cloudpickle.py 52 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
"""
This class is defined to override standard pickle functionality

The goals of it follow:
-Serialize lambdas and nested functions to compiled byte code
-Deal with main module correctly
-Deal with other non-serializable objects

It does not include an unpickler, as standard python unpickling suffices.

This module was extracted from the `cloud` package, developed by `PiCloud, Inc.
<https://web.archive.org/web/20140626004012/http://www.picloud.com/>`_.

Copyright (c) 2012, Regents of the University of California.
Copyright (c) 2009 `PiCloud, Inc. <https://web.archive.org/web/20140626004012/http://www.picloud.com/>`_.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
    * Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of the University of California, Berkeley nor the
      names of its contributors may be used to endorse or promote
      products derived from this software without specific prior written
      permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
from __future__ import print_function

import abc
import dis
from functools import partial
import io
import itertools
import logging
import opcode
import operator
import pickle
import platform
import struct
import sys
import traceback
import types
import weakref
import uuid
import threading


try:
    from enum import Enum
except ImportError:
    Enum = None

# cloudpickle is meant for inter process communication: we expect all
# communicating processes to run the same Python version hence we favor
# communication speed over compatibility:
DEFAULT_PROTOCOL = pickle.HIGHEST_PROTOCOL

# Track the provenance of reconstructed dynamic classes to make it possible to
# recontruct instances from the matching singleton class definition when
# appropriate and preserve the usual "isinstance" semantics of Python objects.
_DYNAMIC_CLASS_TRACKER_BY_CLASS = weakref.WeakKeyDictionary()
_DYNAMIC_CLASS_TRACKER_BY_ID = weakref.WeakValueDictionary()
_DYNAMIC_CLASS_TRACKER_LOCK = threading.Lock()

PYPY = platform.python_implementation() == "PyPy"

builtin_code_type = None
if PYPY:
    # builtin-code objects only exist in pypy
    builtin_code_type = type(float.__new__.__code__)

if sys.version_info[0] < 3:  # pragma: no branch
    from pickle import Pickler
    try:
        from cStringIO import StringIO
    except ImportError:
        from StringIO import StringIO
    import __builtin__ as builtins
    string_types = (basestring,)  # noqa
    PY3 = False
    PY2 = True
else:
    from pickle import _Pickler as Pickler
    from io import BytesIO as StringIO
    string_types = (str,)
    PY3 = True
    PY2 = False
    from importlib._bootstrap import _find_spec
    import builtins

_extract_code_globals_cache = weakref.WeakKeyDictionary()


def _ensure_tracking(class_def):
    with _DYNAMIC_CLASS_TRACKER_LOCK:
        class_tracker_id = _DYNAMIC_CLASS_TRACKER_BY_CLASS.get(class_def)
        if class_tracker_id is None:
            class_tracker_id = uuid.uuid4().hex
            _DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id
            _DYNAMIC_CLASS_TRACKER_BY_ID[class_tracker_id] = class_def
    return class_tracker_id


def _lookup_class_or_track(class_tracker_id, class_def):
    if class_tracker_id is not None:
        with _DYNAMIC_CLASS_TRACKER_LOCK:
            class_def = _DYNAMIC_CLASS_TRACKER_BY_ID.setdefault(
                class_tracker_id, class_def)
            _DYNAMIC_CLASS_TRACKER_BY_CLASS[class_def] = class_tracker_id
    return class_def

if sys.version_info[:2] >= (3, 5):
    from pickle import _getattribute
elif sys.version_info[:2] >= (3, 4):
    from pickle import _getattribute as _py34_getattribute
    #  pickle._getattribute does not return the parent under Python 3.4
    def _getattribute(obj, name):
        return _py34_getattribute(obj, name), None
else:
    # pickle._getattribute is a python3 addition and enchancement of getattr,
    # that can handle dotted attribute names. In cloudpickle for python2,
    # handling dotted names is not needed, so we simply define _getattribute as
    # a wrapper around getattr.
    def _getattribute(obj, name):
        return getattr(obj, name, None), None


def _whichmodule(obj, name):
    """Find the module an object belongs to.

    This function differs from ``pickle.whichmodule`` in two ways:
    - it does not mangle the cases where obj's module is __main__ and obj was
      not found in any module.
    - Errors arising during module introspection are ignored, as those errors
      are considered unwanted side effects.
    """
    module_name = getattr(obj, '__module__', None)
    if module_name is not None:
        return module_name
    # Protect the iteration by using a copy of sys.modules against dynamic
    # modules that trigger imports of other modules upon calls to getattr or
    # other threads importing at the same time.
    for module_name, module in sys.modules.copy().items():
        # Some modules such as coverage can inject non-module objects inside
        # sys.modules
        if (
                module_name == '__main__' or
                module is None or
                not isinstance(module, types.ModuleType)
        ):
            continue
        try:
            if _getattribute(module, name)[0] is obj:
                return module_name
        except Exception:
            pass
    return None


def _is_global(obj, name=None):
    """Determine if obj can be pickled as attribute of a file-backed module"""
    if name is None:
        name = getattr(obj, '__qualname__', None)
    if name is None:
        name = getattr(obj, '__name__', None)

    module_name = _whichmodule(obj, name)

    if module_name is None:
        # In this case, obj.__module__ is None AND obj was not found in any
        # imported module. obj is thus treated as dynamic.
        return False

    if module_name == "__main__":
        return False

    module = sys.modules.get(module_name, None)
    if module is None:
        # The main reason why obj's module would not be imported is that this
        # module has been dynamically created, using for example
        # types.ModuleType. The other possibility is that module was removed
        # from sys.modules after obj was created/imported. But this case is not
        # supported, as the standard pickle does not support it either.
        return False

    # module has been added to sys.modules, but it can still be dynamic.
    if _is_dynamic(module):
        return False

    try:
        obj2, parent = _getattribute(module, name)
    except AttributeError:
        # obj was not found inside the module it points to
        return False
    return obj2 is obj


def _extract_code_globals(co):
    """
    Find all globals names read or written to by codeblock co
    """
    out_names = _extract_code_globals_cache.get(co)
    if out_names is None:
        names = co.co_names
        out_names = {names[oparg] for _, oparg in _walk_global_ops(co)}

        # Declaring a function inside another one using the "def ..."
        # syntax generates a constant code object corresonding to the one
        # of the nested function's As the nested function may itself need
        # global variables, we need to introspect its code, extract its
        # globals, (look for code object in it's co_consts attribute..) and
        # add the result to code_globals
        if co.co_consts:
            for const in co.co_consts:
                if isinstance(const, types.CodeType):
                    out_names |= _extract_code_globals(const)

        _extract_code_globals_cache[co] = out_names

    return out_names


def _find_imported_submodules(code, top_level_dependencies):
    """
    Find currently imported submodules used by a function.

    Submodules used by a function need to be detected and referenced for the
    function to work correctly at depickling time. Because submodules can be
    referenced as attribute of their parent package (``package.submodule``), we
    need a special introspection technique that does not rely on GLOBAL-related
    opcodes to find references of them in a code object.

    Example:
    ```
    import concurrent.futures
    import cloudpickle
    def func():
        x = concurrent.futures.ThreadPoolExecutor
    if __name__ == '__main__':
        cloudpickle.dumps(func)
    ```
    The globals extracted by cloudpickle in the function's state include the
    concurrent package, but not its submodule (here, concurrent.futures), which
    is the module used by func. Find_imported_submodules will detect the usage
    of concurrent.futures. Saving this module alongside with func will ensure
    that calling func once depickled does not fail due to concurrent.futures
    not being imported
    """

    subimports = []
    # check if any known dependency is an imported package
    for x in top_level_dependencies:
        if (isinstance(x, types.ModuleType) and
                hasattr(x, '__package__') and x.__package__):
            # check if the package has any currently loaded sub-imports
            prefix = x.__name__ + '.'
            # A concurrent thread could mutate sys.modules,
            # make sure we iterate over a copy to avoid exceptions
            for name in list(sys.modules):
                # Older versions of pytest will add a "None" module to
                # sys.modules.
                if name is not None and name.startswith(prefix):
                    # check whether the function can address the sub-module
                    tokens = set(name[len(prefix):].split('.'))
                    if not tokens - set(code.co_names):
                        subimports.append(sys.modules[name])
    return subimports


def cell_set(cell, value):
    """Set the value of a closure cell.

    The point of this function is to set the cell_contents attribute of a cell
    after its creation. This operation is necessary in case the cell contains a
    reference to the function the cell belongs to, as when calling the
    function's constructor
    ``f = types.FunctionType(code, globals, name, argdefs, closure)``,
    closure will not be able to contain the yet-to-be-created f.

    In Python3.7, cell_contents is writeable, so setting the contents of a cell
    can be done simply using
    >>> cell.cell_contents = value

    In earlier Python3 versions, the cell_contents attribute of a cell is read
    only, but this limitation can be worked around by leveraging the Python 3
    ``nonlocal`` keyword.

    In Python2 however, this attribute is read only, and there is no
    ``nonlocal`` keyword. For this reason, we need to come up with more
    complicated hacks to set this attribute.

    The chosen approach is to create a function with a STORE_DEREF opcode,
    which sets the content of a closure variable. Typically:

    >>> def inner(value):
    ...     lambda: cell  # the lambda makes cell a closure
    ...     cell = value  # cell is a closure, so this triggers a STORE_DEREF

    (Note that in Python2, A STORE_DEREF can never be triggered from an inner
    function. The function g for example here
    >>> def f(var):
    ...     def g():
    ...         var += 1
    ...     return g

    will not modify the closure variable ``var```inplace, but instead try to
    load a local variable var and increment it. As g does not assign the local
    variable ``var`` any initial value, calling f(1)() will fail at runtime.)

    Our objective is to set the value of a given cell ``cell``. So we need to
    somewhat reference our ``cell`` object into the ``inner`` function so that
    this object (and not the smoke cell of the lambda function) gets affected
    by the STORE_DEREF operation.

    In inner, ``cell`` is referenced as a cell variable (an enclosing variable
    that is referenced by the inner function). If we create a new function
    cell_set with the exact same code as ``inner``, but with ``cell`` marked as
    a free variable instead, the STORE_DEREF will be applied on its closure -
    ``cell``, which we can specify explicitly during construction! The new
    cell_set variable thus actually sets the contents of a specified cell!

    Note: we do not make use of the ``nonlocal`` keyword to set the contents of
    a cell in early python3 versions to limit possible syntax errors in case
    test and checker libraries decide to parse the whole file.
    """

    if sys.version_info[:2] >= (3, 7):  # pragma: no branch
        cell.cell_contents = value
    else:
        _cell_set = types.FunctionType(
            _cell_set_template_code, {}, '_cell_set', (), (cell,),)
        _cell_set(value)


def _make_cell_set_template_code():
    def _cell_set_factory(value):
        lambda: cell
        cell = value

    co = _cell_set_factory.__code__

    if PY2:  # pragma: no branch
        _cell_set_template_code = types.CodeType(
            co.co_argcount,
            co.co_nlocals,
            co.co_stacksize,
            co.co_flags,
            co.co_code,
            co.co_consts,
            co.co_names,
            co.co_varnames,
            co.co_filename,
            co.co_name,
            co.co_firstlineno,
            co.co_lnotab,
            co.co_cellvars,  # co_freevars is initialized with co_cellvars
            (),  # co_cellvars is made empty
        )
    else:
        _cell_set_template_code = types.CodeType(
            co.co_argcount,
            co.co_kwonlyargcount,   # Python 3 only argument
            co.co_nlocals,
            co.co_stacksize,
            co.co_flags,
            co.co_code,
            co.co_consts,
            co.co_names,
            co.co_varnames,
            co.co_filename,
            co.co_name,
            co.co_firstlineno,
            co.co_lnotab,
            co.co_cellvars,  # co_freevars is initialized with co_cellvars
            (),  # co_cellvars is made empty
        )
    return _cell_set_template_code


if sys.version_info[:2] < (3, 7):
    _cell_set_template_code = _make_cell_set_template_code()

# relevant opcodes
STORE_GLOBAL = opcode.opmap['STORE_GLOBAL']
DELETE_GLOBAL = opcode.opmap['DELETE_GLOBAL']
LOAD_GLOBAL = opcode.opmap['LOAD_GLOBAL']
GLOBAL_OPS = (STORE_GLOBAL, DELETE_GLOBAL, LOAD_GLOBAL)
HAVE_ARGUMENT = dis.HAVE_ARGUMENT
EXTENDED_ARG = dis.EXTENDED_ARG


_BUILTIN_TYPE_NAMES = {}
for k, v in types.__dict__.items():
    if type(v) is type:
        _BUILTIN_TYPE_NAMES[v] = k


def _builtin_type(name):
    return getattr(types, name)


if sys.version_info < (3, 4):  # pragma: no branch
    def _walk_global_ops(code):
        """
        Yield (opcode, argument number) tuples for all
        global-referencing instructions in *code*.
        """
        code = getattr(code, 'co_code', b'')
        if PY2:  # pragma: no branch
            code = map(ord, code)

        n = len(code)
        i = 0
        extended_arg = 0
        while i < n:
            op = code[i]
            i += 1
            if op >= HAVE_ARGUMENT:
                oparg = code[i] + code[i + 1] * 256 + extended_arg
                extended_arg = 0
                i += 2
                if op == EXTENDED_ARG:
                    extended_arg = oparg * 65536
                if op in GLOBAL_OPS:
                    yield op, oparg

else:
    def _walk_global_ops(code):
        """
        Yield (opcode, argument number) tuples for all
        global-referencing instructions in *code*.
        """
        for instr in dis.get_instructions(code):
            op = instr.opcode
            if op in GLOBAL_OPS:
                yield op, instr.arg


def _extract_class_dict(cls):
    """Retrieve a copy of the dict of a class without the inherited methods"""
    clsdict = dict(cls.__dict__)  # copy dict proxy to a dict
    if len(cls.__bases__) == 1:
        inherited_dict = cls.__bases__[0].__dict__
    else:
        inherited_dict = {}
        for base in reversed(cls.__bases__):
            inherited_dict.update(base.__dict__)
    to_remove = []
    for name, value in clsdict.items():
        try:
            base_value = inherited_dict[name]
            if value is base_value:
                to_remove.append(name)
        except KeyError:
            pass
    for name in to_remove:
        clsdict.pop(name)
    return clsdict


class CloudPickler(Pickler):

    dispatch = Pickler.dispatch.copy()

    def __init__(self, file, protocol=None):
        if protocol is None:
            protocol = DEFAULT_PROTOCOL
        Pickler.__init__(self, file, protocol=protocol)
        # map ids to dictionary. used to ensure that functions can share global env
        self.globals_ref = {}

    def dump(self, obj):
        self.inject_addons()
        try:
            return Pickler.dump(self, obj)
        except RuntimeError as e:
            if 'recursion' in e.args[0]:
                msg = """Could not pickle object as excessively deep recursion required."""
                raise pickle.PicklingError(msg)
            else:
                raise

    def save_memoryview(self, obj):
        self.save(obj.tobytes())

    dispatch[memoryview] = save_memoryview

    if PY2:  # pragma: no branch
        def save_buffer(self, obj):
            self.save(str(obj))

        dispatch[buffer] = save_buffer  # noqa: F821 'buffer' was removed in Python 3

    def save_module(self, obj):
        """
        Save a module as an import
        """
        if _is_dynamic(obj):
            obj.__dict__.pop('__builtins__', None)
            self.save_reduce(dynamic_subimport, (obj.__name__, vars(obj)),
                             obj=obj)
        else:
            self.save_reduce(subimport, (obj.__name__,), obj=obj)

    dispatch[types.ModuleType] = save_module

    def save_codeobject(self, obj):
        """
        Save a code object
        """
        if PY3:  # pragma: no branch
            if hasattr(obj, "co_posonlyargcount"):  # pragma: no branch
                args = (
                    obj.co_argcount, obj.co_posonlyargcount,
                    obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize,
                    obj.co_flags, obj.co_code, obj.co_consts, obj.co_names,
                    obj.co_varnames, obj.co_filename, obj.co_name,
                    obj.co_firstlineno, obj.co_lnotab, obj.co_freevars,
                    obj.co_cellvars
                )
            else:
                args = (
                    obj.co_argcount, obj.co_kwonlyargcount, obj.co_nlocals,
                    obj.co_stacksize, obj.co_flags, obj.co_code, obj.co_consts,
                    obj.co_names, obj.co_varnames, obj.co_filename,
                    obj.co_name, obj.co_firstlineno, obj.co_lnotab,
                    obj.co_freevars, obj.co_cellvars
                )
        else:
            args = (
                obj.co_argcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code,
                obj.co_consts, obj.co_names, obj.co_varnames, obj.co_filename, obj.co_name,
                obj.co_firstlineno, obj.co_lnotab, obj.co_freevars, obj.co_cellvars
            )
        self.save_reduce(types.CodeType, args, obj=obj)

    dispatch[types.CodeType] = save_codeobject

    def save_function(self, obj, name=None):
        """ Registered with the dispatch to handle all function types.

        Determines what kind of function obj is (e.g. lambda, defined at
        interactive prompt, etc) and handles the pickling appropriately.
        """
        if _is_global(obj, name=name):
            return Pickler.save_global(self, obj, name=name)
        elif PYPY and isinstance(obj.__code__, builtin_code_type):
            return self.save_pypy_builtin_func(obj)
        else:
            return self.save_function_tuple(obj)

    dispatch[types.FunctionType] = save_function

    def save_pypy_builtin_func(self, obj):
        """Save pypy equivalent of builtin functions.

        PyPy does not have the concept of builtin-functions. Instead,
        builtin-functions are simple function instances, but with a
        builtin-code attribute.
        Most of the time, builtin functions should be pickled by attribute. But
        PyPy has flaky support for __qualname__, so some builtin functions such
        as float.__new__ will be classified as dynamic. For this reason only,
        we created this special routine. Because builtin-functions are not
        expected to have closure or globals, there is no additional hack
        (compared the one already implemented in pickle) to protect ourselves
        from reference cycles. A simple (reconstructor, newargs, obj.__dict__)
        tuple is save_reduced.

        Note also that PyPy improved their support for __qualname__ in v3.6, so
        this routing should be removed when cloudpickle supports only PyPy 3.6
        and later.
        """
        rv = (types.FunctionType, (obj.__code__, {}, obj.__name__,
                                   obj.__defaults__, obj.__closure__),
              obj.__dict__)
        self.save_reduce(*rv, obj=obj)

    def _save_dynamic_enum(self, obj, clsdict):
        """Special handling for dynamic Enum subclasses

        Use a dedicated Enum constructor (inspired by EnumMeta.__call__) as the
        EnumMeta metaclass has complex initialization that makes the Enum
        subclasses hold references to their own instances.
        """
        members = dict((e.name, e.value) for e in obj)

        # Python 2.7 with enum34 can have no qualname:
        qualname = getattr(obj, "__qualname__", None)

        self.save_reduce(_make_skeleton_enum,
                         (obj.__bases__, obj.__name__, qualname, members,
                          obj.__module__, _ensure_tracking(obj), None),
                         obj=obj)

        # Cleanup the clsdict that will be passed to _rehydrate_skeleton_class:
        # Those attributes are already handled by the metaclass.
        for attrname in ["_generate_next_value_", "_member_names_",
                         "_member_map_", "_member_type_",
                         "_value2member_map_"]:
            clsdict.pop(attrname, None)
        for member in members:
            clsdict.pop(member)

    def save_dynamic_class(self, obj):
        """Save a class that can't be stored as module global.

        This method is used to serialize classes that are defined inside
        functions, or that otherwise can't be serialized as attribute lookups
        from global modules.
        """
        clsdict = _extract_class_dict(obj)
        clsdict.pop('__weakref__', None)

        if issubclass(type(obj), abc.ABCMeta):
            # If obj is an instance of an ABCMeta subclass, dont pickle the
            # cache/negative caches populated during isinstance/issubclass
            # checks, but pickle the list of registered subclasses of obj.
            clsdict.pop('_abc_cache', None)
            clsdict.pop('_abc_negative_cache', None)
            clsdict.pop('_abc_negative_cache_version', None)
            registry = clsdict.pop('_abc_registry', None)
            if registry is None:
                # in Python3.7+, the abc caches and registered subclasses of a
                # class are bundled into the single _abc_impl attribute
                clsdict.pop('_abc_impl', None)
                (registry, _, _, _) = abc._get_dump(obj)

                clsdict["_abc_impl"] = [subclass_weakref()
                                        for subclass_weakref in registry]
            else:
                # In the above if clause, registry is a set of weakrefs -- in
                # this case, registry is a WeakSet
                clsdict["_abc_impl"] = [type_ for type_ in registry]

        # On PyPy, __doc__ is a readonly attribute, so we need to include it in
        # the initial skeleton class.  This is safe because we know that the
        # doc can't participate in a cycle with the original class.
        type_kwargs = {'__doc__': clsdict.pop('__doc__', None)}

        if "__slots__" in clsdict:
            type_kwargs['__slots__'] = obj.__slots__
            # pickle string length optimization: member descriptors of obj are
            # created automatically from obj's __slots__ attribute, no need to
            # save them in obj's state
            if isinstance(obj.__slots__, string_types):
                clsdict.pop(obj.__slots__)
            else:
                for k in obj.__slots__:
                    clsdict.pop(k, None)

        # If type overrides __dict__ as a property, include it in the type
        # kwargs. In Python 2, we can't set this attribute after construction.
        __dict__ = clsdict.pop('__dict__', None)
        if isinstance(__dict__, property):
            type_kwargs['__dict__'] = __dict__

        save = self.save
        write = self.write

        # We write pickle instructions explicitly here to handle the
        # possibility that the type object participates in a cycle with its own
        # __dict__. We first write an empty "skeleton" version of the class and
        # memoize it before writing the class' __dict__ itself. We then write
        # instructions to "rehydrate" the skeleton class by restoring the
        # attributes from the __dict__.
        #
        # A type can appear in a cycle with its __dict__ if an instance of the
        # type appears in the type's __dict__ (which happens for the stdlib
        # Enum class), or if the type defines methods that close over the name
        # of the type, (which is common for Python 2-style super() calls).

        # Push the rehydration function.
        save(_rehydrate_skeleton_class)

        # Mark the start of the args tuple for the rehydration function.
        write(pickle.MARK)

        # Create and memoize an skeleton class with obj's name and bases.
        if Enum is not None and issubclass(obj, Enum):
            # Special handling of Enum subclasses
            self._save_dynamic_enum(obj, clsdict)
        else:
            # "Regular" class definition:
            tp = type(obj)
            self.save_reduce(_make_skeleton_class,
                             (tp, obj.__name__, obj.__bases__, type_kwargs,
                              _ensure_tracking(obj), None),
                             obj=obj)

        # Now save the rest of obj's __dict__. Any references to obj
        # encountered while saving will point to the skeleton class.
        save(clsdict)

        # Write a tuple of (skeleton_class, clsdict).
        write(pickle.TUPLE)

        # Call _rehydrate_skeleton_class(skeleton_class, clsdict)
        write(pickle.REDUCE)

    def save_function_tuple(self, func):
        """  Pickles an actual func object.

        A func comprises: code, globals, defaults, closure, and dict.  We
        extract and save these, injecting reducing functions at certain points
        to recreate the func object.  Keep in mind that some of these pieces
        can contain a ref to the func itself.  Thus, a naive save on these
        pieces could trigger an infinite loop of save's.  To get around that,
        we first create a skeleton func object using just the code (this is
        safe, since this won't contain a ref to the func), and memoize it as
        soon as it's created.  The other stuff can then be filled in later.
        """
        if is_tornado_coroutine(func):
            self.save_reduce(_rebuild_tornado_coroutine, (func.__wrapped__,),
                             obj=func)
            return

        save = self.save
        write = self.write

        code, f_globals, defaults, closure_values, dct, base_globals = self.extract_func_data(func)

        save(_fill_function)  # skeleton function updater
        write(pickle.MARK)    # beginning of tuple that _fill_function expects

        # Extract currently-imported submodules used by func. Storing these
        # modules in a smoke _cloudpickle_subimports attribute of the object's
        # state will trigger the side effect of importing these modules at
        # unpickling time (which is necessary for func to work correctly once
        # depickled)
        submodules = _find_imported_submodules(
            code,
            itertools.chain(f_globals.values(), closure_values or ()),
        )

        # create a skeleton function object and memoize it
        save(_make_skel_func)
        save((
            code,
            len(closure_values) if closure_values is not None else -1,
            base_globals,
        ))
        write(pickle.REDUCE)
        self.memoize(func)

        # save the rest of the func data needed by _fill_function
        state = {
            'globals': f_globals,
            'defaults': defaults,
            'dict': dct,
            'closure_values': closure_values,
            'module': func.__module__,
            'name': func.__name__,
            'doc': func.__doc__,
            '_cloudpickle_submodules': submodules
        }
        if hasattr(func, '__annotations__') and sys.version_info >= (3, 7):
            # Although annotations were added in Python3.4, It is not possible
            # to properly pickle them until Python3.7. (See #193)
            state['annotations'] = func.__annotations__
        if hasattr(func, '__qualname__'):
            state['qualname'] = func.__qualname__
        if hasattr(func, '__kwdefaults__'):
            state['kwdefaults'] = func.__kwdefaults__
        save(state)
        write(pickle.TUPLE)
        write(pickle.REDUCE)  # applies _fill_function on the tuple

    def extract_func_data(self, func):
        """
        Turn the function into a tuple of data necessary to recreate it:
            code, globals, defaults, closure_values, dict
        """
        code = func.__code__

        # extract all global ref's
        func_global_refs = _extract_code_globals(code)

        # process all variables referenced by global environment
        f_globals = {}
        for var in func_global_refs:
            if var in func.__globals__:
                f_globals[var] = func.__globals__[var]

        # defaults requires no processing
        defaults = func.__defaults__

        # process closure
        closure = (
            list(map(_get_cell_contents, func.__closure__))
            if func.__closure__ is not None
            else None
        )

        # save the dict
        dct = func.__dict__

        # base_globals represents the future global namespace of func at
        # unpickling time. Looking it up and storing it in globals_ref allow
        # functions sharing the same globals at pickling time to also
        # share them once unpickled, at one condition: since globals_ref is
        # an attribute of a Cloudpickler instance, and that a new CloudPickler is
        # created each time pickle.dump or pickle.dumps is called, functions
        # also need to be saved within the same invokation of
        # cloudpickle.dump/cloudpickle.dumps (for example: cloudpickle.dumps([f1, f2])). There
        # is no such limitation when using Cloudpickler.dump, as long as the
        # multiple invokations are bound to the same Cloudpickler.
        base_globals = self.globals_ref.setdefault(id(func.__globals__), {})

        if base_globals == {}:
            # Add module attributes used to resolve relative imports
            # instructions inside func.
            for k in ["__package__", "__name__", "__path__", "__file__"]:
                # Some built-in functions/methods such as object.__new__  have
                # their __globals__ set to None in PyPy
                if func.__globals__ is not None and k in func.__globals__:
                    base_globals[k] = func.__globals__[k]

        return (code, f_globals, defaults, closure, dct, base_globals)

    if not PY3:  # pragma: no branch
        # Python3 comes with native reducers that allow builtin functions and
        # methods pickling as module/class attributes.  The following method
        # extends this for python2.
        # Please note that currently, neither pickle nor cloudpickle support
        # dynamically created builtin functions/method pickling.
        def save_builtin_function_or_method(self, obj):
            is_bound = getattr(obj, '__self__', None) is not None
            if is_bound:
                # obj is a bound builtin method.
                rv = (getattr, (obj.__self__, obj.__name__))
                return self.save_reduce(obj=obj, *rv)

            is_unbound = hasattr(obj, '__objclass__')
            if is_unbound:
                # obj is an unbound builtin method (accessed from its class)
                rv = (getattr, (obj.__objclass__, obj.__name__))
                return self.save_reduce(obj=obj, *rv)

            # Otherwise, obj is not a method, but a function. Fallback to
            # default pickling by attribute.
            return Pickler.save_global(self, obj)

        dispatch[types.BuiltinFunctionType] = save_builtin_function_or_method

        # A comprehensive summary of the various kinds of builtin methods can
        # be found in PEP 579: https://www.python.org/dev/peps/pep-0579/
        classmethod_descriptor_type = type(float.__dict__['fromhex'])
        wrapper_descriptor_type = type(float.__repr__)
        method_wrapper_type = type(1.5.__repr__)

        dispatch[classmethod_descriptor_type] = save_builtin_function_or_method
        dispatch[wrapper_descriptor_type] = save_builtin_function_or_method
        dispatch[method_wrapper_type] = save_builtin_function_or_method

    if sys.version_info[:2] < (3, 4):
        method_descriptor = type(str.upper)
        dispatch[method_descriptor] = save_builtin_function_or_method

    def save_getset_descriptor(self, obj):
        return self.save_reduce(getattr, (obj.__objclass__, obj.__name__))

    dispatch[types.GetSetDescriptorType] = save_getset_descriptor

    def save_global(self, obj, name=None, pack=struct.pack):
        """
        Save a "global".

        The name of this method is somewhat misleading: all types get
        dispatched here.
        """
        if obj is type(None):
            return self.save_reduce(type, (None,), obj=obj)
        elif obj is type(Ellipsis):
            return self.save_reduce(type, (Ellipsis,), obj=obj)
        elif obj is type(NotImplemented):
            return self.save_reduce(type, (NotImplemented,), obj=obj)
        elif obj in _BUILTIN_TYPE_NAMES:
            return self.save_reduce(
                _builtin_type, (_BUILTIN_TYPE_NAMES[obj],), obj=obj)
        elif name is not None:
            Pickler.save_global(self, obj, name=name)
        elif not _is_global(obj, name=name):
            self.save_dynamic_class(obj)
        else:
            Pickler.save_global(self, obj, name=name)

    dispatch[type] = save_global
    if PY2:
        dispatch[types.ClassType] = save_global

    def save_instancemethod(self, obj):
        # Memoization rarely is ever useful due to python bounding
        if obj.__self__ is None:
            self.save_reduce(getattr, (obj.im_class, obj.__name__))
        else:
            if PY3:  # pragma: no branch
                self.save_reduce(types.MethodType, (obj.__func__, obj.__self__), obj=obj)
            else:
                self.save_reduce(
                    types.MethodType,
                    (obj.__func__, obj.__self__, type(obj.__self__)), obj=obj)

    dispatch[types.MethodType] = save_instancemethod

    def save_inst(self, obj):
        """Inner logic to save instance. Based off pickle.save_inst"""
        cls = obj.__class__

        # Try the dispatch table (pickle module doesn't do it)
        f = self.dispatch.get(cls)
        if f:
            f(self, obj)  # Call unbound method with explicit self
            return

        memo = self.memo
        write = self.write
        save = self.save

        if hasattr(obj, '__getinitargs__'):
            args = obj.__getinitargs__()
            len(args)  # XXX Assert it's a sequence
            pickle._keep_alive(args, memo)
        else:
            args = ()

        write(pickle.MARK)

        if self.bin:
            save(cls)
            for arg in args:
                save(arg)
            write(pickle.OBJ)
        else:
            for arg in args:
                save(arg)
            write(pickle.INST + cls.__module__ + '\n' + cls.__name__ + '\n')

        self.memoize(obj)

        try:
            getstate = obj.__getstate__
        except AttributeError:
            stuff = obj.__dict__
        else:
            stuff = getstate()
            pickle._keep_alive(stuff, memo)
        save(stuff)
        write(pickle.BUILD)

    if PY2:  # pragma: no branch
        dispatch[types.InstanceType] = save_inst

    def save_property(self, obj):
        # properties not correctly saved in python
        self.save_reduce(property, (obj.fget, obj.fset, obj.fdel, obj.__doc__), obj=obj)

    dispatch[property] = save_property

    def save_classmethod(self, obj):
        orig_func = obj.__func__
        self.save_reduce(type(obj), (orig_func,), obj=obj)

    dispatch[classmethod] = save_classmethod
    dispatch[staticmethod] = save_classmethod

    def save_itemgetter(self, obj):
        """itemgetter serializer (needed for namedtuple support)"""
        class Dummy:
            def __getitem__(self, item):
                return item
        items = obj(Dummy())
        if not isinstance(items, tuple):
            items = (items,)
        return self.save_reduce(operator.itemgetter, items)

    if type(operator.itemgetter) is type:
        dispatch[operator.itemgetter] = save_itemgetter

    def save_attrgetter(self, obj):
        """attrgetter serializer"""
        class Dummy(object):
            def __init__(self, attrs, index=None):
                self.attrs = attrs
                self.index = index
            def __getattribute__(self, item):
                attrs = object.__getattribute__(self, "attrs")
                index = object.__getattribute__(self, "index")
                if index is None:
                    index = len(attrs)
                    attrs.append(item)
                else:
                    attrs[index] = ".".join([attrs[index], item])
                return type(self)(attrs, index)
        attrs = []
        obj(Dummy(attrs))
        return self.save_reduce(operator.attrgetter, tuple(attrs))

    if type(operator.attrgetter) is type:
        dispatch[operator.attrgetter] = save_attrgetter

    def save_file(self, obj):
        """Save a file"""
        try:
            import StringIO as pystringIO  # we can't use cStringIO as it lacks the name attribute
        except ImportError:
            import io as pystringIO

        if not hasattr(obj, 'name') or not hasattr(obj, 'mode'):
            raise pickle.PicklingError("Cannot pickle files that do not map to an actual file")
        if obj is sys.stdout:
            return self.save_reduce(getattr, (sys, 'stdout'), obj=obj)
        if obj is sys.stderr:
            return self.save_reduce(getattr, (sys, 'stderr'), obj=obj)
        if obj is sys.stdin:
            raise pickle.PicklingError("Cannot pickle standard input")
        if obj.closed:
            raise pickle.PicklingError("Cannot pickle closed files")
        if hasattr(obj, 'isatty') and obj.isatty():
            raise pickle.PicklingError("Cannot pickle files that map to tty objects")
        if 'r' not in obj.mode and '+' not in obj.mode:
            raise pickle.PicklingError("Cannot pickle files that are not opened for reading: %s" % obj.mode)

        name = obj.name

        retval = pystringIO.StringIO()

        try:
            # Read the whole file
            curloc = obj.tell()
            obj.seek(0)
            contents = obj.read()
            obj.seek(curloc)
        except IOError:
            raise pickle.PicklingError("Cannot pickle file %s as it cannot be read" % name)
        retval.write(contents)
        retval.seek(curloc)

        retval.name = name
        self.save(retval)
        self.memoize(obj)

    def save_ellipsis(self, obj):
        self.save_reduce(_gen_ellipsis, ())

    def save_not_implemented(self, obj):
        self.save_reduce(_gen_not_implemented, ())

    try:               # Python 2
        dispatch[file] = save_file
    except NameError:  # Python 3  # pragma: no branch
        dispatch[io.TextIOWrapper] = save_file

    dispatch[type(Ellipsis)] = save_ellipsis
    dispatch[type(NotImplemented)] = save_not_implemented

    def save_weakset(self, obj):
        self.save_reduce(weakref.WeakSet, (list(obj),))

    dispatch[weakref.WeakSet] = save_weakset

    def save_logger(self, obj):
        self.save_reduce(logging.getLogger, (obj.name,), obj=obj)

    dispatch[logging.Logger] = save_logger

    def save_root_logger(self, obj):
        self.save_reduce(logging.getLogger, (), obj=obj)

    dispatch[logging.RootLogger] = save_root_logger

    if hasattr(types, "MappingProxyType"):  # pragma: no branch
        def save_mappingproxy(self, obj):
            self.save_reduce(types.MappingProxyType, (dict(obj),), obj=obj)

        dispatch[types.MappingProxyType] = save_mappingproxy

    """Special functions for Add-on libraries"""
    def inject_addons(self):
        """Plug in system. Register additional pickling functions if modules already loaded"""
        pass


# Tornado support

def is_tornado_coroutine(func):
    """
    Return whether *func* is a Tornado coroutine function.
    Running coroutines are not supported.
    """
    if 'tornado.gen' not in sys.modules:
        return False
    gen = sys.modules['tornado.gen']
    if not hasattr(gen, "is_coroutine_function"):
        # Tornado version is too old
        return False
    return gen.is_coroutine_function(func)


def _rebuild_tornado_coroutine(func):
    from tornado import gen
    return gen.coroutine(func)


# Shorthands for legacy support

def dump(obj, file, protocol=None):
    """Serialize obj as bytes streamed into file

    protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to
    pickle.HIGHEST_PROTOCOL. This setting favors maximum communication speed
    between processes running the same Python version.

    Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure
    compatibility with older versions of Python.
    """
    CloudPickler(file, protocol=protocol).dump(obj)


def dumps(obj, protocol=None):
    """Serialize obj as a string of bytes allocated in memory

    protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to
    pickle.HIGHEST_PROTOCOL. This setting favors maximum communication speed
    between processes running the same Python version.

    Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure
    compatibility with older versions of Python.
    """
    file = StringIO()
    try:
        cp = CloudPickler(file, protocol=protocol)
        cp.dump(obj)
        return file.getvalue()
    finally:
        file.close()


# including pickles unloading functions in this namespace
load = pickle.load
loads = pickle.loads


# hack for __import__ not working as desired
def subimport(name):
    __import__(name)
    return sys.modules[name]


def dynamic_subimport(name, vars):
    mod = types.ModuleType(name)
    mod.__dict__.update(vars)
    mod.__dict__['__builtins__'] = builtins.__dict__
    return mod


def _gen_ellipsis():
    return Ellipsis


def _gen_not_implemented():
    return NotImplemented


def _get_cell_contents(cell):
    try:
        return cell.cell_contents
    except ValueError:
        # sentinel used by ``_fill_function`` which will leave the cell empty
        return _empty_cell_value


def instance(cls):
    """Create a new instance of a class.

    Parameters
    ----------
    cls : type
        The class to create an instance of.

    Returns
    -------
    instance : cls
        A new instance of ``cls``.
    """
    return cls()


@instance
class _empty_cell_value(object):
    """sentinel for empty closures
    """
    @classmethod
    def __reduce__(cls):
        return cls.__name__


def _fill_function(*args):
    """Fills in the rest of function data into the skeleton function object

    The skeleton itself is create by _make_skel_func().
    """
    if len(args) == 2:
        func = args[0]
        state = args[1]
    elif len(args) == 5:
        # Backwards compat for cloudpickle v0.4.0, after which the `module`
        # argument was introduced
        func = args[0]
        keys = ['globals', 'defaults', 'dict', 'closure_values']
        state = dict(zip(keys, args[1:]))
    elif len(args) == 6:
        # Backwards compat for cloudpickle v0.4.1, after which the function
        # state was passed as a dict to the _fill_function it-self.
        func = args[0]
        keys = ['globals', 'defaults', 'dict', 'module', 'closure_values']
        state = dict(zip(keys, args[1:]))
    else:
        raise ValueError('Unexpected _fill_value arguments: %r' % (args,))

    # - At pickling time, any dynamic global variable used by func is
    #   serialized by value (in state['globals']).
    # - At unpickling time, func's __globals__ attribute is initialized by
    #   first retrieving an empty isolated namespace that will be shared
    #   with other functions pickled from the same original module
    #   by the same CloudPickler instance and then updated with the
    #   content of state['globals'] to populate the shared isolated
    #   namespace with all the global variables that are specifically
    #   referenced for this function.
    func.__globals__.update(state['globals'])

    func.__defaults__ = state['defaults']
    func.__dict__ = state['dict']
    if 'annotations' in state:
        func.__annotations__ = state['annotations']
    if 'doc' in state:
        func.__doc__  = state['doc']
    if 'name' in state:
        func.__name__ = state['name']
    if 'module' in state:
        func.__module__ = state['module']
    if 'qualname' in state:
        func.__qualname__ = state['qualname']
    if 'kwdefaults' in state:
        func.__kwdefaults__ = state['kwdefaults']
    # _cloudpickle_subimports is a set of submodules that must be loaded for
    # the pickled function to work correctly at unpickling time. Now that these
    # submodules are depickled (hence imported), they can be removed from the
    # object's state (the object state only served as a reference holder to
    # these submodules)
    if '_cloudpickle_submodules' in state:
        state.pop('_cloudpickle_submodules')

    cells = func.__closure__
    if cells is not None:
        for cell, value in zip(cells, state['closure_values']):
            if value is not _empty_cell_value:
                cell_set(cell, value)

    return func


def _make_empty_cell():
    if False:
        # trick the compiler into creating an empty cell in our lambda
        cell = None
        raise AssertionError('this route should not be executed')

    return (lambda: cell).__closure__[0]


def _make_skel_func(code, cell_count, base_globals=None):
    """ Creates a skeleton function object that contains just the provided
        code and the correct number of cells in func_closure.  All other
        func attributes (e.g. func_globals) are empty.
    """
    # This is backward-compatibility code: for cloudpickle versions between
    # 0.5.4 and 0.7, base_globals could be a string or None. base_globals
    # should now always be a dictionary.
    if base_globals is None or isinstance(base_globals, str):
        base_globals = {}

    base_globals['__builtins__'] = __builtins__

    closure = (
        tuple(_make_empty_cell() for _ in range(cell_count))
        if cell_count >= 0 else
        None
    )
    return types.FunctionType(code, base_globals, None, None, closure)


def _make_skeleton_class(type_constructor, name, bases, type_kwargs,
                         class_tracker_id, extra):
    """Build dynamic class with an empty __dict__ to be filled once memoized

    If class_tracker_id is not None, try to lookup an existing class definition
    matching that id. If none is found, track a newly reconstructed class
    definition under that id so that other instances stemming from the same
    class id will also reuse this class definition.

    The "extra" variable is meant to be a dict (or None) that can be used for
    forward compatibility shall the need arise.
    """
    skeleton_class = type_constructor(name, bases, type_kwargs)
    return _lookup_class_or_track(class_tracker_id, skeleton_class)


def _rehydrate_skeleton_class(skeleton_class, class_dict):
    """Put attributes from `class_dict` back on `skeleton_class`.

    See CloudPickler.save_dynamic_class for more info.
    """
    registry = None
    for attrname, attr in class_dict.items():
        if attrname == "_abc_impl":
            registry = attr
        else:
            setattr(skeleton_class, attrname, attr)
    if registry is not None:
        for subclass in registry:
            skeleton_class.register(subclass)

    return skeleton_class


def _make_skeleton_enum(bases, name, qualname, members, module,
                        class_tracker_id, extra):
    """Build dynamic enum with an empty __dict__ to be filled once memoized

    The creation of the enum class is inspired by the code of
    EnumMeta._create_.

    If class_tracker_id is not None, try to lookup an existing enum definition
    matching that id. If none is found, track a newly reconstructed enum
    definition under that id so that other instances stemming from the same
    class id will also reuse this enum definition.

    The "extra" variable is meant to be a dict (or None) that can be used for
    forward compatibility shall the need arise.
    """
    # enums always inherit from their base Enum class at the last position in
    # the list of base classes:
    enum_base = bases[-1]
    metacls = enum_base.__class__
    classdict = metacls.__prepare__(name, bases)

    for member_name, member_value in members.items():
        classdict[member_name] = member_value
    enum_class = metacls.__new__(metacls, name, bases, classdict)
    enum_class.__module__ = module

    # Python 2.7 compat
    if qualname is not None:
        enum_class.__qualname__ = qualname

    return _lookup_class_or_track(class_tracker_id, enum_class)


def _is_dynamic(module):
    """
    Return True if the module is special module that cannot be imported by its
    name.
    """
    # Quick check: module that have __file__ attribute are not dynamic modules.
    if hasattr(module, '__file__'):
        return False

    if hasattr(module, '__spec__'):
        if module.__spec__ is not None:
            return False

        # In PyPy, Some built-in modules such as _codecs can have their
        # __spec__ attribute set to None despite being imported.  For such
        # modules, the ``_find_spec`` utility of the standard library is used.
        parent_name = module.__name__.rpartition('.')[0]
        if parent_name:  # pragma: no cover
            # This code handles the case where an imported package (and not
            # module) remains with __spec__ set to None. It is however untested
            # as no package in the PyPy stdlib has __spec__ set to None after
            # it is imported.
            try:
                parent = sys.modules[parent_name]
            except KeyError:
                msg = "parent {!r} not in sys.modules"
                raise ImportError(msg.format(parent_name))
            else:
                pkgpath = parent.__path__
        else:
            pkgpath = None
        return _find_spec(module.__name__, pkgpath, module) is None

    else:
        # Backward compat for Python 2
        import imp
        try:
            path = None
            for part in module.__name__.split('.'):
                if path is not None:
                    path = [path]
                f, path, description = imp.find_module(part, path)
                if f is not None:
                    f.close()
        except ImportError:
            return True
        return False