nnls.py
1.98 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from __future__ import division, print_function, absolute_import
from . import _nnls
from numpy import asarray_chkfinite, zeros, double
__all__ = ['nnls']
def nnls(A, b, maxiter=None):
"""
Solve ``argmin_x || Ax - b ||_2`` for ``x>=0``. This is a wrapper
for a FORTRAN non-negative least squares solver.
Parameters
----------
A : ndarray
Matrix ``A`` as shown above.
b : ndarray
Right-hand side vector.
maxiter: int, optional
Maximum number of iterations, optional.
Default is ``3 * A.shape[1]``.
Returns
-------
x : ndarray
Solution vector.
rnorm : float
The residual, ``|| Ax-b ||_2``.
See Also
--------
lsq_linear : Linear least squares with bounds on the variables
Notes
-----
The FORTRAN code was published in the book below. The algorithm
is an active set method. It solves the KKT (Karush-Kuhn-Tucker)
conditions for the non-negative least squares problem.
References
----------
Lawson C., Hanson R.J., (1987) Solving Least Squares Problems, SIAM
Examples
--------
>>> from scipy.optimize import nnls
...
>>> A = np.array([[1, 0], [1, 0], [0, 1]])
>>> b = np.array([2, 1, 1])
>>> nnls(A, b)
(array([1.5, 1. ]), 0.7071067811865475)
>>> b = np.array([-1, -1, -1])
>>> nnls(A, b)
(array([0., 0.]), 1.7320508075688772)
"""
A, b = map(asarray_chkfinite, (A, b))
if len(A.shape) != 2:
raise ValueError("expected matrix")
if len(b.shape) != 1:
raise ValueError("expected vector")
m, n = A.shape
if m != b.shape[0]:
raise ValueError("incompatible dimensions")
maxiter = -1 if maxiter is None else int(maxiter)
w = zeros((n,), dtype=double)
zz = zeros((m,), dtype=double)
index = zeros((n,), dtype=int)
x, rnorm, mode = _nnls.nnls(A, m, n, b, w, zz, index, maxiter)
if mode != 1:
raise RuntimeError("too many iterations")
return x, rnorm