lti_conversion.py 14.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
"""
ltisys -- a collection of functions to convert linear time invariant systems
from one representation to another.
"""
from __future__ import division, print_function, absolute_import

import numpy
import numpy as np
from numpy import (r_, eye, atleast_2d, poly, dot,
                   asarray, prod, zeros, array, outer)
from scipy import linalg

from .filter_design import tf2zpk, zpk2tf, normalize


__all__ = ['tf2ss', 'abcd_normalize', 'ss2tf', 'zpk2ss', 'ss2zpk',
           'cont2discrete']


def tf2ss(num, den):
    r"""Transfer function to state-space representation.

    Parameters
    ----------
    num, den : array_like
        Sequences representing the coefficients of the numerator and
        denominator polynomials, in order of descending degree. The
        denominator needs to be at least as long as the numerator.

    Returns
    -------
    A, B, C, D : ndarray
        State space representation of the system, in controller canonical
        form.

    Examples
    --------
    Convert the transfer function:

    .. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}

    >>> num = [1, 3, 3]
    >>> den = [1, 2, 1]

    to the state-space representation:

    .. math::

        \dot{\textbf{x}}(t) =
        \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) +
        \begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\

        \textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) +
        \begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t)

    >>> from scipy.signal import tf2ss
    >>> A, B, C, D = tf2ss(num, den)
    >>> A
    array([[-2., -1.],
           [ 1.,  0.]])
    >>> B
    array([[ 1.],
           [ 0.]])
    >>> C
    array([[ 1.,  2.]])
    >>> D
    array([[ 1.]])
    """
    # Controller canonical state-space representation.
    #  if M+1 = len(num) and K+1 = len(den) then we must have M <= K
    #  states are found by asserting that X(s) = U(s) / D(s)
    #  then Y(s) = N(s) * X(s)
    #
    #   A, B, C, and D follow quite naturally.
    #
    num, den = normalize(num, den)   # Strips zeros, checks arrays
    nn = len(num.shape)
    if nn == 1:
        num = asarray([num], num.dtype)
    M = num.shape[1]
    K = len(den)
    if M > K:
        msg = "Improper transfer function. `num` is longer than `den`."
        raise ValueError(msg)
    if M == 0 or K == 0:  # Null system
        return (array([], float), array([], float), array([], float),
                array([], float))

    # pad numerator to have same number of columns has denominator
    num = r_['-1', zeros((num.shape[0], K - M), num.dtype), num]

    if num.shape[-1] > 0:
        D = atleast_2d(num[:, 0])

    else:
        # We don't assign it an empty array because this system
        # is not 'null'. It just doesn't have a non-zero D
        # matrix. Thus, it should have a non-zero shape so that
        # it can be operated on by functions like 'ss2tf'
        D = array([[0]], float)

    if K == 1:
        D = D.reshape(num.shape)

        return (zeros((1, 1)), zeros((1, D.shape[1])),
                zeros((D.shape[0], 1)), D)

    frow = -array([den[1:]])
    A = r_[frow, eye(K - 2, K - 1)]
    B = eye(K - 1, 1)
    C = num[:, 1:] - outer(num[:, 0], den[1:])
    D = D.reshape((C.shape[0], B.shape[1]))

    return A, B, C, D


def _none_to_empty_2d(arg):
    if arg is None:
        return zeros((0, 0))
    else:
        return arg


def _atleast_2d_or_none(arg):
    if arg is not None:
        return atleast_2d(arg)


def _shape_or_none(M):
    if M is not None:
        return M.shape
    else:
        return (None,) * 2


def _choice_not_none(*args):
    for arg in args:
        if arg is not None:
            return arg


def _restore(M, shape):
    if M.shape == (0, 0):
        return zeros(shape)
    else:
        if M.shape != shape:
            raise ValueError("The input arrays have incompatible shapes.")
        return M


def abcd_normalize(A=None, B=None, C=None, D=None):
    """Check state-space matrices and ensure they are two-dimensional.

    If enough information on the system is provided, that is, enough
    properly-shaped arrays are passed to the function, the missing ones
    are built from this information, ensuring the correct number of
    rows and columns. Otherwise a ValueError is raised.

    Parameters
    ----------
    A, B, C, D : array_like, optional
        State-space matrices. All of them are None (missing) by default.
        See `ss2tf` for format.

    Returns
    -------
    A, B, C, D : array
        Properly shaped state-space matrices.

    Raises
    ------
    ValueError
        If not enough information on the system was provided.

    """
    A, B, C, D = map(_atleast_2d_or_none, (A, B, C, D))

    MA, NA = _shape_or_none(A)
    MB, NB = _shape_or_none(B)
    MC, NC = _shape_or_none(C)
    MD, ND = _shape_or_none(D)

    p = _choice_not_none(MA, MB, NC)
    q = _choice_not_none(NB, ND)
    r = _choice_not_none(MC, MD)
    if p is None or q is None or r is None:
        raise ValueError("Not enough information on the system.")

    A, B, C, D = map(_none_to_empty_2d, (A, B, C, D))
    A = _restore(A, (p, p))
    B = _restore(B, (p, q))
    C = _restore(C, (r, p))
    D = _restore(D, (r, q))

    return A, B, C, D


def ss2tf(A, B, C, D, input=0):
    r"""State-space to transfer function.

    A, B, C, D defines a linear state-space system with `p` inputs,
    `q` outputs, and `n` state variables.

    Parameters
    ----------
    A : array_like
        State (or system) matrix of shape ``(n, n)``
    B : array_like
        Input matrix of shape ``(n, p)``
    C : array_like
        Output matrix of shape ``(q, n)``
    D : array_like
        Feedthrough (or feedforward) matrix of shape ``(q, p)``
    input : int, optional
        For multiple-input systems, the index of the input to use.

    Returns
    -------
    num : 2-D ndarray
        Numerator(s) of the resulting transfer function(s).  `num` has one row
        for each of the system's outputs. Each row is a sequence representation
        of the numerator polynomial.
    den : 1-D ndarray
        Denominator of the resulting transfer function(s).  `den` is a sequence
        representation of the denominator polynomial.

    Examples
    --------
    Convert the state-space representation:

    .. math::

        \dot{\textbf{x}}(t) =
        \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) +
        \begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\

        \textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) +
        \begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t)

    >>> A = [[-2, -1], [1, 0]]
    >>> B = [[1], [0]]  # 2-dimensional column vector
    >>> C = [[1, 2]]    # 2-dimensional row vector
    >>> D = 1

    to the transfer function:

    .. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}

    >>> from scipy.signal import ss2tf
    >>> ss2tf(A, B, C, D)
    (array([[1, 3, 3]]), array([ 1.,  2.,  1.]))
    """
    # transfer function is C (sI - A)**(-1) B + D

    # Check consistency and make them all rank-2 arrays
    A, B, C, D = abcd_normalize(A, B, C, D)

    nout, nin = D.shape
    if input >= nin:
        raise ValueError("System does not have the input specified.")

    # make SIMO from possibly MIMO system.
    B = B[:, input:input + 1]
    D = D[:, input:input + 1]

    try:
        den = poly(A)
    except ValueError:
        den = 1

    if (prod(B.shape, axis=0) == 0) and (prod(C.shape, axis=0) == 0):
        num = numpy.ravel(D)
        if (prod(D.shape, axis=0) == 0) and (prod(A.shape, axis=0) == 0):
            den = []
        return num, den

    num_states = A.shape[0]
    type_test = A[:, 0] + B[:, 0] + C[0, :] + D
    num = numpy.zeros((nout, num_states + 1), type_test.dtype)
    for k in range(nout):
        Ck = atleast_2d(C[k, :])
        num[k] = poly(A - dot(B, Ck)) + (D[k] - 1) * den

    return num, den


def zpk2ss(z, p, k):
    """Zero-pole-gain representation to state-space representation

    Parameters
    ----------
    z, p : sequence
        Zeros and poles.
    k : float
        System gain.

    Returns
    -------
    A, B, C, D : ndarray
        State space representation of the system, in controller canonical
        form.

    """
    return tf2ss(*zpk2tf(z, p, k))


def ss2zpk(A, B, C, D, input=0):
    """State-space representation to zero-pole-gain representation.

    A, B, C, D defines a linear state-space system with `p` inputs,
    `q` outputs, and `n` state variables.

    Parameters
    ----------
    A : array_like
        State (or system) matrix of shape ``(n, n)``
    B : array_like
        Input matrix of shape ``(n, p)``
    C : array_like
        Output matrix of shape ``(q, n)``
    D : array_like
        Feedthrough (or feedforward) matrix of shape ``(q, p)``
    input : int, optional
        For multiple-input systems, the index of the input to use.

    Returns
    -------
    z, p : sequence
        Zeros and poles.
    k : float
        System gain.

    """
    return tf2zpk(*ss2tf(A, B, C, D, input=input))


def cont2discrete(system, dt, method="zoh", alpha=None):
    """
    Transform a continuous to a discrete state-space system.

    Parameters
    ----------
    system : a tuple describing the system or an instance of `lti`
        The following gives the number of elements in the tuple and
        the interpretation:

            * 1: (instance of `lti`)
            * 2: (num, den)
            * 3: (zeros, poles, gain)
            * 4: (A, B, C, D)

    dt : float
        The discretization time step.
    method : str, optional
        Which method to use:

            * gbt: generalized bilinear transformation
            * bilinear: Tustin's approximation ("gbt" with alpha=0.5)
            * euler: Euler (or forward differencing) method ("gbt" with alpha=0)
            * backward_diff: Backwards differencing ("gbt" with alpha=1.0)
            * zoh: zero-order hold (default)
            * foh: first-order hold (*versionadded: 1.3.0*)
            * impulse: equivalent impulse response (*versionadded: 1.3.0*)

    alpha : float within [0, 1], optional
        The generalized bilinear transformation weighting parameter, which
        should only be specified with method="gbt", and is ignored otherwise

    Returns
    -------
    sysd : tuple containing the discrete system
        Based on the input type, the output will be of the form

        * (num, den, dt)   for transfer function input
        * (zeros, poles, gain, dt)   for zeros-poles-gain input
        * (A, B, C, D, dt) for state-space system input

    Notes
    -----
    By default, the routine uses a Zero-Order Hold (zoh) method to perform
    the transformation.  Alternatively, a generalized bilinear transformation
    may be used, which includes the common Tustin's bilinear approximation,
    an Euler's method technique, or a backwards differencing technique.

    The Zero-Order Hold (zoh) method is based on [1]_, the generalized bilinear
    approximation is based on [2]_ and [3]_, the First-Order Hold (foh) method
    is based on [4]_.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Discretization#Discretization_of_linear_state_space_models

    .. [2] http://techteach.no/publications/discretetime_signals_systems/discrete.pdf

    .. [3] G. Zhang, X. Chen, and T. Chen, Digital redesign via the generalized
        bilinear transformation, Int. J. Control, vol. 82, no. 4, pp. 741-754,
        2009.
        (https://www.mypolyuweb.hk/~magzhang/Research/ZCC09_IJC.pdf)

    .. [4] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control
        of dynamic systems, 3rd ed. Menlo Park, Calif: Addison-Wesley,
        pp. 204-206, 1998.

    """
    if len(system) == 1:
        return system.to_discrete()
    if len(system) == 2:
        sysd = cont2discrete(tf2ss(system[0], system[1]), dt, method=method,
                             alpha=alpha)
        return ss2tf(sysd[0], sysd[1], sysd[2], sysd[3]) + (dt,)
    elif len(system) == 3:
        sysd = cont2discrete(zpk2ss(system[0], system[1], system[2]), dt,
                             method=method, alpha=alpha)
        return ss2zpk(sysd[0], sysd[1], sysd[2], sysd[3]) + (dt,)
    elif len(system) == 4:
        a, b, c, d = system
    else:
        raise ValueError("First argument must either be a tuple of 2 (tf), "
                         "3 (zpk), or 4 (ss) arrays.")

    if method == 'gbt':
        if alpha is None:
            raise ValueError("Alpha parameter must be specified for the "
                             "generalized bilinear transform (gbt) method")
        elif alpha < 0 or alpha > 1:
            raise ValueError("Alpha parameter must be within the interval "
                             "[0,1] for the gbt method")

    if method == 'gbt':
        # This parameter is used repeatedly - compute once here
        ima = np.eye(a.shape[0]) - alpha*dt*a
        ad = linalg.solve(ima, np.eye(a.shape[0]) + (1.0-alpha)*dt*a)
        bd = linalg.solve(ima, dt*b)

        # Similarly solve for the output equation matrices
        cd = linalg.solve(ima.transpose(), c.transpose())
        cd = cd.transpose()
        dd = d + alpha*np.dot(c, bd)

    elif method == 'bilinear' or method == 'tustin':
        return cont2discrete(system, dt, method="gbt", alpha=0.5)

    elif method == 'euler' or method == 'forward_diff':
        return cont2discrete(system, dt, method="gbt", alpha=0.0)

    elif method == 'backward_diff':
        return cont2discrete(system, dt, method="gbt", alpha=1.0)

    elif method == 'zoh':
        # Build an exponential matrix
        em_upper = np.hstack((a, b))

        # Need to stack zeros under the a and b matrices
        em_lower = np.hstack((np.zeros((b.shape[1], a.shape[0])),
                              np.zeros((b.shape[1], b.shape[1]))))

        em = np.vstack((em_upper, em_lower))
        ms = linalg.expm(dt * em)

        # Dispose of the lower rows
        ms = ms[:a.shape[0], :]

        ad = ms[:, 0:a.shape[1]]
        bd = ms[:, a.shape[1]:]

        cd = c
        dd = d

    elif method == 'foh':
        # Size parameters for convenience
        n = a.shape[0]
        m = b.shape[1]

        # Build an exponential matrix similar to 'zoh' method
        em_upper = linalg.block_diag(np.block([a, b]) * dt, np.eye(m))
        em_lower = zeros((m, n + 2 * m))
        em = np.block([[em_upper], [em_lower]])

        ms = linalg.expm(em)

        # Get the three blocks from upper rows
        ms11 = ms[:n, 0:n]
        ms12 = ms[:n, n:n + m]
        ms13 = ms[:n, n + m:]

        ad = ms11
        bd = ms12 - ms13 + ms11 @ ms13
        cd = c
        dd = d + c @ ms13

    elif method == 'impulse':
        if not np.allclose(d, 0):
            raise ValueError("Impulse method is only applicable"
                             "to strictly proper systems")

        ad = linalg.expm(a * dt)
        bd = ad @ b * dt
        cd = c
        dd = c @ b * dt

    else:
        raise ValueError("Unknown transformation method '%s'" % method)

    return ad, bd, cd, dd, dt