tnc.py
16.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
# TNC Python interface
# @(#) $Jeannot: tnc.py,v 1.11 2005/01/28 18:27:31 js Exp $
# Copyright (c) 2004-2005, Jean-Sebastien Roy (js@jeannot.org)
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
# CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
# TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
TNC: A python interface to the TNC non-linear optimizer
TNC is a non-linear optimizer. To use it, you must provide a function to
minimize. The function must take one argument: the list of coordinates where to
evaluate the function; and it must return either a tuple, whose first element is the
value of the function, and whose second argument is the gradient of the function
(as a list of values); or None, to abort the minimization.
"""
from __future__ import division, print_function, absolute_import
from scipy.optimize import moduleTNC, approx_fprime
from .optimize import MemoizeJac, OptimizeResult, _check_unknown_options
from numpy import inf, array, zeros, asfarray
__all__ = ['fmin_tnc']
MSG_NONE = 0 # No messages
MSG_ITER = 1 # One line per iteration
MSG_INFO = 2 # Informational messages
MSG_VERS = 4 # Version info
MSG_EXIT = 8 # Exit reasons
MSG_ALL = MSG_ITER + MSG_INFO + MSG_VERS + MSG_EXIT
MSGS = {
MSG_NONE: "No messages",
MSG_ITER: "One line per iteration",
MSG_INFO: "Informational messages",
MSG_VERS: "Version info",
MSG_EXIT: "Exit reasons",
MSG_ALL: "All messages"
}
INFEASIBLE = -1 # Infeasible (lower bound > upper bound)
LOCALMINIMUM = 0 # Local minimum reached (|pg| ~= 0)
FCONVERGED = 1 # Converged (|f_n-f_(n-1)| ~= 0)
XCONVERGED = 2 # Converged (|x_n-x_(n-1)| ~= 0)
MAXFUN = 3 # Max. number of function evaluations reached
LSFAIL = 4 # Linear search failed
CONSTANT = 5 # All lower bounds are equal to the upper bounds
NOPROGRESS = 6 # Unable to progress
USERABORT = 7 # User requested end of minimization
RCSTRINGS = {
INFEASIBLE: "Infeasible (lower bound > upper bound)",
LOCALMINIMUM: "Local minimum reached (|pg| ~= 0)",
FCONVERGED: "Converged (|f_n-f_(n-1)| ~= 0)",
XCONVERGED: "Converged (|x_n-x_(n-1)| ~= 0)",
MAXFUN: "Max. number of function evaluations reached",
LSFAIL: "Linear search failed",
CONSTANT: "All lower bounds are equal to the upper bounds",
NOPROGRESS: "Unable to progress",
USERABORT: "User requested end of minimization"
}
# Changes to interface made by Travis Oliphant, Apr. 2004 for inclusion in
# SciPy
def fmin_tnc(func, x0, fprime=None, args=(), approx_grad=0,
bounds=None, epsilon=1e-8, scale=None, offset=None,
messages=MSG_ALL, maxCGit=-1, maxfun=None, eta=-1,
stepmx=0, accuracy=0, fmin=0, ftol=-1, xtol=-1, pgtol=-1,
rescale=-1, disp=None, callback=None):
"""
Minimize a function with variables subject to bounds, using
gradient information in a truncated Newton algorithm. This
method wraps a C implementation of the algorithm.
Parameters
----------
func : callable ``func(x, *args)``
Function to minimize. Must do one of:
1. Return f and g, where f is the value of the function and g its
gradient (a list of floats).
2. Return the function value but supply gradient function
separately as `fprime`.
3. Return the function value and set ``approx_grad=True``.
If the function returns None, the minimization
is aborted.
x0 : array_like
Initial estimate of minimum.
fprime : callable ``fprime(x, *args)``, optional
Gradient of `func`. If None, then either `func` must return the
function value and the gradient (``f,g = func(x, *args)``)
or `approx_grad` must be True.
args : tuple, optional
Arguments to pass to function.
approx_grad : bool, optional
If true, approximate the gradient numerically.
bounds : list, optional
(min, max) pairs for each element in x0, defining the
bounds on that parameter. Use None or +/-inf for one of
min or max when there is no bound in that direction.
epsilon : float, optional
Used if approx_grad is True. The stepsize in a finite
difference approximation for fprime.
scale : array_like, optional
Scaling factors to apply to each variable. If None, the
factors are up-low for interval bounded variables and
1+|x| for the others. Defaults to None.
offset : array_like, optional
Value to subtract from each variable. If None, the
offsets are (up+low)/2 for interval bounded variables
and x for the others.
messages : int, optional
Bit mask used to select messages display during
minimization values defined in the MSGS dict. Defaults to
MGS_ALL.
disp : int, optional
Integer interface to messages. 0 = no message, 5 = all messages
maxCGit : int, optional
Maximum number of hessian*vector evaluations per main
iteration. If maxCGit == 0, the direction chosen is
-gradient if maxCGit < 0, maxCGit is set to
max(1,min(50,n/2)). Defaults to -1.
maxfun : int, optional
Maximum number of function evaluation. if None, maxfun is
set to max(100, 10*len(x0)). Defaults to None.
eta : float, optional
Severity of the line search. if < 0 or > 1, set to 0.25.
Defaults to -1.
stepmx : float, optional
Maximum step for the line search. May be increased during
call. If too small, it will be set to 10.0. Defaults to 0.
accuracy : float, optional
Relative precision for finite difference calculations. If
<= machine_precision, set to sqrt(machine_precision).
Defaults to 0.
fmin : float, optional
Minimum function value estimate. Defaults to 0.
ftol : float, optional
Precision goal for the value of f in the stopping criterion.
If ftol < 0.0, ftol is set to 0.0 defaults to -1.
xtol : float, optional
Precision goal for the value of x in the stopping
criterion (after applying x scaling factors). If xtol <
0.0, xtol is set to sqrt(machine_precision). Defaults to
-1.
pgtol : float, optional
Precision goal for the value of the projected gradient in
the stopping criterion (after applying x scaling factors).
If pgtol < 0.0, pgtol is set to 1e-2 * sqrt(accuracy).
Setting it to 0.0 is not recommended. Defaults to -1.
rescale : float, optional
Scaling factor (in log10) used to trigger f value
rescaling. If 0, rescale at each iteration. If a large
value, never rescale. If < 0, rescale is set to 1.3.
callback : callable, optional
Called after each iteration, as callback(xk), where xk is the
current parameter vector.
Returns
-------
x : ndarray
The solution.
nfeval : int
The number of function evaluations.
rc : int
Return code, see below
See also
--------
minimize: Interface to minimization algorithms for multivariate
functions. See the 'TNC' `method` in particular.
Notes
-----
The underlying algorithm is truncated Newton, also called
Newton Conjugate-Gradient. This method differs from
scipy.optimize.fmin_ncg in that
1. It wraps a C implementation of the algorithm
2. It allows each variable to be given an upper and lower bound.
The algorithm incorporates the bound constraints by determining
the descent direction as in an unconstrained truncated Newton,
but never taking a step-size large enough to leave the space
of feasible x's. The algorithm keeps track of a set of
currently active constraints, and ignores them when computing
the minimum allowable step size. (The x's associated with the
active constraint are kept fixed.) If the maximum allowable
step size is zero then a new constraint is added. At the end
of each iteration one of the constraints may be deemed no
longer active and removed. A constraint is considered
no longer active is if it is currently active
but the gradient for that variable points inward from the
constraint. The specific constraint removed is the one
associated with the variable of largest index whose
constraint is no longer active.
Return codes are defined as follows::
-1 : Infeasible (lower bound > upper bound)
0 : Local minimum reached (|pg| ~= 0)
1 : Converged (|f_n-f_(n-1)| ~= 0)
2 : Converged (|x_n-x_(n-1)| ~= 0)
3 : Max. number of function evaluations reached
4 : Linear search failed
5 : All lower bounds are equal to the upper bounds
6 : Unable to progress
7 : User requested end of minimization
References
----------
Wright S., Nocedal J. (2006), 'Numerical Optimization'
Nash S.G. (1984), "Newton-Type Minimization Via the Lanczos Method",
SIAM Journal of Numerical Analysis 21, pp. 770-778
"""
# handle fprime/approx_grad
if approx_grad:
fun = func
jac = None
elif fprime is None:
fun = MemoizeJac(func)
jac = fun.derivative
else:
fun = func
jac = fprime
if disp is not None: # disp takes precedence over messages
mesg_num = disp
else:
mesg_num = {0:MSG_NONE, 1:MSG_ITER, 2:MSG_INFO, 3:MSG_VERS,
4:MSG_EXIT, 5:MSG_ALL}.get(messages, MSG_ALL)
# build options
opts = {'eps': epsilon,
'scale': scale,
'offset': offset,
'mesg_num': mesg_num,
'maxCGit': maxCGit,
'maxiter': maxfun,
'eta': eta,
'stepmx': stepmx,
'accuracy': accuracy,
'minfev': fmin,
'ftol': ftol,
'xtol': xtol,
'gtol': pgtol,
'rescale': rescale,
'disp': False}
res = _minimize_tnc(fun, x0, args, jac, bounds, callback=callback, **opts)
return res['x'], res['nfev'], res['status']
def _minimize_tnc(fun, x0, args=(), jac=None, bounds=None,
eps=1e-8, scale=None, offset=None, mesg_num=None,
maxCGit=-1, maxiter=None, eta=-1, stepmx=0, accuracy=0,
minfev=0, ftol=-1, xtol=-1, gtol=-1, rescale=-1, disp=False,
callback=None, **unknown_options):
"""
Minimize a scalar function of one or more variables using a truncated
Newton (TNC) algorithm.
Options
-------
eps : float
Step size used for numerical approximation of the jacobian.
scale : list of floats
Scaling factors to apply to each variable. If None, the
factors are up-low for interval bounded variables and
1+|x] fo the others. Defaults to None
offset : float
Value to subtract from each variable. If None, the
offsets are (up+low)/2 for interval bounded variables
and x for the others.
disp : bool
Set to True to print convergence messages.
maxCGit : int
Maximum number of hessian*vector evaluations per main
iteration. If maxCGit == 0, the direction chosen is
-gradient if maxCGit < 0, maxCGit is set to
max(1,min(50,n/2)). Defaults to -1.
maxiter : int
Maximum number of function evaluation. if None, `maxiter` is
set to max(100, 10*len(x0)). Defaults to None.
eta : float
Severity of the line search. if < 0 or > 1, set to 0.25.
Defaults to -1.
stepmx : float
Maximum step for the line search. May be increased during
call. If too small, it will be set to 10.0. Defaults to 0.
accuracy : float
Relative precision for finite difference calculations. If
<= machine_precision, set to sqrt(machine_precision).
Defaults to 0.
minfev : float
Minimum function value estimate. Defaults to 0.
ftol : float
Precision goal for the value of f in the stopping criterion.
If ftol < 0.0, ftol is set to 0.0 defaults to -1.
xtol : float
Precision goal for the value of x in the stopping
criterion (after applying x scaling factors). If xtol <
0.0, xtol is set to sqrt(machine_precision). Defaults to
-1.
gtol : float
Precision goal for the value of the projected gradient in
the stopping criterion (after applying x scaling factors).
If gtol < 0.0, gtol is set to 1e-2 * sqrt(accuracy).
Setting it to 0.0 is not recommended. Defaults to -1.
rescale : float
Scaling factor (in log10) used to trigger f value
rescaling. If 0, rescale at each iteration. If a large
value, never rescale. If < 0, rescale is set to 1.3.
"""
_check_unknown_options(unknown_options)
epsilon = eps
maxfun = maxiter
fmin = minfev
pgtol = gtol
x0 = asfarray(x0).flatten()
n = len(x0)
if bounds is None:
bounds = [(None,None)] * n
if len(bounds) != n:
raise ValueError('length of x0 != length of bounds')
if mesg_num is not None:
messages = {0:MSG_NONE, 1:MSG_ITER, 2:MSG_INFO, 3:MSG_VERS,
4:MSG_EXIT, 5:MSG_ALL}.get(mesg_num, MSG_ALL)
elif disp:
messages = MSG_ALL
else:
messages = MSG_NONE
if jac is None:
def func_and_grad(x):
f = fun(x, *args)
g = approx_fprime(x, fun, epsilon, *args)
return f, g
else:
def func_and_grad(x):
f = fun(x, *args)
g = jac(x, *args)
return f, g
"""
low, up : the bounds (lists of floats)
if low is None, the lower bounds are removed.
if up is None, the upper bounds are removed.
low and up defaults to None
"""
low = zeros(n)
up = zeros(n)
for i in range(n):
if bounds[i] is None:
l, u = -inf, inf
else:
l,u = bounds[i]
if l is None:
low[i] = -inf
else:
low[i] = l
if u is None:
up[i] = inf
else:
up[i] = u
if scale is None:
scale = array([])
if offset is None:
offset = array([])
if maxfun is None:
maxfun = max(100, 10*len(x0))
rc, nf, nit, x = moduleTNC.minimize(func_and_grad, x0, low, up, scale,
offset, messages, maxCGit, maxfun,
eta, stepmx, accuracy, fmin, ftol,
xtol, pgtol, rescale, callback)
funv, jacv = func_and_grad(x)
return OptimizeResult(x=x, fun=funv, jac=jacv, nfev=nf, nit=nit, status=rc,
message=RCSTRINGS[rc], success=(-1 < rc < 3))
if __name__ == '__main__':
# Examples for TNC
def example():
print("Example")
# A function to minimize
def function(x):
f = pow(x[0],2.0)+pow(abs(x[1]),3.0)
g = [0,0]
g[0] = 2.0*x[0]
g[1] = 3.0*pow(abs(x[1]),2.0)
if x[1] < 0:
g[1] = -g[1]
return f, g
# Optimizer call
x, nf, rc = fmin_tnc(function, [-7, 3], bounds=([-10, 1], [10, 10]))
print("After", nf, "function evaluations, TNC returned:", RCSTRINGS[rc])
print("x =", x)
print("exact value = [0, 1]")
print()
example()