coo.py 21.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
""" A sparse matrix in COOrdinate or 'triplet' format"""
from __future__ import division, print_function, absolute_import

__docformat__ = "restructuredtext en"

__all__ = ['coo_matrix', 'isspmatrix_coo']

from warnings import warn

import numpy as np

from scipy._lib.six import zip as izip

from ._sparsetools import coo_tocsr, coo_todense, coo_matvec
from .base import isspmatrix, SparseEfficiencyWarning, spmatrix
from .data import _data_matrix, _minmax_mixin
from .sputils import (upcast, upcast_char, to_native, isshape, getdtype,
                      get_index_dtype, downcast_intp_index, check_shape,
                      check_reshape_kwargs, matrix)

import operator


class coo_matrix(_data_matrix, _minmax_mixin):
    """
    A sparse matrix in COOrdinate format.

    Also known as the 'ijv' or 'triplet' format.

    This can be instantiated in several ways:
        coo_matrix(D)
            with a dense matrix D

        coo_matrix(S)
            with another sparse matrix S (equivalent to S.tocoo())

        coo_matrix((M, N), [dtype])
            to construct an empty matrix with shape (M, N)
            dtype is optional, defaulting to dtype='d'.

        coo_matrix((data, (i, j)), [shape=(M, N)])
            to construct from three arrays:
                1. data[:]   the entries of the matrix, in any order
                2. i[:]      the row indices of the matrix entries
                3. j[:]      the column indices of the matrix entries

            Where ``A[i[k], j[k]] = data[k]``.  When shape is not
            specified, it is inferred from the index arrays

    Attributes
    ----------
    dtype : dtype
        Data type of the matrix
    shape : 2-tuple
        Shape of the matrix
    ndim : int
        Number of dimensions (this is always 2)
    nnz
        Number of stored values, including explicit zeros
    data
        COO format data array of the matrix
    row
        COO format row index array of the matrix
    col
        COO format column index array of the matrix

    Notes
    -----

    Sparse matrices can be used in arithmetic operations: they support
    addition, subtraction, multiplication, division, and matrix power.

    Advantages of the COO format
        - facilitates fast conversion among sparse formats
        - permits duplicate entries (see example)
        - very fast conversion to and from CSR/CSC formats

    Disadvantages of the COO format
        - does not directly support:
            + arithmetic operations
            + slicing

    Intended Usage
        - COO is a fast format for constructing sparse matrices
        - Once a matrix has been constructed, convert to CSR or
          CSC format for fast arithmetic and matrix vector operations
        - By default when converting to CSR or CSC format, duplicate (i,j)
          entries will be summed together.  This facilitates efficient
          construction of finite element matrices and the like. (see example)

    Examples
    --------

    >>> # Constructing an empty matrix
    >>> from scipy.sparse import coo_matrix
    >>> coo_matrix((3, 4), dtype=np.int8).toarray()
    array([[0, 0, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 0]], dtype=int8)

    >>> # Constructing a matrix using ijv format
    >>> row  = np.array([0, 3, 1, 0])
    >>> col  = np.array([0, 3, 1, 2])
    >>> data = np.array([4, 5, 7, 9])
    >>> coo_matrix((data, (row, col)), shape=(4, 4)).toarray()
    array([[4, 0, 9, 0],
           [0, 7, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 5]])

    >>> # Constructing a matrix with duplicate indices
    >>> row  = np.array([0, 0, 1, 3, 1, 0, 0])
    >>> col  = np.array([0, 2, 1, 3, 1, 0, 0])
    >>> data = np.array([1, 1, 1, 1, 1, 1, 1])
    >>> coo = coo_matrix((data, (row, col)), shape=(4, 4))
    >>> # Duplicate indices are maintained until implicitly or explicitly summed
    >>> np.max(coo.data)
    1
    >>> coo.toarray()
    array([[3, 0, 1, 0],
           [0, 2, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 1]])

    """
    format = 'coo'

    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        _data_matrix.__init__(self)

        if isinstance(arg1, tuple):
            if isshape(arg1):
                M, N = arg1
                self._shape = check_shape((M, N))
                idx_dtype = get_index_dtype(maxval=max(M, N))
                self.row = np.array([], dtype=idx_dtype)
                self.col = np.array([], dtype=idx_dtype)
                self.data = np.array([], getdtype(dtype, default=float))
                self.has_canonical_format = True
            else:
                try:
                    obj, (row, col) = arg1
                except (TypeError, ValueError):
                    raise TypeError('invalid input format')

                if shape is None:
                    if len(row) == 0 or len(col) == 0:
                        raise ValueError('cannot infer dimensions from zero '
                                         'sized index arrays')
                    M = operator.index(np.max(row)) + 1
                    N = operator.index(np.max(col)) + 1
                    self._shape = check_shape((M, N))
                else:
                    # Use 2 steps to ensure shape has length 2.
                    M, N = shape
                    self._shape = check_shape((M, N))

                idx_dtype = get_index_dtype(maxval=max(self.shape))
                self.row = np.array(row, copy=copy, dtype=idx_dtype)
                self.col = np.array(col, copy=copy, dtype=idx_dtype)
                self.data = np.array(obj, copy=copy)
                self.has_canonical_format = False

        else:
            if isspmatrix(arg1):
                if isspmatrix_coo(arg1) and copy:
                    self.row = arg1.row.copy()
                    self.col = arg1.col.copy()
                    self.data = arg1.data.copy()
                    self._shape = check_shape(arg1.shape)
                else:
                    coo = arg1.tocoo()
                    self.row = coo.row
                    self.col = coo.col
                    self.data = coo.data
                    self._shape = check_shape(coo.shape)
                self.has_canonical_format = False
            else:
                #dense argument
                M = np.atleast_2d(np.asarray(arg1))

                if M.ndim != 2:
                    raise TypeError('expected dimension <= 2 array or matrix')

                self._shape = check_shape(M.shape)
                if shape is not None:
                    if check_shape(shape) != self._shape:
                        raise ValueError('inconsistent shapes: %s != %s' %
                                         (shape, self._shape))

                self.row, self.col = M.nonzero()
                self.data = M[self.row, self.col]
                self.has_canonical_format = True

        if dtype is not None:
            self.data = self.data.astype(dtype, copy=False)

        self._check()

    def reshape(self, *args, **kwargs):
        shape = check_shape(args, self.shape)
        order, copy = check_reshape_kwargs(kwargs)

        # Return early if reshape is not required
        if shape == self.shape:
            if copy:
                return self.copy()
            else:
                return self

        nrows, ncols = self.shape

        if order == 'C':
            # Upcast to avoid overflows: the coo_matrix constructor
            # below will downcast the results to a smaller dtype, if
            # possible.
            dtype = get_index_dtype(maxval=(ncols * max(0, nrows - 1) + max(0, ncols - 1)))

            flat_indices = np.multiply(ncols, self.row, dtype=dtype) + self.col
            new_row, new_col = divmod(flat_indices, shape[1])
        elif order == 'F':
            dtype = get_index_dtype(maxval=(nrows * max(0, ncols - 1) + max(0, nrows - 1)))

            flat_indices = np.multiply(nrows, self.col, dtype=dtype) + self.row
            new_col, new_row = divmod(flat_indices, shape[0])
        else:
            raise ValueError("'order' must be 'C' or 'F'")

        # Handle copy here rather than passing on to the constructor so that no
        # copy will be made of new_row and new_col regardless
        if copy:
            new_data = self.data.copy()
        else:
            new_data = self.data

        return coo_matrix((new_data, (new_row, new_col)),
                          shape=shape, copy=False)

    reshape.__doc__ = spmatrix.reshape.__doc__

    def getnnz(self, axis=None):
        if axis is None:
            nnz = len(self.data)
            if nnz != len(self.row) or nnz != len(self.col):
                raise ValueError('row, column, and data array must all be the '
                                 'same length')

            if self.data.ndim != 1 or self.row.ndim != 1 or \
                    self.col.ndim != 1:
                raise ValueError('row, column, and data arrays must be 1-D')

            return int(nnz)

        if axis < 0:
            axis += 2
        if axis == 0:
            return np.bincount(downcast_intp_index(self.col),
                               minlength=self.shape[1])
        elif axis == 1:
            return np.bincount(downcast_intp_index(self.row),
                               minlength=self.shape[0])
        else:
            raise ValueError('axis out of bounds')

    getnnz.__doc__ = spmatrix.getnnz.__doc__

    def _check(self):
        """ Checks data structure for consistency """

        # index arrays should have integer data types
        if self.row.dtype.kind != 'i':
            warn("row index array has non-integer dtype (%s)  "
                    % self.row.dtype.name)
        if self.col.dtype.kind != 'i':
            warn("col index array has non-integer dtype (%s) "
                    % self.col.dtype.name)

        idx_dtype = get_index_dtype(maxval=max(self.shape))
        self.row = np.asarray(self.row, dtype=idx_dtype)
        self.col = np.asarray(self.col, dtype=idx_dtype)
        self.data = to_native(self.data)

        if self.nnz > 0:
            if self.row.max() >= self.shape[0]:
                raise ValueError('row index exceeds matrix dimensions')
            if self.col.max() >= self.shape[1]:
                raise ValueError('column index exceeds matrix dimensions')
            if self.row.min() < 0:
                raise ValueError('negative row index found')
            if self.col.min() < 0:
                raise ValueError('negative column index found')

    def transpose(self, axes=None, copy=False):
        if axes is not None:
            raise ValueError(("Sparse matrices do not support "
                              "an 'axes' parameter because swapping "
                              "dimensions is the only logical permutation."))

        M, N = self.shape
        return coo_matrix((self.data, (self.col, self.row)),
                          shape=(N, M), copy=copy)

    transpose.__doc__ = spmatrix.transpose.__doc__

    def resize(self, *shape):
        shape = check_shape(shape)
        new_M, new_N = shape
        M, N = self.shape

        if new_M < M or new_N < N:
            mask = np.logical_and(self.row < new_M, self.col < new_N)
            if not mask.all():
                self.row = self.row[mask]
                self.col = self.col[mask]
                self.data = self.data[mask]

        self._shape = shape

    resize.__doc__ = spmatrix.resize.__doc__

    def toarray(self, order=None, out=None):
        """See the docstring for `spmatrix.toarray`."""
        B = self._process_toarray_args(order, out)
        fortran = int(B.flags.f_contiguous)
        if not fortran and not B.flags.c_contiguous:
            raise ValueError("Output array must be C or F contiguous")
        M,N = self.shape
        coo_todense(M, N, self.nnz, self.row, self.col, self.data,
                    B.ravel('A'), fortran)
        return B

    def tocsc(self, copy=False):
        """Convert this matrix to Compressed Sparse Column format

        Duplicate entries will be summed together.

        Examples
        --------
        >>> from numpy import array
        >>> from scipy.sparse import coo_matrix
        >>> row  = array([0, 0, 1, 3, 1, 0, 0])
        >>> col  = array([0, 2, 1, 3, 1, 0, 0])
        >>> data = array([1, 1, 1, 1, 1, 1, 1])
        >>> A = coo_matrix((data, (row, col)), shape=(4, 4)).tocsc()
        >>> A.toarray()
        array([[3, 0, 1, 0],
               [0, 2, 0, 0],
               [0, 0, 0, 0],
               [0, 0, 0, 1]])

        """
        from .csc import csc_matrix
        if self.nnz == 0:
            return csc_matrix(self.shape, dtype=self.dtype)
        else:
            M,N = self.shape
            idx_dtype = get_index_dtype((self.col, self.row),
                                        maxval=max(self.nnz, M))
            row = self.row.astype(idx_dtype, copy=False)
            col = self.col.astype(idx_dtype, copy=False)

            indptr = np.empty(N + 1, dtype=idx_dtype)
            indices = np.empty_like(row, dtype=idx_dtype)
            data = np.empty_like(self.data, dtype=upcast(self.dtype))

            coo_tocsr(N, M, self.nnz, col, row, self.data,
                      indptr, indices, data)

            x = csc_matrix((data, indices, indptr), shape=self.shape)
            if not self.has_canonical_format:
                x.sum_duplicates()
            return x

    def tocsr(self, copy=False):
        """Convert this matrix to Compressed Sparse Row format

        Duplicate entries will be summed together.

        Examples
        --------
        >>> from numpy import array
        >>> from scipy.sparse import coo_matrix
        >>> row  = array([0, 0, 1, 3, 1, 0, 0])
        >>> col  = array([0, 2, 1, 3, 1, 0, 0])
        >>> data = array([1, 1, 1, 1, 1, 1, 1])
        >>> A = coo_matrix((data, (row, col)), shape=(4, 4)).tocsr()
        >>> A.toarray()
        array([[3, 0, 1, 0],
               [0, 2, 0, 0],
               [0, 0, 0, 0],
               [0, 0, 0, 1]])

        """
        from .csr import csr_matrix
        if self.nnz == 0:
            return csr_matrix(self.shape, dtype=self.dtype)
        else:
            M,N = self.shape
            idx_dtype = get_index_dtype((self.row, self.col),
                                        maxval=max(self.nnz, N))
            row = self.row.astype(idx_dtype, copy=False)
            col = self.col.astype(idx_dtype, copy=False)

            indptr = np.empty(M + 1, dtype=idx_dtype)
            indices = np.empty_like(col, dtype=idx_dtype)
            data = np.empty_like(self.data, dtype=upcast(self.dtype))

            coo_tocsr(M, N, self.nnz, row, col, self.data,
                      indptr, indices, data)

            x = csr_matrix((data, indices, indptr), shape=self.shape)
            if not self.has_canonical_format:
                x.sum_duplicates()
            return x

    def tocoo(self, copy=False):
        if copy:
            return self.copy()
        else:
            return self

    tocoo.__doc__ = spmatrix.tocoo.__doc__

    def todia(self, copy=False):
        from .dia import dia_matrix

        self.sum_duplicates()
        ks = self.col - self.row  # the diagonal for each nonzero
        diags, diag_idx = np.unique(ks, return_inverse=True)

        if len(diags) > 100:
            # probably undesired, should todia() have a maxdiags parameter?
            warn("Constructing a DIA matrix with %d diagonals "
                 "is inefficient" % len(diags), SparseEfficiencyWarning)

        #initialize and fill in data array
        if self.data.size == 0:
            data = np.zeros((0, 0), dtype=self.dtype)
        else:
            data = np.zeros((len(diags), self.col.max()+1), dtype=self.dtype)
            data[diag_idx, self.col] = self.data

        return dia_matrix((data,diags), shape=self.shape)

    todia.__doc__ = spmatrix.todia.__doc__

    def todok(self, copy=False):
        from .dok import dok_matrix

        self.sum_duplicates()
        dok = dok_matrix((self.shape), dtype=self.dtype)
        dok._update(izip(izip(self.row,self.col),self.data))

        return dok

    todok.__doc__ = spmatrix.todok.__doc__

    def diagonal(self, k=0):
        rows, cols = self.shape
        if k <= -rows or k >= cols:
            raise ValueError("k exceeds matrix dimensions")
        diag = np.zeros(min(rows + min(k, 0), cols - max(k, 0)),
                        dtype=self.dtype)
        diag_mask = (self.row + k) == self.col

        if self.has_canonical_format:
            row = self.row[diag_mask]
            data = self.data[diag_mask]
        else:
            row, _, data = self._sum_duplicates(self.row[diag_mask],
                                                self.col[diag_mask],
                                                self.data[diag_mask])
        diag[row + min(k, 0)] = data

        return diag

    diagonal.__doc__ = _data_matrix.diagonal.__doc__

    def _setdiag(self, values, k):
        M, N = self.shape
        if values.ndim and not len(values):
            return
        idx_dtype = self.row.dtype

        # Determine which triples to keep and where to put the new ones.
        full_keep = self.col - self.row != k
        if k < 0:
            max_index = min(M+k, N)
            if values.ndim:
                max_index = min(max_index, len(values))
            keep = np.logical_or(full_keep, self.col >= max_index)
            new_row = np.arange(-k, -k + max_index, dtype=idx_dtype)
            new_col = np.arange(max_index, dtype=idx_dtype)
        else:
            max_index = min(M, N-k)
            if values.ndim:
                max_index = min(max_index, len(values))
            keep = np.logical_or(full_keep, self.row >= max_index)
            new_row = np.arange(max_index, dtype=idx_dtype)
            new_col = np.arange(k, k + max_index, dtype=idx_dtype)

        # Define the array of data consisting of the entries to be added.
        if values.ndim:
            new_data = values[:max_index]
        else:
            new_data = np.empty(max_index, dtype=self.dtype)
            new_data[:] = values

        # Update the internal structure.
        self.row = np.concatenate((self.row[keep], new_row))
        self.col = np.concatenate((self.col[keep], new_col))
        self.data = np.concatenate((self.data[keep], new_data))
        self.has_canonical_format = False

    # needed by _data_matrix
    def _with_data(self,data,copy=True):
        """Returns a matrix with the same sparsity structure as self,
        but with different data.  By default the index arrays
        (i.e. .row and .col) are copied.
        """
        if copy:
            return coo_matrix((data, (self.row.copy(), self.col.copy())),
                                   shape=self.shape, dtype=data.dtype)
        else:
            return coo_matrix((data, (self.row, self.col)),
                                   shape=self.shape, dtype=data.dtype)

    def sum_duplicates(self):
        """Eliminate duplicate matrix entries by adding them together

        This is an *in place* operation
        """
        if self.has_canonical_format:
            return
        summed = self._sum_duplicates(self.row, self.col, self.data)
        self.row, self.col, self.data = summed
        self.has_canonical_format = True

    def _sum_duplicates(self, row, col, data):
        # Assumes (data, row, col) not in canonical format.
        if len(data) == 0:
            return row, col, data
        order = np.lexsort((row, col))
        row = row[order]
        col = col[order]
        data = data[order]
        unique_mask = ((row[1:] != row[:-1]) |
                       (col[1:] != col[:-1]))
        unique_mask = np.append(True, unique_mask)
        row = row[unique_mask]
        col = col[unique_mask]
        unique_inds, = np.nonzero(unique_mask)
        data = np.add.reduceat(data, unique_inds, dtype=self.dtype)
        return row, col, data

    def eliminate_zeros(self):
        """Remove zero entries from the matrix

        This is an *in place* operation
        """
        mask = self.data != 0
        self.data = self.data[mask]
        self.row = self.row[mask]
        self.col = self.col[mask]

    #######################
    # Arithmetic handlers #
    #######################

    def _add_dense(self, other):
        if other.shape != self.shape:
            raise ValueError('Incompatible shapes.')
        dtype = upcast_char(self.dtype.char, other.dtype.char)
        result = np.array(other, dtype=dtype, copy=True)
        fortran = int(result.flags.f_contiguous)
        M, N = self.shape
        coo_todense(M, N, self.nnz, self.row, self.col, self.data,
                    result.ravel('A'), fortran)
        return matrix(result, copy=False)

    def _mul_vector(self, other):
        #output array
        result = np.zeros(self.shape[0], dtype=upcast_char(self.dtype.char,
                                                            other.dtype.char))
        coo_matvec(self.nnz, self.row, self.col, self.data, other, result)
        return result

    def _mul_multivector(self, other):
        result = np.zeros((other.shape[1], self.shape[0]),
                          dtype=upcast_char(self.dtype.char, other.dtype.char))
        for i, col in enumerate(other.T):
            coo_matvec(self.nnz, self.row, self.col, self.data, col, result[i])
        return result.T.view(type=type(other))


def isspmatrix_coo(x):
    """Is x of coo_matrix type?

    Parameters
    ----------
    x
        object to check for being a coo matrix

    Returns
    -------
    bool
        True if x is a coo matrix, False otherwise

    Examples
    --------
    >>> from scipy.sparse import coo_matrix, isspmatrix_coo
    >>> isspmatrix_coo(coo_matrix([[5]]))
    True

    >>> from scipy.sparse import coo_matrix, csr_matrix, isspmatrix_coo
    >>> isspmatrix_coo(csr_matrix([[5]]))
    False
    """
    return isinstance(x, coo_matrix)