_spectral.py
7.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
"""
Spectral Algorithm for Nonlinear Equations
"""
from __future__ import division, absolute_import, print_function
import collections
import numpy as np
from scipy.optimize import OptimizeResult
from scipy.optimize.optimize import _check_unknown_options
from .linesearch import _nonmonotone_line_search_cruz, _nonmonotone_line_search_cheng
class _NoConvergence(Exception):
pass
def _root_df_sane(func, x0, args=(), ftol=1e-8, fatol=1e-300, maxfev=1000,
fnorm=None, callback=None, disp=False, M=10, eta_strategy=None,
sigma_eps=1e-10, sigma_0=1.0, line_search='cruz', **unknown_options):
r"""
Solve nonlinear equation with the DF-SANE method
Options
-------
ftol : float, optional
Relative norm tolerance.
fatol : float, optional
Absolute norm tolerance.
Algorithm terminates when ``||func(x)|| < fatol + ftol ||func(x_0)||``.
fnorm : callable, optional
Norm to use in the convergence check. If None, 2-norm is used.
maxfev : int, optional
Maximum number of function evaluations.
disp : bool, optional
Whether to print convergence process to stdout.
eta_strategy : callable, optional
Choice of the ``eta_k`` parameter, which gives slack for growth
of ``||F||**2``. Called as ``eta_k = eta_strategy(k, x, F)`` with
`k` the iteration number, `x` the current iterate and `F` the current
residual. Should satisfy ``eta_k > 0`` and ``sum(eta, k=0..inf) < inf``.
Default: ``||F||**2 / (1 + k)**2``.
sigma_eps : float, optional
The spectral coefficient is constrained to ``sigma_eps < sigma < 1/sigma_eps``.
Default: 1e-10
sigma_0 : float, optional
Initial spectral coefficient.
Default: 1.0
M : int, optional
Number of iterates to include in the nonmonotonic line search.
Default: 10
line_search : {'cruz', 'cheng'}
Type of line search to employ. 'cruz' is the original one defined in
[Martinez & Raydan. Math. Comp. 75, 1429 (2006)], 'cheng' is
a modified search defined in [Cheng & Li. IMA J. Numer. Anal. 29, 814 (2009)].
Default: 'cruz'
References
----------
.. [1] "Spectral residual method without gradient information for solving
large-scale nonlinear systems of equations." W. La Cruz,
J.M. Martinez, M. Raydan. Math. Comp. **75**, 1429 (2006).
.. [2] W. La Cruz, Opt. Meth. Software, 29, 24 (2014).
.. [3] W. Cheng, D.-H. Li. IMA J. Numer. Anal. **29**, 814 (2009).
"""
_check_unknown_options(unknown_options)
if line_search not in ('cheng', 'cruz'):
raise ValueError("Invalid value %r for 'line_search'" % (line_search,))
nexp = 2
if eta_strategy is None:
# Different choice from [1], as their eta is not invariant
# vs. scaling of F.
def eta_strategy(k, x, F):
# Obtain squared 2-norm of the initial residual from the outer scope
return f_0 / (1 + k)**2
if fnorm is None:
def fnorm(F):
# Obtain squared 2-norm of the current residual from the outer scope
return f_k**(1.0/nexp)
def fmerit(F):
return np.linalg.norm(F)**nexp
nfev = [0]
f, x_k, x_shape, f_k, F_k, is_complex = _wrap_func(func, x0, fmerit, nfev, maxfev, args)
k = 0
f_0 = f_k
sigma_k = sigma_0
F_0_norm = fnorm(F_k)
# For the 'cruz' line search
prev_fs = collections.deque([f_k], M)
# For the 'cheng' line search
Q = 1.0
C = f_0
converged = False
message = "too many function evaluations required"
while True:
F_k_norm = fnorm(F_k)
if disp:
print("iter %d: ||F|| = %g, sigma = %g" % (k, F_k_norm, sigma_k))
if callback is not None:
callback(x_k, F_k)
if F_k_norm < ftol * F_0_norm + fatol:
# Converged!
message = "successful convergence"
converged = True
break
# Control spectral parameter, from [2]
if abs(sigma_k) > 1/sigma_eps:
sigma_k = 1/sigma_eps * np.sign(sigma_k)
elif abs(sigma_k) < sigma_eps:
sigma_k = sigma_eps
# Line search direction
d = -sigma_k * F_k
# Nonmonotone line search
eta = eta_strategy(k, x_k, F_k)
try:
if line_search == 'cruz':
alpha, xp, fp, Fp = _nonmonotone_line_search_cruz(f, x_k, d, prev_fs, eta=eta)
elif line_search == 'cheng':
alpha, xp, fp, Fp, C, Q = _nonmonotone_line_search_cheng(f, x_k, d, f_k, C, Q, eta=eta)
except _NoConvergence:
break
# Update spectral parameter
s_k = xp - x_k
y_k = Fp - F_k
sigma_k = np.vdot(s_k, s_k) / np.vdot(s_k, y_k)
# Take step
x_k = xp
F_k = Fp
f_k = fp
# Store function value
if line_search == 'cruz':
prev_fs.append(fp)
k += 1
x = _wrap_result(x_k, is_complex, shape=x_shape)
F = _wrap_result(F_k, is_complex)
result = OptimizeResult(x=x, success=converged,
message=message,
fun=F, nfev=nfev[0], nit=k)
return result
def _wrap_func(func, x0, fmerit, nfev_list, maxfev, args=()):
"""
Wrap a function and an initial value so that (i) complex values
are wrapped to reals, and (ii) value for a merit function
fmerit(x, f) is computed at the same time, (iii) iteration count
is maintained and an exception is raised if it is exceeded.
Parameters
----------
func : callable
Function to wrap
x0 : ndarray
Initial value
fmerit : callable
Merit function fmerit(f) for computing merit value from residual.
nfev_list : list
List to store number of evaluations in. Should be [0] in the beginning.
maxfev : int
Maximum number of evaluations before _NoConvergence is raised.
args : tuple
Extra arguments to func
Returns
-------
wrap_func : callable
Wrapped function, to be called as
``F, fp = wrap_func(x0)``
x0_wrap : ndarray of float
Wrapped initial value; raveled to 1D and complex
values mapped to reals.
x0_shape : tuple
Shape of the initial value array
f : float
Merit function at F
F : ndarray of float
Residual at x0_wrap
is_complex : bool
Whether complex values were mapped to reals
"""
x0 = np.asarray(x0)
x0_shape = x0.shape
F = np.asarray(func(x0, *args)).ravel()
is_complex = np.iscomplexobj(x0) or np.iscomplexobj(F)
x0 = x0.ravel()
nfev_list[0] = 1
if is_complex:
def wrap_func(x):
if nfev_list[0] >= maxfev:
raise _NoConvergence()
nfev_list[0] += 1
z = _real2complex(x).reshape(x0_shape)
v = np.asarray(func(z, *args)).ravel()
F = _complex2real(v)
f = fmerit(F)
return f, F
x0 = _complex2real(x0)
F = _complex2real(F)
else:
def wrap_func(x):
if nfev_list[0] >= maxfev:
raise _NoConvergence()
nfev_list[0] += 1
x = x.reshape(x0_shape)
F = np.asarray(func(x, *args)).ravel()
f = fmerit(F)
return f, F
return wrap_func, x0, x0_shape, fmerit(F), F, is_complex
def _wrap_result(result, is_complex, shape=None):
"""
Convert from real to complex and reshape result arrays.
"""
if is_complex:
z = _real2complex(result)
else:
z = result
if shape is not None:
z = z.reshape(shape)
return z
def _real2complex(x):
return np.ascontiguousarray(x, dtype=float).view(np.complex128)
def _complex2real(z):
return np.ascontiguousarray(z, dtype=complex).view(np.float64)