getAugmented_all.py
1.58 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import fire
import json
from pprint import pprint
import pickle
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from utils import *
# command
# python getAugmented.py --model_path='logs/April_24_21:05:15__resnet50__None/'
def eval(model_path):
print('\n[+] Parse arguments')
kwargs_path = os.path.join(model_path, 'kwargs.json')
kwargs = json.loads(open(kwargs_path).read())
args, kwargs = parse_args(kwargs)
pprint(args)
device = torch.device('cuda' if args.use_cuda else 'cpu')
cp_path = os.path.join(model_path, 'augmentation.cp')
writer = SummaryWriter(log_dir=model_path)
print('\n[+] Load transform')
# list
with open(cp_path, 'rb') as f:
aug_transform_list = pickle.load(f)
augmented_image_list = [torch.Tensor(240,0)] * len(get_dataset(args, None, 'train'))
print('\n[+] Load dataset')
for aug_idx, aug_transform in enumerate(aug_transform_list):
dataset = get_dataset(args, aug_transform, 'train')
loader = iter(get_aug_dataloader(args, dataset))
for i, (images, target) in enumerate(loader):
images = images.view(240, 240)
# concat image
augmented_image_list[i] = torch.cat([augmented_image_list[i], images], dim = 1)
print('\n[+] Write on tensorboard')
if writer:
for i, data in enumerate(augmented_image_list):
tag = 'img/' + str(i)
writer.add_image(tag, data.view(1, 240, -1), global_step=0)
writer.close()
if __name__ == '__main__':
fire.Fire(eval)