waveforms.py 20.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
# Author: Travis Oliphant
# 2003
#
# Feb. 2010: Updated by Warren Weckesser:
#   Rewrote much of chirp()
#   Added sweep_poly()
from __future__ import division, print_function, absolute_import

import numpy as np
from numpy import asarray, zeros, place, nan, mod, pi, extract, log, sqrt, \
    exp, cos, sin, polyval, polyint

from scipy._lib.six import string_types


__all__ = ['sawtooth', 'square', 'gausspulse', 'chirp', 'sweep_poly',
           'unit_impulse']


def sawtooth(t, width=1):
    """
    Return a periodic sawtooth or triangle waveform.

    The sawtooth waveform has a period ``2*pi``, rises from -1 to 1 on the
    interval 0 to ``width*2*pi``, then drops from 1 to -1 on the interval
    ``width*2*pi`` to ``2*pi``. `width` must be in the interval [0, 1].

    Note that this is not band-limited.  It produces an infinite number
    of harmonics, which are aliased back and forth across the frequency
    spectrum.

    Parameters
    ----------
    t : array_like
        Time.
    width : array_like, optional
        Width of the rising ramp as a proportion of the total cycle.
        Default is 1, producing a rising ramp, while 0 produces a falling
        ramp.  `width` = 0.5 produces a triangle wave.
        If an array, causes wave shape to change over time, and must be the
        same length as t.

    Returns
    -------
    y : ndarray
        Output array containing the sawtooth waveform.

    Examples
    --------
    A 5 Hz waveform sampled at 500 Hz for 1 second:

    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> t = np.linspace(0, 1, 500)
    >>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t))

    """
    t, w = asarray(t), asarray(width)
    w = asarray(w + (t - t))
    t = asarray(t + (w - w))
    if t.dtype.char in ['fFdD']:
        ytype = t.dtype.char
    else:
        ytype = 'd'
    y = zeros(t.shape, ytype)

    # width must be between 0 and 1 inclusive
    mask1 = (w > 1) | (w < 0)
    place(y, mask1, nan)

    # take t modulo 2*pi
    tmod = mod(t, 2 * pi)

    # on the interval 0 to width*2*pi function is
    #  tmod / (pi*w) - 1
    mask2 = (1 - mask1) & (tmod < w * 2 * pi)
    tsub = extract(mask2, tmod)
    wsub = extract(mask2, w)
    place(y, mask2, tsub / (pi * wsub) - 1)

    # on the interval width*2*pi to 2*pi function is
    #  (pi*(w+1)-tmod) / (pi*(1-w))

    mask3 = (1 - mask1) & (1 - mask2)
    tsub = extract(mask3, tmod)
    wsub = extract(mask3, w)
    place(y, mask3, (pi * (wsub + 1) - tsub) / (pi * (1 - wsub)))
    return y


def square(t, duty=0.5):
    """
    Return a periodic square-wave waveform.

    The square wave has a period ``2*pi``, has value +1 from 0 to
    ``2*pi*duty`` and -1 from ``2*pi*duty`` to ``2*pi``. `duty` must be in
    the interval [0,1].

    Note that this is not band-limited.  It produces an infinite number
    of harmonics, which are aliased back and forth across the frequency
    spectrum.

    Parameters
    ----------
    t : array_like
        The input time array.
    duty : array_like, optional
        Duty cycle.  Default is 0.5 (50% duty cycle).
        If an array, causes wave shape to change over time, and must be the
        same length as t.

    Returns
    -------
    y : ndarray
        Output array containing the square waveform.

    Examples
    --------
    A 5 Hz waveform sampled at 500 Hz for 1 second:

    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> t = np.linspace(0, 1, 500, endpoint=False)
    >>> plt.plot(t, signal.square(2 * np.pi * 5 * t))
    >>> plt.ylim(-2, 2)

    A pulse-width modulated sine wave:

    >>> plt.figure()
    >>> sig = np.sin(2 * np.pi * t)
    >>> pwm = signal.square(2 * np.pi * 30 * t, duty=(sig + 1)/2)
    >>> plt.subplot(2, 1, 1)
    >>> plt.plot(t, sig)
    >>> plt.subplot(2, 1, 2)
    >>> plt.plot(t, pwm)
    >>> plt.ylim(-1.5, 1.5)

    """
    t, w = asarray(t), asarray(duty)
    w = asarray(w + (t - t))
    t = asarray(t + (w - w))
    if t.dtype.char in ['fFdD']:
        ytype = t.dtype.char
    else:
        ytype = 'd'

    y = zeros(t.shape, ytype)

    # width must be between 0 and 1 inclusive
    mask1 = (w > 1) | (w < 0)
    place(y, mask1, nan)

    # on the interval 0 to duty*2*pi function is 1
    tmod = mod(t, 2 * pi)
    mask2 = (1 - mask1) & (tmod < w * 2 * pi)
    place(y, mask2, 1)

    # on the interval duty*2*pi to 2*pi function is
    #  (pi*(w+1)-tmod) / (pi*(1-w))
    mask3 = (1 - mask1) & (1 - mask2)
    place(y, mask3, -1)
    return y


def gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False,
               retenv=False):
    """
    Return a Gaussian modulated sinusoid:

        ``exp(-a t^2) exp(1j*2*pi*fc*t).``

    If `retquad` is True, then return the real and imaginary parts
    (in-phase and quadrature).
    If `retenv` is True, then return the envelope (unmodulated signal).
    Otherwise, return the real part of the modulated sinusoid.

    Parameters
    ----------
    t : ndarray or the string 'cutoff'
        Input array.
    fc : int, optional
        Center frequency (e.g. Hz).  Default is 1000.
    bw : float, optional
        Fractional bandwidth in frequency domain of pulse (e.g. Hz).
        Default is 0.5.
    bwr : float, optional
        Reference level at which fractional bandwidth is calculated (dB).
        Default is -6.
    tpr : float, optional
        If `t` is 'cutoff', then the function returns the cutoff
        time for when the pulse amplitude falls below `tpr` (in dB).
        Default is -60.
    retquad : bool, optional
        If True, return the quadrature (imaginary) as well as the real part
        of the signal.  Default is False.
    retenv : bool, optional
        If True, return the envelope of the signal.  Default is False.

    Returns
    -------
    yI : ndarray
        Real part of signal.  Always returned.
    yQ : ndarray
        Imaginary part of signal.  Only returned if `retquad` is True.
    yenv : ndarray
        Envelope of signal.  Only returned if `retenv` is True.

    See Also
    --------
    scipy.signal.morlet

    Examples
    --------
    Plot real component, imaginary component, and envelope for a 5 Hz pulse,
    sampled at 100 Hz for 2 seconds:

    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> t = np.linspace(-1, 1, 2 * 100, endpoint=False)
    >>> i, q, e = signal.gausspulse(t, fc=5, retquad=True, retenv=True)
    >>> plt.plot(t, i, t, q, t, e, '--')

    """
    if fc < 0:
        raise ValueError("Center frequency (fc=%.2f) must be >=0." % fc)
    if bw <= 0:
        raise ValueError("Fractional bandwidth (bw=%.2f) must be > 0." % bw)
    if bwr >= 0:
        raise ValueError("Reference level for bandwidth (bwr=%.2f) must "
                         "be < 0 dB" % bwr)

    # exp(-a t^2) <->  sqrt(pi/a) exp(-pi^2/a * f^2)  = g(f)

    ref = pow(10.0, bwr / 20.0)
    # fdel = fc*bw/2:  g(fdel) = ref --- solve this for a
    #
    # pi^2/a * fc^2 * bw^2 /4=-log(ref)
    a = -(pi * fc * bw) ** 2 / (4.0 * log(ref))

    if isinstance(t, string_types):
        if t == 'cutoff':  # compute cut_off point
            #  Solve exp(-a tc**2) = tref  for tc
            #   tc = sqrt(-log(tref) / a) where tref = 10^(tpr/20)
            if tpr >= 0:
                raise ValueError("Reference level for time cutoff must "
                                 "be < 0 dB")
            tref = pow(10.0, tpr / 20.0)
            return sqrt(-log(tref) / a)
        else:
            raise ValueError("If `t` is a string, it must be 'cutoff'")

    yenv = exp(-a * t * t)
    yI = yenv * cos(2 * pi * fc * t)
    yQ = yenv * sin(2 * pi * fc * t)
    if not retquad and not retenv:
        return yI
    if not retquad and retenv:
        return yI, yenv
    if retquad and not retenv:
        return yI, yQ
    if retquad and retenv:
        return yI, yQ, yenv


def chirp(t, f0, t1, f1, method='linear', phi=0, vertex_zero=True):
    """Frequency-swept cosine generator.

    In the following, 'Hz' should be interpreted as 'cycles per unit';
    there is no requirement here that the unit is one second.  The
    important distinction is that the units of rotation are cycles, not
    radians. Likewise, `t` could be a measurement of space instead of time.

    Parameters
    ----------
    t : array_like
        Times at which to evaluate the waveform.
    f0 : float
        Frequency (e.g. Hz) at time t=0.
    t1 : float
        Time at which `f1` is specified.
    f1 : float
        Frequency (e.g. Hz) of the waveform at time `t1`.
    method : {'linear', 'quadratic', 'logarithmic', 'hyperbolic'}, optional
        Kind of frequency sweep.  If not given, `linear` is assumed.  See
        Notes below for more details.
    phi : float, optional
        Phase offset, in degrees. Default is 0.
    vertex_zero : bool, optional
        This parameter is only used when `method` is 'quadratic'.
        It determines whether the vertex of the parabola that is the graph
        of the frequency is at t=0 or t=t1.

    Returns
    -------
    y : ndarray
        A numpy array containing the signal evaluated at `t` with the
        requested time-varying frequency.  More precisely, the function
        returns ``cos(phase + (pi/180)*phi)`` where `phase` is the integral
        (from 0 to `t`) of ``2*pi*f(t)``. ``f(t)`` is defined below.

    See Also
    --------
    sweep_poly

    Notes
    -----
    There are four options for the `method`.  The following formulas give
    the instantaneous frequency (in Hz) of the signal generated by
    `chirp()`.  For convenience, the shorter names shown below may also be
    used.

    linear, lin, li:

        ``f(t) = f0 + (f1 - f0) * t / t1``

    quadratic, quad, q:

        The graph of the frequency f(t) is a parabola through (0, f0) and
        (t1, f1).  By default, the vertex of the parabola is at (0, f0).
        If `vertex_zero` is False, then the vertex is at (t1, f1).  The
        formula is:

        if vertex_zero is True:

            ``f(t) = f0 + (f1 - f0) * t**2 / t1**2``

        else:

            ``f(t) = f1 - (f1 - f0) * (t1 - t)**2 / t1**2``

        To use a more general quadratic function, or an arbitrary
        polynomial, use the function `scipy.signal.sweep_poly`.

    logarithmic, log, lo:

        ``f(t) = f0 * (f1/f0)**(t/t1)``

        f0 and f1 must be nonzero and have the same sign.

        This signal is also known as a geometric or exponential chirp.

    hyperbolic, hyp:

        ``f(t) = f0*f1*t1 / ((f0 - f1)*t + f1*t1)``

        f0 and f1 must be nonzero.

    Examples
    --------
    The following will be used in the examples:

    >>> from scipy.signal import chirp, spectrogram
    >>> import matplotlib.pyplot as plt

    For the first example, we'll plot the waveform for a linear chirp
    from 6 Hz to 1 Hz over 10 seconds:

    >>> t = np.linspace(0, 10, 5001)
    >>> w = chirp(t, f0=6, f1=1, t1=10, method='linear')
    >>> plt.plot(t, w)
    >>> plt.title("Linear Chirp, f(0)=6, f(10)=1")
    >>> plt.xlabel('t (sec)')
    >>> plt.show()

    For the remaining examples, we'll use higher frequency ranges,
    and demonstrate the result using `scipy.signal.spectrogram`.
    We'll use a 10 second interval sampled at 8000 Hz.

    >>> fs = 8000
    >>> T = 10
    >>> t = np.linspace(0, T, T*fs, endpoint=False)

    Quadratic chirp from 1500 Hz to 250 Hz over 10 seconds
    (vertex of the parabolic curve of the frequency is at t=0):

    >>> w = chirp(t, f0=1500, f1=250, t1=10, method='quadratic')
    >>> ff, tt, Sxx = spectrogram(w, fs=fs, noverlap=256, nperseg=512,
    ...                           nfft=2048)
    >>> plt.pcolormesh(tt, ff[:513], Sxx[:513], cmap='gray_r')
    >>> plt.title('Quadratic Chirp, f(0)=1500, f(10)=250')
    >>> plt.xlabel('t (sec)')
    >>> plt.ylabel('Frequency (Hz)')
    >>> plt.grid()
    >>> plt.show()

    Quadratic chirp from 1500 Hz to 250 Hz over 10 seconds
    (vertex of the parabolic curve of the frequency is at t=10):

    >>> w = chirp(t, f0=1500, f1=250, t1=10, method='quadratic',
    ...           vertex_zero=False)
    >>> ff, tt, Sxx = spectrogram(w, fs=fs, noverlap=256, nperseg=512,
    ...                           nfft=2048)
    >>> plt.pcolormesh(tt, ff[:513], Sxx[:513], cmap='gray_r')
    >>> plt.title('Quadratic Chirp, f(0)=1500, f(10)=250\\n' +
    ...           '(vertex_zero=False)')
    >>> plt.xlabel('t (sec)')
    >>> plt.ylabel('Frequency (Hz)')
    >>> plt.grid()
    >>> plt.show()

    Logarithmic chirp from 1500 Hz to 250 Hz over 10 seconds:

    >>> w = chirp(t, f0=1500, f1=250, t1=10, method='logarithmic')
    >>> ff, tt, Sxx = spectrogram(w, fs=fs, noverlap=256, nperseg=512,
    ...                           nfft=2048)
    >>> plt.pcolormesh(tt, ff[:513], Sxx[:513], cmap='gray_r')
    >>> plt.title('Logarithmic Chirp, f(0)=1500, f(10)=250')
    >>> plt.xlabel('t (sec)')
    >>> plt.ylabel('Frequency (Hz)')
    >>> plt.grid()
    >>> plt.show()

    Hyperbolic chirp from 1500 Hz to 250 Hz over 10 seconds:

    >>> w = chirp(t, f0=1500, f1=250, t1=10, method='hyperbolic')
    >>> ff, tt, Sxx = spectrogram(w, fs=fs, noverlap=256, nperseg=512,
    ...                           nfft=2048)
    >>> plt.pcolormesh(tt, ff[:513], Sxx[:513], cmap='gray_r')
    >>> plt.title('Hyperbolic Chirp, f(0)=1500, f(10)=250')
    >>> plt.xlabel('t (sec)')
    >>> plt.ylabel('Frequency (Hz)')
    >>> plt.grid()
    >>> plt.show()

    """
    # 'phase' is computed in _chirp_phase, to make testing easier.
    phase = _chirp_phase(t, f0, t1, f1, method, vertex_zero)
    # Convert  phi to radians.
    phi *= pi / 180
    return cos(phase + phi)


def _chirp_phase(t, f0, t1, f1, method='linear', vertex_zero=True):
    """
    Calculate the phase used by `chirp` to generate its output.

    See `chirp` for a description of the arguments.

    """
    t = asarray(t)
    f0 = float(f0)
    t1 = float(t1)
    f1 = float(f1)
    if method in ['linear', 'lin', 'li']:
        beta = (f1 - f0) / t1
        phase = 2 * pi * (f0 * t + 0.5 * beta * t * t)

    elif method in ['quadratic', 'quad', 'q']:
        beta = (f1 - f0) / (t1 ** 2)
        if vertex_zero:
            phase = 2 * pi * (f0 * t + beta * t ** 3 / 3)
        else:
            phase = 2 * pi * (f1 * t + beta * ((t1 - t) ** 3 - t1 ** 3) / 3)

    elif method in ['logarithmic', 'log', 'lo']:
        if f0 * f1 <= 0.0:
            raise ValueError("For a logarithmic chirp, f0 and f1 must be "
                             "nonzero and have the same sign.")
        if f0 == f1:
            phase = 2 * pi * f0 * t
        else:
            beta = t1 / log(f1 / f0)
            phase = 2 * pi * beta * f0 * (pow(f1 / f0, t / t1) - 1.0)

    elif method in ['hyperbolic', 'hyp']:
        if f0 == 0 or f1 == 0:
            raise ValueError("For a hyperbolic chirp, f0 and f1 must be "
                             "nonzero.")
        if f0 == f1:
            # Degenerate case: constant frequency.
            phase = 2 * pi * f0 * t
        else:
            # Singular point: the instantaneous frequency blows up
            # when t == sing.
            sing = -f1 * t1 / (f0 - f1)
            phase = 2 * pi * (-sing * f0) * log(np.abs(1 - t/sing))

    else:
        raise ValueError("method must be 'linear', 'quadratic', 'logarithmic',"
                         " or 'hyperbolic', but a value of %r was given."
                         % method)

    return phase


def sweep_poly(t, poly, phi=0):
    """
    Frequency-swept cosine generator, with a time-dependent frequency.

    This function generates a sinusoidal function whose instantaneous
    frequency varies with time.  The frequency at time `t` is given by
    the polynomial `poly`.

    Parameters
    ----------
    t : ndarray
        Times at which to evaluate the waveform.
    poly : 1-D array_like or instance of numpy.poly1d
        The desired frequency expressed as a polynomial.  If `poly` is
        a list or ndarray of length n, then the elements of `poly` are
        the coefficients of the polynomial, and the instantaneous
        frequency is

          ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]``

        If `poly` is an instance of numpy.poly1d, then the
        instantaneous frequency is

          ``f(t) = poly(t)``

    phi : float, optional
        Phase offset, in degrees, Default: 0.

    Returns
    -------
    sweep_poly : ndarray
        A numpy array containing the signal evaluated at `t` with the
        requested time-varying frequency.  More precisely, the function
        returns ``cos(phase + (pi/180)*phi)``, where `phase` is the integral
        (from 0 to t) of ``2 * pi * f(t)``; ``f(t)`` is defined above.

    See Also
    --------
    chirp

    Notes
    -----
    .. versionadded:: 0.8.0

    If `poly` is a list or ndarray of length `n`, then the elements of
    `poly` are the coefficients of the polynomial, and the instantaneous
    frequency is:

        ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]``

    If `poly` is an instance of `numpy.poly1d`, then the instantaneous
    frequency is:

          ``f(t) = poly(t)``

    Finally, the output `s` is:

        ``cos(phase + (pi/180)*phi)``

    where `phase` is the integral from 0 to `t` of ``2 * pi * f(t)``,
    ``f(t)`` as defined above.

    Examples
    --------
    Compute the waveform with instantaneous frequency::

        f(t) = 0.025*t**3 - 0.36*t**2 + 1.25*t + 2

    over the interval 0 <= t <= 10.

    >>> from scipy.signal import sweep_poly
    >>> p = np.poly1d([0.025, -0.36, 1.25, 2.0])
    >>> t = np.linspace(0, 10, 5001)
    >>> w = sweep_poly(t, p)

    Plot it:

    >>> import matplotlib.pyplot as plt
    >>> plt.subplot(2, 1, 1)
    >>> plt.plot(t, w)
    >>> plt.title("Sweep Poly\\nwith frequency " +
    ...           "$f(t) = 0.025t^3 - 0.36t^2 + 1.25t + 2$")
    >>> plt.subplot(2, 1, 2)
    >>> plt.plot(t, p(t), 'r', label='f(t)')
    >>> plt.legend()
    >>> plt.xlabel('t')
    >>> plt.tight_layout()
    >>> plt.show()

    """
    # 'phase' is computed in _sweep_poly_phase, to make testing easier.
    phase = _sweep_poly_phase(t, poly)
    # Convert to radians.
    phi *= pi / 180
    return cos(phase + phi)


def _sweep_poly_phase(t, poly):
    """
    Calculate the phase used by sweep_poly to generate its output.

    See `sweep_poly` for a description of the arguments.

    """
    # polyint handles lists, ndarrays and instances of poly1d automatically.
    intpoly = polyint(poly)
    phase = 2 * pi * polyval(intpoly, t)
    return phase


def unit_impulse(shape, idx=None, dtype=float):
    """
    Unit impulse signal (discrete delta function) or unit basis vector.

    Parameters
    ----------
    shape : int or tuple of int
        Number of samples in the output (1-D), or a tuple that represents the
        shape of the output (N-D).
    idx : None or int or tuple of int or 'mid', optional
        Index at which the value is 1.  If None, defaults to the 0th element.
        If ``idx='mid'``, the impulse will be centered at ``shape // 2`` in
        all dimensions.  If an int, the impulse will be at `idx` in all
        dimensions.
    dtype : data-type, optional
        The desired data-type for the array, e.g., ``numpy.int8``.  Default is
        ``numpy.float64``.

    Returns
    -------
    y : ndarray
        Output array containing an impulse signal.

    Notes
    -----
    The 1D case is also known as the Kronecker delta.

    .. versionadded:: 0.19.0

    Examples
    --------
    An impulse at the 0th element (:math:`\\delta[n]`):

    >>> from scipy import signal
    >>> signal.unit_impulse(8)
    array([ 1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.])

    Impulse offset by 2 samples (:math:`\\delta[n-2]`):

    >>> signal.unit_impulse(7, 2)
    array([ 0.,  0.,  1.,  0.,  0.,  0.,  0.])

    2-dimensional impulse, centered:

    >>> signal.unit_impulse((3, 3), 'mid')
    array([[ 0.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  0.]])

    Impulse at (2, 2), using broadcasting:

    >>> signal.unit_impulse((4, 4), 2)
    array([[ 0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.],
           [ 0.,  0.,  1.,  0.],
           [ 0.,  0.,  0.,  0.]])

    Plot the impulse response of a 4th-order Butterworth lowpass filter:

    >>> imp = signal.unit_impulse(100, 'mid')
    >>> b, a = signal.butter(4, 0.2)
    >>> response = signal.lfilter(b, a, imp)

    >>> import matplotlib.pyplot as plt
    >>> plt.plot(np.arange(-50, 50), imp)
    >>> plt.plot(np.arange(-50, 50), response)
    >>> plt.margins(0.1, 0.1)
    >>> plt.xlabel('Time [samples]')
    >>> plt.ylabel('Amplitude')
    >>> plt.grid(True)
    >>> plt.show()

    """
    out = zeros(shape, dtype)

    shape = np.atleast_1d(shape)

    if idx is None:
        idx = (0,) * len(shape)
    elif idx == 'mid':
        idx = tuple(shape // 2)
    elif not hasattr(idx, "__iter__"):
        idx = (idx,) * len(shape)

    out[idx] = 1
    return out