notebook.py 13.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for using TensorBoard in notebook contexts, like Colab.

These APIs are experimental and subject to change.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import datetime
import errno
import json
import random
import shlex
import sys
import textwrap
import time

try:
    import html

    html_escape = html.escape
    del html
except ImportError:
    import cgi

    html_escape = cgi.escape
    del cgi

from tensorboard import manager


# Return values for `_get_context` (see that function's docs for
# details).
_CONTEXT_COLAB = "_CONTEXT_COLAB"
_CONTEXT_IPYTHON = "_CONTEXT_IPYTHON"
_CONTEXT_NONE = "_CONTEXT_NONE"


def _get_context():
    """Determine the most specific context that we're in.

    Returns:
      _CONTEXT_COLAB: If in Colab with an IPython notebook context.
      _CONTEXT_IPYTHON: If not in Colab, but we are in an IPython notebook
        context (e.g., from running `jupyter notebook` at the command
        line).
      _CONTEXT_NONE: Otherwise (e.g., by running a Python script at the
        command-line or using the `ipython` interactive shell).
    """
    # In Colab, the `google.colab` module is available, but the shell
    # returned by `IPython.get_ipython` does not have a `get_trait`
    # method.
    try:
        import google.colab
        import IPython
    except ImportError:
        pass
    else:
        if IPython.get_ipython() is not None:
            # We'll assume that we're in a Colab notebook context.
            return _CONTEXT_COLAB

    # In an IPython command line shell or Jupyter notebook, we can
    # directly query whether we're in a notebook context.
    try:
        import IPython
    except ImportError:
        pass
    else:
        ipython = IPython.get_ipython()
        if ipython is not None and ipython.has_trait("kernel"):
            return _CONTEXT_IPYTHON

    # Otherwise, we're not in a known notebook context.
    return _CONTEXT_NONE


def load_ipython_extension(ipython):
    """Deprecated: use `%load_ext tensorboard` instead.

    Raises:
      RuntimeError: Always.
    """
    raise RuntimeError(
        "Use '%load_ext tensorboard' instead of '%load_ext tensorboard.notebook'."
    )


def _load_ipython_extension(ipython):
    """Load the TensorBoard notebook extension.

    Intended to be called from `%load_ext tensorboard`. Do not invoke this
    directly.

    Args:
      ipython: An `IPython.InteractiveShell` instance.
    """
    _register_magics(ipython)


def _register_magics(ipython):
    """Register IPython line/cell magics.

    Args:
      ipython: An `InteractiveShell` instance.
    """
    ipython.register_magic_function(
        _start_magic, magic_kind="line", magic_name="tensorboard",
    )


def _start_magic(line):
    """Implementation of the `%tensorboard` line magic."""
    return start(line)


def start(args_string):
    """Launch and display a TensorBoard instance as if at the command line.

    Args:
      args_string: Command-line arguments to TensorBoard, to be
        interpreted by `shlex.split`: e.g., "--logdir ./logs --port 0".
        Shell metacharacters are not supported: e.g., "--logdir 2>&1" will
        point the logdir at the literal directory named "2>&1".
    """
    context = _get_context()
    try:
        import IPython
        import IPython.display
    except ImportError:
        IPython = None

    if context == _CONTEXT_NONE:
        handle = None
        print("Launching TensorBoard...")
    else:
        handle = IPython.display.display(
            IPython.display.Pretty("Launching TensorBoard..."), display_id=True,
        )

    def print_or_update(message):
        if handle is None:
            print(message)
        else:
            handle.update(IPython.display.Pretty(message))

    parsed_args = shlex.split(args_string, comments=True, posix=True)
    start_result = manager.start(parsed_args)

    if isinstance(start_result, manager.StartLaunched):
        _display(
            port=start_result.info.port,
            print_message=False,
            display_handle=handle,
        )

    elif isinstance(start_result, manager.StartReused):
        template = (
            "Reusing TensorBoard on port {port} (pid {pid}), started {delta} ago. "
            "(Use '!kill {pid}' to kill it.)"
        )
        message = template.format(
            port=start_result.info.port,
            pid=start_result.info.pid,
            delta=_time_delta_from_info(start_result.info),
        )
        print_or_update(message)
        _display(
            port=start_result.info.port,
            print_message=False,
            display_handle=None,
        )

    elif isinstance(start_result, manager.StartFailed):

        def format_stream(name, value):
            if value == "":
                return ""
            elif value is None:
                return "\n<could not read %s>" % name
            else:
                return "\nContents of %s:\n%s" % (name, value.strip())

        message = (
            "ERROR: Failed to launch TensorBoard (exited with %d).%s%s"
            % (
                start_result.exit_code,
                format_stream("stderr", start_result.stderr),
                format_stream("stdout", start_result.stdout),
            )
        )
        print_or_update(message)

    elif isinstance(start_result, manager.StartExecFailed):
        the_tensorboard_binary = (
            "%r (set by the `TENSORBOARD_BINARY` environment variable)"
            % (start_result.explicit_binary,)
            if start_result.explicit_binary is not None
            else "`tensorboard`"
        )
        if start_result.os_error.errno == errno.ENOENT:
            message = (
                "ERROR: Could not find %s. Please ensure that your PATH contains "
                "an executable `tensorboard` program, or explicitly specify the path "
                "to a TensorBoard binary by setting the `TENSORBOARD_BINARY` "
                "environment variable." % (the_tensorboard_binary,)
            )
        else:
            message = "ERROR: Failed to start %s: %s" % (
                the_tensorboard_binary,
                start_result.os_error,
            )
        print_or_update(textwrap.fill(message))

    elif isinstance(start_result, manager.StartTimedOut):
        message = (
            "ERROR: Timed out waiting for TensorBoard to start. "
            "It may still be running as pid %d." % start_result.pid
        )
        print_or_update(message)

    else:
        raise TypeError(
            "Unexpected result from `manager.start`: %r.\n"
            "This is a TensorBoard bug; please report it." % start_result
        )


def _time_delta_from_info(info):
    """Format the elapsed time for the given TensorBoardInfo.

    Args:
      info: A TensorBoardInfo value.

    Returns:
      A human-readable string describing the time since the server
      described by `info` started: e.g., "2 days, 0:48:58".
    """
    delta_seconds = int(time.time()) - info.start_time
    return str(datetime.timedelta(seconds=delta_seconds))


def display(port=None, height=None):
    """Display a TensorBoard instance already running on this machine.

    Args:
      port: The port on which the TensorBoard server is listening, as an
        `int`, or `None` to automatically select the most recently
        launched TensorBoard.
      height: The height of the frame into which to render the TensorBoard
        UI, as an `int` number of pixels, or `None` to use a default value
        (currently 800).
    """
    _display(port=port, height=height, print_message=True, display_handle=None)


def _display(port=None, height=None, print_message=False, display_handle=None):
    """Internal version of `display`.

    Args:
      port: As with `display`.
      height: As with `display`.
      print_message: True to print which TensorBoard instance was selected
        for display (if applicable), or False otherwise.
      display_handle: If not None, an IPython display handle into which to
        render TensorBoard.
    """
    if height is None:
        height = 800

    if port is None:
        infos = manager.get_all()
        if not infos:
            raise ValueError(
                "Can't display TensorBoard: no known instances running."
            )
        else:
            info = max(manager.get_all(), key=lambda x: x.start_time)
            port = info.port
    else:
        infos = [i for i in manager.get_all() if i.port == port]
        info = max(infos, key=lambda x: x.start_time) if infos else None

    if print_message:
        if info is not None:
            message = (
                "Selecting TensorBoard with {data_source} "
                "(started {delta} ago; port {port}, pid {pid})."
            ).format(
                data_source=manager.data_source_from_info(info),
                delta=_time_delta_from_info(info),
                port=info.port,
                pid=info.pid,
            )
            print(message)
        else:
            # The user explicitly provided a port, and we don't have any
            # additional information. There's nothing useful to say.
            pass

    fn = {
        _CONTEXT_COLAB: _display_colab,
        _CONTEXT_IPYTHON: _display_ipython,
        _CONTEXT_NONE: _display_cli,
    }[_get_context()]
    return fn(port=port, height=height, display_handle=display_handle)


def _display_colab(port, height, display_handle):
    """Display a TensorBoard instance in a Colab output frame.

    The Colab VM is not directly exposed to the network, so the Colab
    runtime provides a service worker tunnel to proxy requests from the
    end user's browser through to servers running on the Colab VM: the
    output frame may issue requests to https://localhost:<port> (HTTPS
    only), which will be forwarded to the specified port on the VM.

    It does not suffice to create an `iframe` and let the service worker
    redirect its traffic (`<iframe src="https://localhost:6006">`),
    because for security reasons service workers cannot intercept iframe
    traffic. Instead, we manually fetch the TensorBoard index page with an
    XHR in the output frame, and inject the raw HTML into `document.body`.

    By default, the TensorBoard web app requests resources against
    relative paths, like `./data/logdir`. Within the output frame, these
    requests must instead hit `https://localhost:<port>/data/logdir`. To
    redirect them, we change the document base URI, which transparently
    affects all requests (XHRs and resources alike).
    """
    import IPython.display

    shell = """
        (async () => {
            const url = await google.colab.kernel.proxyPort(%PORT%, {"cache": true});
            const iframe = document.createElement('iframe');
            iframe.src = url;
            iframe.setAttribute('width', '100%');
            iframe.setAttribute('height', '%HEIGHT%');
            iframe.setAttribute('frameborder', 0);
            document.body.appendChild(iframe);
        })();
    """
    replacements = [
        ("%PORT%", "%d" % port),
        ("%HEIGHT%", "%d" % height),
    ]
    for (k, v) in replacements:
        shell = shell.replace(k, v)
    script = IPython.display.Javascript(shell)

    if display_handle:
        display_handle.update(script)
    else:
        IPython.display.display(script)


def _display_ipython(port, height, display_handle):
    import IPython.display

    frame_id = "tensorboard-frame-{:08x}".format(random.getrandbits(64))
    shell = """
      <iframe id="%HTML_ID%" width="100%" height="%HEIGHT%" frameborder="0">
      </iframe>
      <script>
        (function() {
          const frame = document.getElementById(%JSON_ID%);
          const url = new URL("/", window.location);
          url.port = %PORT%;
          frame.src = url;
        })();
      </script>
  """
    replacements = [
        ("%HTML_ID%", html_escape(frame_id, quote=True)),
        ("%JSON_ID%", json.dumps(frame_id)),
        ("%PORT%", "%d" % port),
        ("%HEIGHT%", "%d" % height),
    ]
    for (k, v) in replacements:
        shell = shell.replace(k, v)
    iframe = IPython.display.HTML(shell)
    if display_handle:
        display_handle.update(iframe)
    else:
        IPython.display.display(iframe)


def _display_cli(port, height, display_handle):
    del height  # unused
    del display_handle  # unused
    message = "Please visit http://localhost:%d in a web browser." % port
    print(message)


def list():
    """Print a listing of known running TensorBoard instances.

    TensorBoard instances that were killed uncleanly (e.g., with SIGKILL
    or SIGQUIT) may appear in this list even if they are no longer
    running. Conversely, this list may be missing some entries if your
    operating system's temporary directory has been cleared since a
    still-running TensorBoard instance started.
    """
    infos = manager.get_all()
    if not infos:
        print("No known TensorBoard instances running.")
        return

    print("Known TensorBoard instances:")
    for info in infos:
        template = (
            "  - port {port}: {data_source} (started {delta} ago; pid {pid})"
        )
        print(
            template.format(
                port=info.port,
                data_source=manager.data_source_from_info(info),
                delta=_time_delta_from_info(info),
                pid=info.pid,
            )
        )