14*u*v+8*(u-1)*v**2+8*m
kwrk >= m+(ntest-7)*(npest-7)
if iopt=-1: 8<=nt<=ntest , 9<=np<=npest
0<tt(5)<tt(6)<...<tt(nt-4)<pi
0<tp(5)<tp(6)<...<tp(np-4)<2*pi
if iopt>=0: s>=0
if one of these conditions is found to be violated,control
is immediately repassed to the calling program. in that
case there is no approximation returned."""
_spherefit_messages[-3] = """
WARNING. The coefficients of the spline returned have been computed as the
minimal norm least-squares solution of a (numerically) rank
deficient system (deficiency=%i, rank=%i). Especially if the rank
deficiency, which is computed by 6+(nt-8)*(np-7)+ier, is large,
the results may be inaccurate. They could also seriously depend on
the value of eps."""
class SphereBivariateSpline(_BivariateSplineBase):
"""
Bivariate spline s(x,y) of degrees 3 on a sphere, calculated from a
given set of data points (theta,phi,r).
.. versionadded:: 0.11.0
See Also
--------
bisplrep, bisplev : an older wrapping of FITPACK
UnivariateSpline : a similar class for univariate spline interpolation
SmoothUnivariateSpline :
to create a BivariateSpline through the given points
LSQUnivariateSpline :
to create a BivariateSpline using weighted least-squares fitting
"""
def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
"""
Evaluate the spline or its derivatives at given positions.
Parameters
----------
theta, phi : array_like
Input coordinates.
If `grid` is False, evaluate the spline at points
``(theta[i], phi[i]), i=0, ..., len(x)-1``. Standard
Numpy broadcasting is obeyed.
If `grid` is True: evaluate spline at the grid points
defined by the coordinate arrays theta, phi. The arrays
must be sorted to increasing order.
dtheta : int, optional
Order of theta-derivative
.. versionadded:: 0.14.0
dphi : int
Order of phi-derivative
.. versionadded:: 0.14.0
grid : bool
Whether to evaluate the results on a grid spanned by the
input arrays, or at points specified by the input arrays.
.. versionadded:: 0.14.0
"""
theta = np.asarray(theta)
phi = np.asarray(phi)
if theta.size > 0 and (theta.min() < 0. or theta.max() > np.pi):
raise ValueError("requested theta out of bounds.")
if phi.size > 0 and (phi.min() < 0. or phi.max() > 2. * np.pi):
raise ValueError("requested phi out of bounds.")
return _BivariateSplineBase.__call__(self, theta, phi,
dx=dtheta, dy=dphi, grid=grid)
def ev(self, theta, phi, dtheta=0, dphi=0):
"""
Evaluate the spline at points
Returns the interpolated value at ``(theta[i], phi[i]),
i=0,...,len(theta)-1``.
Parameters
----------
theta, phi : array_like
Input coordinates. Standard Numpy broadcasting is obeyed.
dtheta : int, optional
Order of theta-derivative
.. versionadded:: 0.14.0
dphi : int, optional
Order of phi-derivative
.. versionadded:: 0.14.0
"""
return self.__call__(theta, phi, dtheta=dtheta, dphi=dphi, grid=False)
class SmoothSphereBivariateSpline(SphereBivariateSpline):
"""
Smooth bivariate spline approximation in spherical coordinates.
.. versionadded:: 0.11.0
Parameters
----------
theta, phi, r : array_like
1-D sequences of data points (order is not important). Coordinates
must be given in radians. Theta must lie within the interval (0, pi),
and phi must lie within the interval (0, 2pi).
w : array_like, optional
Positive 1-D sequence of weights.
s : float, optional
Positive smoothing factor defined for estimation condition:
``sum((w(i)*(r(i) - s(theta(i), phi(i))))**2, axis=0) <= s``
Default ``s=len(w)`` which should be a good value if 1/w[i] is an
estimate of the standard deviation of r[i].
eps : float, optional
A threshold for determining the effective rank of an over-determined
linear system of equations. `eps` should have a value between 0 and 1,
the default is 1e-16.
Notes
-----
For more information, see the FITPACK_ site about this function.
.. _FITPACK: http://www.netlib.org/dierckx/sphere.f
Examples
--------
Suppose we have global data on a coarse grid (the input data does not
have to be on a grid):
>>> theta = np.linspace(0., np.pi, 7)
>>> phi = np.linspace(0., 2*np.pi, 9)
>>> data = np.empty((theta.shape[0], phi.shape[0]))
>>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
>>> data[1:-1,1], data[1:-1,-1] = 1., 1.
>>> data[1,1:-1], data[-2,1:-1] = 1., 1.
>>> data[2:-2,2], data[2:-2,-2] = 2., 2.
>>> data[2,2:-2], data[-3,2:-2] = 2., 2.
>>> data[3,3:-2] = 3.
>>> data = np.roll(data, 4, 1)
We need to set up the interpolator object
>>> lats, lons = np.meshgrid(theta, phi)
>>> from scipy.interpolate import SmoothSphereBivariateSpline
>>> lut = SmoothSphereBivariateSpline(lats.ravel(), lons.ravel(),
... data.T.ravel(), s=3.5)
As a first test, we'll see what the algorithm returns when run on the
input coordinates
>>> data_orig = lut(theta, phi)
Finally we interpolate the data to a finer grid
>>> fine_lats = np.linspace(0., np.pi, 70)
>>> fine_lons = np.linspace(0., 2 * np.pi, 90)
>>> data_smth = lut(fine_lats, fine_lons)
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(131)
>>> ax1.imshow(data, interpolation='nearest')
>>> ax2 = fig.add_subplot(132)
>>> ax2.imshow(data_orig, interpolation='nearest')
>>> ax3 = fig.add_subplot(133)
>>> ax3.imshow(data_smth, interpolation='nearest')
>>> plt.show()
"""
def __init__(self, theta, phi, r, w=None, s=0., eps=1E-16):
if np.issubclass_(w, float):
w = ones(len(theta)) * w
nt_, tt_, np_, tp_, c, fp, ier = dfitpack.spherfit_smth(theta, phi,
r, w=w, s=s,
eps=eps)
if ier not in [0, -1, -2]:
message = _spherefit_messages.get(ier, 'ier=%s' % (ier))
raise ValueError(message)
self.fp = fp
self.tck = tt_[:nt_], tp_[:np_], c[:(nt_ - 4) * (np_ - 4)]
self.degrees = (3, 3)
class LSQSphereBivariateSpline(SphereBivariateSpline):
"""
Weighted least-squares bivariate spline approximation in spherical
coordinates.
Determines a smooth bicubic spline according to a given
set of knots in the `theta` and `phi` directions.
.. versionadded:: 0.11.0
Parameters
----------
theta, phi, r : array_like
1-D sequences of data points (order is not important). Coordinates
must be given in radians. Theta must lie within the interval (0, pi),
and phi must lie within the interval (0, 2pi).
tt, tp : array_like
Strictly ordered 1-D sequences of knots coordinates.
Coordinates must satisfy ``0 < tt[i] < pi``, ``0 < tp[i] < 2*pi``.
w : array_like, optional
Positive 1-D sequence of weights, of the same length as `theta`, `phi`
and `r`.
eps : float, optional
A threshold for determining the effective rank of an over-determined
linear system of equations. `eps` should have a value between 0 and 1,
the default is 1e-16.
Notes
-----
For more information, see the FITPACK_ site about this function.
.. _FITPACK: http://www.netlib.org/dierckx/sphere.f
Examples
--------
Suppose we have global data on a coarse grid (the input data does not
have to be on a grid):
>>> theta = np.linspace(0., np.pi, 7)
>>> phi = np.linspace(0., 2*np.pi, 9)
>>> data = np.empty((theta.shape[0], phi.shape[0]))
>>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
>>> data[1:-1,1], data[1:-1,-1] = 1., 1.
>>> data[1,1:-1], data[-2,1:-1] = 1., 1.
>>> data[2:-2,2], data[2:-2,-2] = 2., 2.
>>> data[2,2:-2], data[-3,2:-2] = 2., 2.
>>> data[3,3:-2] = 3.
>>> data = np.roll(data, 4, 1)
We need to set up the interpolator object. Here, we must also specify the
coordinates of the knots to use.
>>> lats, lons = np.meshgrid(theta, phi)
>>> knotst, knotsp = theta.copy(), phi.copy()
>>> knotst[0] += .0001
>>> knotst[-1] -= .0001
>>> knotsp[0] += .0001
>>> knotsp[-1] -= .0001
>>> from scipy.interpolate import LSQSphereBivariateSpline
>>> lut = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
... data.T.ravel(), knotst, knotsp)
As a first test, we'll see what the algorithm returns when run on the
input coordinates
>>> data_orig = lut(theta, phi)
Finally we interpolate the data to a finer grid
>>> fine_lats = np.linspace(0., np.pi, 70)
>>> fine_lons = np.linspace(0., 2*np.pi, 90)
>>> data_lsq = lut(fine_lats, fine_lons)
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(131)
>>> ax1.imshow(data, interpolation='nearest')
>>> ax2 = fig.add_subplot(132)
>>> ax2.imshow(data_orig, interpolation='nearest')
>>> ax3 = fig.add_subplot(133)
>>> ax3.imshow(data_lsq, interpolation='nearest')
>>> plt.show()
"""
def __init__(self, theta, phi, r, tt, tp, w=None, eps=1E-16):
if np.issubclass_(w, float):
w = ones(len(theta)) * w
nt_, np_ = 8 + len(tt), 8 + len(tp)
tt_, tp_ = zeros((nt_,), float), zeros((np_,), float)
tt_[4:-4], tp_[4:-4] = tt, tp
tt_[-4:], tp_[-4:] = np.pi, 2. * np.pi
tt_, tp_, c, fp, ier = dfitpack.spherfit_lsq(theta, phi, r, tt_, tp_,
w=w, eps=eps)
if ier < -2:
deficiency = 6 + (nt_ - 8) * (np_ - 7) + ier
message = _spherefit_messages.get(-3) % (deficiency, -ier)
warnings.warn(message, stacklevel=2)
elif ier not in [0, -1, -2]:
message = _spherefit_messages.get(ier, 'ier=%s' % (ier))
raise ValueError(message)
self.fp = fp
self.tck = tt_, tp_, c
self.degrees = (3, 3)
_spfit_messages = _surfit_messages.copy()
_spfit_messages[10] = """
ERROR: on entry, the input data are controlled on validity
the following restrictions must be satisfied.
-1<=iopt(1)<=1, 0<=iopt(2)<=1, 0<=iopt(3)<=1,
-1<=ider(1)<=1, 0<=ider(2)<=1, ider(2)=0 if iopt(2)=0.
-1<=ider(3)<=1, 0<=ider(4)<=1, ider(4)=0 if iopt(3)=0.
mu >= mumin (see above), mv >= 4, nuest >=8, nvest >= 8,
kwrk>=5+mu+mv+nuest+nvest,
lwrk >= 12+nuest*(mv+nvest+3)+nvest*24+4*mu+8*mv+max(nuest,mv+nvest)
0< u(i-1)<u(i)< pi,i=2,..,mu,
-pi<=v(1)< pi, v(1)<v(i-1)<v(i)<v(1)+2*pi, i=3,...,mv
if iopt(1)=-1: 8<=nu<=min(nuest,mu+6+iopt(2)+iopt(3))
0<tu(5)<tu(6)<...<tu(nu-4)< pi
8<=nv<=min(nvest,mv+7)
v(1)<tv(5)<tv(6)<...<tv(nv-4)<v(1)+2*pi
the schoenberg-whitney conditions, i.e. there must be
subset of grid co-ordinates uu(p) and vv(q) such that
tu(p) < uu(p) < tu(p+4) ,p=1,...,nu-4
(iopt(2)=1 and iopt(3)=1 also count for a uu-value
tv(q) < vv(q) < tv(q+4) ,q=1,...,nv-4
(vv(q) is either a value v(j) or v(j)+2*pi)
if iopt(1)>=0: s>=0
if s=0: nuest>=mu+6+iopt(2)+iopt(3), nvest>=mv+7
if one of these conditions is found to be violated,control is
immediately repassed to the calling program. in that case there is no
approximation returned."""
class RectSphereBivariateSpline(SphereBivariateSpline):
"""
Bivariate spline approximation over a rectangular mesh on a sphere.
Can be used for smoothing data.
.. versionadded:: 0.11.0
Parameters
----------
u : array_like
1-D array of latitude coordinates in strictly ascending order.
Coordinates must be given in radians and lie within the interval
(0, pi).
v : array_like
1-D array of longitude coordinates in strictly ascending order.
Coordinates must be given in radians. First element (v[0]) must lie
within the interval [-pi, pi). Last element (v[-1]) must satisfy
v[-1] <= v[0] + 2*pi.
r : array_like
2-D array of data with shape ``(u.size, v.size)``.
s : float, optional
Positive smoothing factor defined for estimation condition
(``s=0`` is for interpolation).
pole_continuity : bool or (bool, bool), optional
Order of continuity at the poles ``u=0`` (``pole_continuity[0]``) and
``u=pi`` (``pole_continuity[1]``). The order of continuity at the pole
will be 1 or 0 when this is True or False, respectively.
Defaults to False.
pole_values : float or (float, float), optional
Data values at the poles ``u=0`` and ``u=pi``. Either the whole
parameter or each individual element can be None. Defaults to None.
pole_exact : bool or (bool, bool), optional
Data value exactness at the poles ``u=0`` and ``u=pi``. If True, the
value is considered to be the right function value, and it will be
fitted exactly. If False, the value will be considered to be a data
value just like the other data values. Defaults to False.
pole_flat : bool or (bool, bool), optional
For the poles at ``u=0`` and ``u=pi``, specify whether or not the
approximation has vanishing derivatives. Defaults to False.
See Also
--------
RectBivariateSpline : bivariate spline approximation over a rectangular
mesh
Notes
-----
Currently, only the smoothing spline approximation (``iopt[0] = 0`` and
``iopt[0] = 1`` in the FITPACK routine) is supported. The exact
least-squares spline approximation is not implemented yet.
When actually performing the interpolation, the requested `v` values must
lie within the same length 2pi interval that the original `v` values were
chosen from.
For more information, see the FITPACK_ site about this function.
.. _FITPACK: http://www.netlib.org/dierckx/spgrid.f
Examples
--------
Suppose we have global data on a coarse grid
>>> lats = np.linspace(10, 170, 9) * np.pi / 180.
>>> lons = np.linspace(0, 350, 18) * np.pi / 180.
>>> data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T,
... np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T
We want to interpolate it to a global one-degree grid
>>> new_lats = np.linspace(1, 180, 180) * np.pi / 180
>>> new_lons = np.linspace(1, 360, 360) * np.pi / 180
>>> new_lats, new_lons = np.meshgrid(new_lats, new_lons)
We need to set up the interpolator object
>>> from scipy.interpolate import RectSphereBivariateSpline
>>> lut = RectSphereBivariateSpline(lats, lons, data)
Finally we interpolate the data. The `RectSphereBivariateSpline` object
only takes 1-D arrays as input, therefore we need to do some reshaping.
>>> data_interp = lut.ev(new_lats.ravel(),
... new_lons.ravel()).reshape((360, 180)).T
Looking at the original and the interpolated data, one can see that the
interpolant reproduces the original data very well:
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax1 = fig.add_subplot(211)
>>> ax1.imshow(data, interpolation='nearest')
>>> ax2 = fig.add_subplot(212)
>>> ax2.imshow(data_interp, interpolation='nearest')
>>> plt.show()
Choosing the optimal value of ``s`` can be a delicate task. Recommended
values for ``s`` depend on the accuracy of the data values. If the user
has an idea of the statistical errors on the data, she can also find a
proper estimate for ``s``. By assuming that, if she specifies the
right ``s``, the interpolator will use a spline ``f(u,v)`` which exactly
reproduces the function underlying the data, she can evaluate
``sum((r(i,j)-s(u(i),v(j)))**2)`` to find a good estimate for this ``s``.
For example, if she knows that the statistical errors on her
``r(i,j)``-values are not greater than 0.1, she may expect that a good
``s`` should have a value not larger than ``u.size * v.size * (0.1)**2``.
If nothing is known about the statistical error in ``r(i,j)``, ``s`` must
be determined by trial and error. The best is then to start with a very
large value of ``s`` (to determine the least-squares polynomial and the
corresponding upper bound ``fp0`` for ``s``) and then to progressively
decrease the value of ``s`` (say by a factor 10 in the beginning, i.e.
``s = fp0 / 10, fp0 / 100, ...`` and more carefully as the approximation
shows more detail) to obtain closer fits.
The interpolation results for different values of ``s`` give some insight
into this process:
>>> fig2 = plt.figure()
>>> s = [3e9, 2e9, 1e9, 1e8]
>>> for ii in range(len(s)):
... lut = RectSphereBivariateSpline(lats, lons, data, s=s[ii])
... data_interp = lut.ev(new_lats.ravel(),
... new_lons.ravel()).reshape((360, 180)).T
... ax = fig2.add_subplot(2, 2, ii+1)
... ax.imshow(data_interp, interpolation='nearest')
... ax.set_title("s = %g" % s[ii])
>>> plt.show()
"""
def __init__(self, u, v, r, s=0., pole_continuity=False, pole_values=None,
pole_exact=False, pole_flat=False):
iopt = np.array([0, 0, 0], dtype=int)
ider = np.array([-1, 0, -1, 0], dtype=int)
if pole_values is None:
pole_values = (None, None)
elif isinstance(pole_values, (float, np.float32, np.float64)):
pole_values = (pole_values, pole_values)
if isinstance(pole_continuity, bool):
pole_continuity = (pole_continuity, pole_continuity)
if isinstance(pole_exact, bool):
pole_exact = (pole_exact, pole_exact)
if isinstance(pole_flat, bool):
pole_flat = (pole_flat, pole_flat)
r0, r1 = pole_values
iopt[1:] = pole_continuity
if r0 is None:
ider[0] = -1
else:
ider[0] = pole_exact[0]
if r1 is None:
ider[2] = -1
else:
ider[2] = pole_exact[1]
ider[1], ider[3] = pole_flat
u, v = np.ravel(u), np.ravel(v)
if not np.all(np.diff(u) > 0.0):
raise ValueError('u must be strictly increasing')
if not np.all(np.diff(v) > 0.0):
raise ValueError('v must be strictly increasing')
if not u.size == r.shape[0]:
raise ValueError('u dimension of r must have same number of '
'elements as u')
if not v.size == r.shape[1]:
raise ValueError('v dimension of r must have same number of '
'elements as v')
if pole_continuity[1] is False and pole_flat[1] is True:
raise ValueError('if pole_continuity is False, so must be '
'pole_flat')
if pole_continuity[0] is False and pole_flat[0] is True:
raise ValueError('if pole_continuity is False, so must be '
'pole_flat')
r = np.ravel(r)
nu, tu, nv, tv, c, fp, ier = dfitpack.regrid_smth_spher(iopt, ider,
u.copy(), v.copy(), r.copy(), r0, r1, s)
if ier not in [0, -1, -2]:
msg = _spfit_messages.get(ier, 'ier=%s' % (ier))
raise ValueError(msg)
self.fp = fp
self.tck = tu[:nu], tv[:nv], c[:(nu - 4) * (nv-4)]
self.degrees = (3, 3)