linalg.py 84.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
"""Lite version of scipy.linalg.

Notes
-----
This module is a lite version of the linalg.py module in SciPy which
contains high-level Python interface to the LAPACK library.  The lite
version only accesses the following LAPACK functions: dgesv, zgesv,
dgeev, zgeev, dgesdd, zgesdd, dgelsd, zgelsd, dsyevd, zheevd, dgetrf,
zgetrf, dpotrf, zpotrf, dgeqrf, zgeqrf, zungqr, dorgqr.
"""
from __future__ import division, absolute_import, print_function


__all__ = ['matrix_power', 'solve', 'tensorsolve', 'tensorinv', 'inv',
           'cholesky', 'eigvals', 'eigvalsh', 'pinv', 'slogdet', 'det',
           'svd', 'eig', 'eigh', 'lstsq', 'norm', 'qr', 'cond', 'matrix_rank',
           'LinAlgError', 'multi_dot']

import functools
import operator
import warnings

from numpy.core import (
    array, asarray, zeros, empty, empty_like, intc, single, double,
    csingle, cdouble, inexact, complexfloating, newaxis, all, Inf, dot,
    add, multiply, sqrt, fastCopyAndTranspose, sum, isfinite,
    finfo, errstate, geterrobj, moveaxis, amin, amax, product, abs,
    atleast_2d, intp, asanyarray, object_, matmul,
    swapaxes, divide, count_nonzero, isnan, sign
)
from numpy.core.multiarray import normalize_axis_index
from numpy.core.overrides import set_module
from numpy.core import overrides
from numpy.lib.twodim_base import triu, eye
from numpy.linalg import lapack_lite, _umath_linalg


array_function_dispatch = functools.partial(
    overrides.array_function_dispatch, module='numpy.linalg')


# For Python2/3 compatibility
_N = b'N'
_V = b'V'
_A = b'A'
_S = b'S'
_L = b'L'

fortran_int = intc


@set_module('numpy.linalg')
class LinAlgError(Exception):
    """
    Generic Python-exception-derived object raised by linalg functions.

    General purpose exception class, derived from Python's exception.Exception
    class, programmatically raised in linalg functions when a Linear
    Algebra-related condition would prevent further correct execution of the
    function.

    Parameters
    ----------
    None

    Examples
    --------
    >>> from numpy import linalg as LA
    >>> LA.inv(np.zeros((2,2)))
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "...linalg.py", line 350,
        in inv return wrap(solve(a, identity(a.shape[0], dtype=a.dtype)))
      File "...linalg.py", line 249,
        in solve
        raise LinAlgError('Singular matrix')
    numpy.linalg.LinAlgError: Singular matrix

    """


def _determine_error_states():
    errobj = geterrobj()
    bufsize = errobj[0]

    with errstate(invalid='call', over='ignore',
                  divide='ignore', under='ignore'):
        invalid_call_errmask = geterrobj()[1]

    return [bufsize, invalid_call_errmask, None]

# Dealing with errors in _umath_linalg
_linalg_error_extobj = _determine_error_states()
del _determine_error_states

def _raise_linalgerror_singular(err, flag):
    raise LinAlgError("Singular matrix")

def _raise_linalgerror_nonposdef(err, flag):
    raise LinAlgError("Matrix is not positive definite")

def _raise_linalgerror_eigenvalues_nonconvergence(err, flag):
    raise LinAlgError("Eigenvalues did not converge")

def _raise_linalgerror_svd_nonconvergence(err, flag):
    raise LinAlgError("SVD did not converge")

def _raise_linalgerror_lstsq(err, flag):
    raise LinAlgError("SVD did not converge in Linear Least Squares")

def get_linalg_error_extobj(callback):
    extobj = list(_linalg_error_extobj)  # make a copy
    extobj[2] = callback
    return extobj

def _makearray(a):
    new = asarray(a)
    wrap = getattr(a, "__array_prepare__", new.__array_wrap__)
    return new, wrap

def isComplexType(t):
    return issubclass(t, complexfloating)

_real_types_map = {single : single,
                   double : double,
                   csingle : single,
                   cdouble : double}

_complex_types_map = {single : csingle,
                      double : cdouble,
                      csingle : csingle,
                      cdouble : cdouble}

def _realType(t, default=double):
    return _real_types_map.get(t, default)

def _complexType(t, default=cdouble):
    return _complex_types_map.get(t, default)

def _linalgRealType(t):
    """Cast the type t to either double or cdouble."""
    return double

def _commonType(*arrays):
    # in lite version, use higher precision (always double or cdouble)
    result_type = single
    is_complex = False
    for a in arrays:
        if issubclass(a.dtype.type, inexact):
            if isComplexType(a.dtype.type):
                is_complex = True
            rt = _realType(a.dtype.type, default=None)
            if rt is None:
                # unsupported inexact scalar
                raise TypeError("array type %s is unsupported in linalg" %
                        (a.dtype.name,))
        else:
            rt = double
        if rt is double:
            result_type = double
    if is_complex:
        t = cdouble
        result_type = _complex_types_map[result_type]
    else:
        t = double
    return t, result_type


# _fastCopyAndTranpose assumes the input is 2D (as all the calls in here are).

_fastCT = fastCopyAndTranspose

def _to_native_byte_order(*arrays):
    ret = []
    for arr in arrays:
        if arr.dtype.byteorder not in ('=', '|'):
            ret.append(asarray(arr, dtype=arr.dtype.newbyteorder('=')))
        else:
            ret.append(arr)
    if len(ret) == 1:
        return ret[0]
    else:
        return ret

def _fastCopyAndTranspose(type, *arrays):
    cast_arrays = ()
    for a in arrays:
        if a.dtype.type is type:
            cast_arrays = cast_arrays + (_fastCT(a),)
        else:
            cast_arrays = cast_arrays + (_fastCT(a.astype(type)),)
    if len(cast_arrays) == 1:
        return cast_arrays[0]
    else:
        return cast_arrays

def _assert_2d(*arrays):
    for a in arrays:
        if a.ndim != 2:
            raise LinAlgError('%d-dimensional array given. Array must be '
                    'two-dimensional' % a.ndim)

def _assert_stacked_2d(*arrays):
    for a in arrays:
        if a.ndim < 2:
            raise LinAlgError('%d-dimensional array given. Array must be '
                    'at least two-dimensional' % a.ndim)

def _assert_stacked_square(*arrays):
    for a in arrays:
        m, n = a.shape[-2:]
        if m != n:
            raise LinAlgError('Last 2 dimensions of the array must be square')

def _assert_finite(*arrays):
    for a in arrays:
        if not isfinite(a).all():
            raise LinAlgError("Array must not contain infs or NaNs")

def _is_empty_2d(arr):
    # check size first for efficiency
    return arr.size == 0 and product(arr.shape[-2:]) == 0


def transpose(a):
    """
    Transpose each matrix in a stack of matrices.

    Unlike np.transpose, this only swaps the last two axes, rather than all of
    them

    Parameters
    ----------
    a : (...,M,N) array_like

    Returns
    -------
    aT : (...,N,M) ndarray
    """
    return swapaxes(a, -1, -2)

# Linear equations

def _tensorsolve_dispatcher(a, b, axes=None):
    return (a, b)


@array_function_dispatch(_tensorsolve_dispatcher)
def tensorsolve(a, b, axes=None):
    """
    Solve the tensor equation ``a x = b`` for x.

    It is assumed that all indices of `x` are summed over in the product,
    together with the rightmost indices of `a`, as is done in, for example,
    ``tensordot(a, x, axes=b.ndim)``.

    Parameters
    ----------
    a : array_like
        Coefficient tensor, of shape ``b.shape + Q``. `Q`, a tuple, equals
        the shape of that sub-tensor of `a` consisting of the appropriate
        number of its rightmost indices, and must be such that
        ``prod(Q) == prod(b.shape)`` (in which sense `a` is said to be
        'square').
    b : array_like
        Right-hand tensor, which can be of any shape.
    axes : tuple of ints, optional
        Axes in `a` to reorder to the right, before inversion.
        If None (default), no reordering is done.

    Returns
    -------
    x : ndarray, shape Q

    Raises
    ------
    LinAlgError
        If `a` is singular or not 'square' (in the above sense).

    See Also
    --------
    numpy.tensordot, tensorinv, numpy.einsum

    Examples
    --------
    >>> a = np.eye(2*3*4)
    >>> a.shape = (2*3, 4, 2, 3, 4)
    >>> b = np.random.randn(2*3, 4)
    >>> x = np.linalg.tensorsolve(a, b)
    >>> x.shape
    (2, 3, 4)
    >>> np.allclose(np.tensordot(a, x, axes=3), b)
    True

    """
    a, wrap = _makearray(a)
    b = asarray(b)
    an = a.ndim

    if axes is not None:
        allaxes = list(range(0, an))
        for k in axes:
            allaxes.remove(k)
            allaxes.insert(an, k)
        a = a.transpose(allaxes)

    oldshape = a.shape[-(an-b.ndim):]
    prod = 1
    for k in oldshape:
        prod *= k

    a = a.reshape(-1, prod)
    b = b.ravel()
    res = wrap(solve(a, b))
    res.shape = oldshape
    return res


def _solve_dispatcher(a, b):
    return (a, b)


@array_function_dispatch(_solve_dispatcher)
def solve(a, b):
    """
    Solve a linear matrix equation, or system of linear scalar equations.

    Computes the "exact" solution, `x`, of the well-determined, i.e., full
    rank, linear matrix equation `ax = b`.

    Parameters
    ----------
    a : (..., M, M) array_like
        Coefficient matrix.
    b : {(..., M,), (..., M, K)}, array_like
        Ordinate or "dependent variable" values.

    Returns
    -------
    x : {(..., M,), (..., M, K)} ndarray
        Solution to the system a x = b.  Returned shape is identical to `b`.

    Raises
    ------
    LinAlgError
        If `a` is singular or not square.

    Notes
    -----

    .. versionadded:: 1.8.0

    Broadcasting rules apply, see the `numpy.linalg` documentation for
    details.

    The solutions are computed using LAPACK routine ``_gesv``.

    `a` must be square and of full-rank, i.e., all rows (or, equivalently,
    columns) must be linearly independent; if either is not true, use
    `lstsq` for the least-squares best "solution" of the
    system/equation.

    References
    ----------
    .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
           FL, Academic Press, Inc., 1980, pg. 22.

    Examples
    --------
    Solve the system of equations ``3 * x0 + x1 = 9`` and ``x0 + 2 * x1 = 8``:

    >>> a = np.array([[3,1], [1,2]])
    >>> b = np.array([9,8])
    >>> x = np.linalg.solve(a, b)
    >>> x
    array([2.,  3.])

    Check that the solution is correct:

    >>> np.allclose(np.dot(a, x), b)
    True

    """
    a, _ = _makearray(a)
    _assert_stacked_2d(a)
    _assert_stacked_square(a)
    b, wrap = _makearray(b)
    t, result_t = _commonType(a, b)

    # We use the b = (..., M,) logic, only if the number of extra dimensions
    # match exactly
    if b.ndim == a.ndim - 1:
        gufunc = _umath_linalg.solve1
    else:
        gufunc = _umath_linalg.solve

    signature = 'DD->D' if isComplexType(t) else 'dd->d'
    extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
    r = gufunc(a, b, signature=signature, extobj=extobj)

    return wrap(r.astype(result_t, copy=False))


def _tensorinv_dispatcher(a, ind=None):
    return (a,)


@array_function_dispatch(_tensorinv_dispatcher)
def tensorinv(a, ind=2):
    """
    Compute the 'inverse' of an N-dimensional array.

    The result is an inverse for `a` relative to the tensordot operation
    ``tensordot(a, b, ind)``, i. e., up to floating-point accuracy,
    ``tensordot(tensorinv(a), a, ind)`` is the "identity" tensor for the
    tensordot operation.

    Parameters
    ----------
    a : array_like
        Tensor to 'invert'. Its shape must be 'square', i. e.,
        ``prod(a.shape[:ind]) == prod(a.shape[ind:])``.
    ind : int, optional
        Number of first indices that are involved in the inverse sum.
        Must be a positive integer, default is 2.

    Returns
    -------
    b : ndarray
        `a`'s tensordot inverse, shape ``a.shape[ind:] + a.shape[:ind]``.

    Raises
    ------
    LinAlgError
        If `a` is singular or not 'square' (in the above sense).

    See Also
    --------
    numpy.tensordot, tensorsolve

    Examples
    --------
    >>> a = np.eye(4*6)
    >>> a.shape = (4, 6, 8, 3)
    >>> ainv = np.linalg.tensorinv(a, ind=2)
    >>> ainv.shape
    (8, 3, 4, 6)
    >>> b = np.random.randn(4, 6)
    >>> np.allclose(np.tensordot(ainv, b), np.linalg.tensorsolve(a, b))
    True

    >>> a = np.eye(4*6)
    >>> a.shape = (24, 8, 3)
    >>> ainv = np.linalg.tensorinv(a, ind=1)
    >>> ainv.shape
    (8, 3, 24)
    >>> b = np.random.randn(24)
    >>> np.allclose(np.tensordot(ainv, b, 1), np.linalg.tensorsolve(a, b))
    True

    """
    a = asarray(a)
    oldshape = a.shape
    prod = 1
    if ind > 0:
        invshape = oldshape[ind:] + oldshape[:ind]
        for k in oldshape[ind:]:
            prod *= k
    else:
        raise ValueError("Invalid ind argument.")
    a = a.reshape(prod, -1)
    ia = inv(a)
    return ia.reshape(*invshape)


# Matrix inversion

def _unary_dispatcher(a):
    return (a,)


@array_function_dispatch(_unary_dispatcher)
def inv(a):
    """
    Compute the (multiplicative) inverse of a matrix.

    Given a square matrix `a`, return the matrix `ainv` satisfying
    ``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``.

    Parameters
    ----------
    a : (..., M, M) array_like
        Matrix to be inverted.

    Returns
    -------
    ainv : (..., M, M) ndarray or matrix
        (Multiplicative) inverse of the matrix `a`.

    Raises
    ------
    LinAlgError
        If `a` is not square or inversion fails.

    Notes
    -----

    .. versionadded:: 1.8.0

    Broadcasting rules apply, see the `numpy.linalg` documentation for
    details.

    Examples
    --------
    >>> from numpy.linalg import inv
    >>> a = np.array([[1., 2.], [3., 4.]])
    >>> ainv = inv(a)
    >>> np.allclose(np.dot(a, ainv), np.eye(2))
    True
    >>> np.allclose(np.dot(ainv, a), np.eye(2))
    True

    If a is a matrix object, then the return value is a matrix as well:

    >>> ainv = inv(np.matrix(a))
    >>> ainv
    matrix([[-2. ,  1. ],
            [ 1.5, -0.5]])

    Inverses of several matrices can be computed at once:

    >>> a = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])
    >>> inv(a)
    array([[[-2.  ,  1.  ],
            [ 1.5 , -0.5 ]],
           [[-1.25,  0.75],
            [ 0.75, -0.25]]])

    """
    a, wrap = _makearray(a)
    _assert_stacked_2d(a)
    _assert_stacked_square(a)
    t, result_t = _commonType(a)

    signature = 'D->D' if isComplexType(t) else 'd->d'
    extobj = get_linalg_error_extobj(_raise_linalgerror_singular)
    ainv = _umath_linalg.inv(a, signature=signature, extobj=extobj)
    return wrap(ainv.astype(result_t, copy=False))


def _matrix_power_dispatcher(a, n):
    return (a,)


@array_function_dispatch(_matrix_power_dispatcher)
def matrix_power(a, n):
    """
    Raise a square matrix to the (integer) power `n`.

    For positive integers `n`, the power is computed by repeated matrix
    squarings and matrix multiplications. If ``n == 0``, the identity matrix
    of the same shape as M is returned. If ``n < 0``, the inverse
    is computed and then raised to the ``abs(n)``.

    .. note:: Stacks of object matrices are not currently supported.

    Parameters
    ----------
    a : (..., M, M) array_like
        Matrix to be "powered".
    n : int
        The exponent can be any integer or long integer, positive,
        negative, or zero.

    Returns
    -------
    a**n : (..., M, M) ndarray or matrix object
        The return value is the same shape and type as `M`;
        if the exponent is positive or zero then the type of the
        elements is the same as those of `M`. If the exponent is
        negative the elements are floating-point.

    Raises
    ------
    LinAlgError
        For matrices that are not square or that (for negative powers) cannot
        be inverted numerically.

    Examples
    --------
    >>> from numpy.linalg import matrix_power
    >>> i = np.array([[0, 1], [-1, 0]]) # matrix equiv. of the imaginary unit
    >>> matrix_power(i, 3) # should = -i
    array([[ 0, -1],
           [ 1,  0]])
    >>> matrix_power(i, 0)
    array([[1, 0],
           [0, 1]])
    >>> matrix_power(i, -3) # should = 1/(-i) = i, but w/ f.p. elements
    array([[ 0.,  1.],
           [-1.,  0.]])

    Somewhat more sophisticated example

    >>> q = np.zeros((4, 4))
    >>> q[0:2, 0:2] = -i
    >>> q[2:4, 2:4] = i
    >>> q # one of the three quaternion units not equal to 1
    array([[ 0., -1.,  0.,  0.],
           [ 1.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  1.],
           [ 0.,  0., -1.,  0.]])
    >>> matrix_power(q, 2) # = -np.eye(4)
    array([[-1.,  0.,  0.,  0.],
           [ 0., -1.,  0.,  0.],
           [ 0.,  0., -1.,  0.],
           [ 0.,  0.,  0., -1.]])

    """
    a = asanyarray(a)
    _assert_stacked_2d(a)
    _assert_stacked_square(a)

    try:
        n = operator.index(n)
    except TypeError:
        raise TypeError("exponent must be an integer")

    # Fall back on dot for object arrays. Object arrays are not supported by
    # the current implementation of matmul using einsum
    if a.dtype != object:
        fmatmul = matmul
    elif a.ndim == 2:
        fmatmul = dot
    else:
        raise NotImplementedError(
            "matrix_power not supported for stacks of object arrays")

    if n == 0:
        a = empty_like(a)
        a[...] = eye(a.shape[-2], dtype=a.dtype)
        return a

    elif n < 0:
        a = inv(a)
        n = abs(n)

    # short-cuts.
    if n == 1:
        return a

    elif n == 2:
        return fmatmul(a, a)

    elif n == 3:
        return fmatmul(fmatmul(a, a), a)

    # Use binary decomposition to reduce the number of matrix multiplications.
    # Here, we iterate over the bits of n, from LSB to MSB, raise `a` to
    # increasing powers of 2, and multiply into the result as needed.
    z = result = None
    while n > 0:
        z = a if z is None else fmatmul(z, z)
        n, bit = divmod(n, 2)
        if bit:
            result = z if result is None else fmatmul(result, z)

    return result


# Cholesky decomposition


@array_function_dispatch(_unary_dispatcher)
def cholesky(a):
    """
    Cholesky decomposition.

    Return the Cholesky decomposition, `L * L.H`, of the square matrix `a`,
    where `L` is lower-triangular and .H is the conjugate transpose operator
    (which is the ordinary transpose if `a` is real-valued).  `a` must be
    Hermitian (symmetric if real-valued) and positive-definite.  Only `L` is
    actually returned.

    Parameters
    ----------
    a : (..., M, M) array_like
        Hermitian (symmetric if all elements are real), positive-definite
        input matrix.

    Returns
    -------
    L : (..., M, M) array_like
        Upper or lower-triangular Cholesky factor of `a`.  Returns a
        matrix object if `a` is a matrix object.

    Raises
    ------
    LinAlgError
       If the decomposition fails, for example, if `a` is not
       positive-definite.

    Notes
    -----

    .. versionadded:: 1.8.0

    Broadcasting rules apply, see the `numpy.linalg` documentation for
    details.

    The Cholesky decomposition is often used as a fast way of solving

    .. math:: A \\mathbf{x} = \\mathbf{b}

    (when `A` is both Hermitian/symmetric and positive-definite).

    First, we solve for :math:`\\mathbf{y}` in

    .. math:: L \\mathbf{y} = \\mathbf{b},

    and then for :math:`\\mathbf{x}` in

    .. math:: L.H \\mathbf{x} = \\mathbf{y}.

    Examples
    --------
    >>> A = np.array([[1,-2j],[2j,5]])
    >>> A
    array([[ 1.+0.j, -0.-2.j],
           [ 0.+2.j,  5.+0.j]])
    >>> L = np.linalg.cholesky(A)
    >>> L
    array([[1.+0.j, 0.+0.j],
           [0.+2.j, 1.+0.j]])
    >>> np.dot(L, L.T.conj()) # verify that L * L.H = A
    array([[1.+0.j, 0.-2.j],
           [0.+2.j, 5.+0.j]])
    >>> A = [[1,-2j],[2j,5]] # what happens if A is only array_like?
    >>> np.linalg.cholesky(A) # an ndarray object is returned
    array([[1.+0.j, 0.+0.j],
           [0.+2.j, 1.+0.j]])
    >>> # But a matrix object is returned if A is a matrix object
    >>> np.linalg.cholesky(np.matrix(A))
    matrix([[ 1.+0.j,  0.+0.j],
            [ 0.+2.j,  1.+0.j]])

    """
    extobj = get_linalg_error_extobj(_raise_linalgerror_nonposdef)
    gufunc = _umath_linalg.cholesky_lo
    a, wrap = _makearray(a)
    _assert_stacked_2d(a)
    _assert_stacked_square(a)
    t, result_t = _commonType(a)
    signature = 'D->D' if isComplexType(t) else 'd->d'
    r = gufunc(a, signature=signature, extobj=extobj)
    return wrap(r.astype(result_t, copy=False))


# QR decompostion

def _qr_dispatcher(a, mode=None):
    return (a,)


@array_function_dispatch(_qr_dispatcher)
def qr(a, mode='reduced'):
    """
    Compute the qr factorization of a matrix.

    Factor the matrix `a` as *qr*, where `q` is orthonormal and `r` is
    upper-triangular.

    Parameters
    ----------
    a : array_like, shape (M, N)
        Matrix to be factored.
    mode : {'reduced', 'complete', 'r', 'raw'}, optional
        If K = min(M, N), then

        * 'reduced'  : returns q, r with dimensions (M, K), (K, N) (default)
        * 'complete' : returns q, r with dimensions (M, M), (M, N)
        * 'r'        : returns r only with dimensions (K, N)
        * 'raw'      : returns h, tau with dimensions (N, M), (K,)

        The options 'reduced', 'complete, and 'raw' are new in numpy 1.8,
        see the notes for more information. The default is 'reduced', and to
        maintain backward compatibility with earlier versions of numpy both
        it and the old default 'full' can be omitted. Note that array h
        returned in 'raw' mode is transposed for calling Fortran. The
        'economic' mode is deprecated.  The modes 'full' and 'economic' may
        be passed using only the first letter for backwards compatibility,
        but all others must be spelled out. See the Notes for more
        explanation.


    Returns
    -------
    q : ndarray of float or complex, optional
        A matrix with orthonormal columns. When mode = 'complete' the
        result is an orthogonal/unitary matrix depending on whether or not
        a is real/complex. The determinant may be either +/- 1 in that
        case.
    r : ndarray of float or complex, optional
        The upper-triangular matrix.
    (h, tau) : ndarrays of np.double or np.cdouble, optional
        The array h contains the Householder reflectors that generate q
        along with r. The tau array contains scaling factors for the
        reflectors. In the deprecated  'economic' mode only h is returned.

    Raises
    ------
    LinAlgError
        If factoring fails.

    Notes
    -----
    This is an interface to the LAPACK routines ``dgeqrf``, ``zgeqrf``,
    ``dorgqr``, and ``zungqr``.

    For more information on the qr factorization, see for example:
    https://en.wikipedia.org/wiki/QR_factorization

    Subclasses of `ndarray` are preserved except for the 'raw' mode. So if
    `a` is of type `matrix`, all the return values will be matrices too.

    New 'reduced', 'complete', and 'raw' options for mode were added in
    NumPy 1.8.0 and the old option 'full' was made an alias of 'reduced'.  In
    addition the options 'full' and 'economic' were deprecated.  Because
    'full' was the previous default and 'reduced' is the new default,
    backward compatibility can be maintained by letting `mode` default.
    The 'raw' option was added so that LAPACK routines that can multiply
    arrays by q using the Householder reflectors can be used. Note that in
    this case the returned arrays are of type np.double or np.cdouble and
    the h array is transposed to be FORTRAN compatible.  No routines using
    the 'raw' return are currently exposed by numpy, but some are available
    in lapack_lite and just await the necessary work.

    Examples
    --------
    >>> a = np.random.randn(9, 6)
    >>> q, r = np.linalg.qr(a)
    >>> np.allclose(a, np.dot(q, r))  # a does equal qr
    True
    >>> r2 = np.linalg.qr(a, mode='r')
    >>> np.allclose(r, r2)  # mode='r' returns the same r as mode='full'
    True

    Example illustrating a common use of `qr`: solving of least squares
    problems

    What are the least-squares-best `m` and `y0` in ``y = y0 + mx`` for
    the following data: {(0,1), (1,0), (1,2), (2,1)}. (Graph the points
    and you'll see that it should be y0 = 0, m = 1.)  The answer is provided
    by solving the over-determined matrix equation ``Ax = b``, where::

      A = array([[0, 1], [1, 1], [1, 1], [2, 1]])
      x = array([[y0], [m]])
      b = array([[1], [0], [2], [1]])

    If A = qr such that q is orthonormal (which is always possible via
    Gram-Schmidt), then ``x = inv(r) * (q.T) * b``.  (In numpy practice,
    however, we simply use `lstsq`.)

    >>> A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]])
    >>> A
    array([[0, 1],
           [1, 1],
           [1, 1],
           [2, 1]])
    >>> b = np.array([1, 0, 2, 1])
    >>> q, r = np.linalg.qr(A)
    >>> p = np.dot(q.T, b)
    >>> np.dot(np.linalg.inv(r), p)
    array([  1.1e-16,   1.0e+00])

    """
    if mode not in ('reduced', 'complete', 'r', 'raw'):
        if mode in ('f', 'full'):
            # 2013-04-01, 1.8
            msg = "".join((
                    "The 'full' option is deprecated in favor of 'reduced'.\n",
                    "For backward compatibility let mode default."))
            warnings.warn(msg, DeprecationWarning, stacklevel=3)
            mode = 'reduced'
        elif mode in ('e', 'economic'):
            # 2013-04-01, 1.8
            msg = "The 'economic' option is deprecated."
            warnings.warn(msg, DeprecationWarning, stacklevel=3)
            mode = 'economic'
        else:
            raise ValueError("Unrecognized mode '%s'" % mode)

    a, wrap = _makearray(a)
    _assert_2d(a)
    m, n = a.shape
    t, result_t = _commonType(a)
    a = _fastCopyAndTranspose(t, a)
    a = _to_native_byte_order(a)
    mn = min(m, n)
    tau = zeros((mn,), t)

    if isComplexType(t):
        lapack_routine = lapack_lite.zgeqrf
        routine_name = 'zgeqrf'
    else:
        lapack_routine = lapack_lite.dgeqrf
        routine_name = 'dgeqrf'

    # calculate optimal size of work data 'work'
    lwork = 1
    work = zeros((lwork,), t)
    results = lapack_routine(m, n, a, max(1, m), tau, work, -1, 0)
    if results['info'] != 0:
        raise LinAlgError('%s returns %d' % (routine_name, results['info']))

    # do qr decomposition
    lwork = max(1, n, int(abs(work[0])))
    work = zeros((lwork,), t)
    results = lapack_routine(m, n, a, max(1, m), tau, work, lwork, 0)
    if results['info'] != 0:
        raise LinAlgError('%s returns %d' % (routine_name, results['info']))

    # handle modes that don't return q
    if mode == 'r':
        r = _fastCopyAndTranspose(result_t, a[:, :mn])
        return wrap(triu(r))

    if mode == 'raw':
        return a, tau

    if mode == 'economic':
        if t != result_t :
            a = a.astype(result_t, copy=False)
        return wrap(a.T)

    #  generate q from a
    if mode == 'complete' and m > n:
        mc = m
        q = empty((m, m), t)
    else:
        mc = mn
        q = empty((n, m), t)
    q[:n] = a

    if isComplexType(t):
        lapack_routine = lapack_lite.zungqr
        routine_name = 'zungqr'
    else:
        lapack_routine = lapack_lite.dorgqr
        routine_name = 'dorgqr'

    # determine optimal lwork
    lwork = 1
    work = zeros((lwork,), t)
    results = lapack_routine(m, mc, mn, q, max(1, m), tau, work, -1, 0)
    if results['info'] != 0:
        raise LinAlgError('%s returns %d' % (routine_name, results['info']))

    # compute q
    lwork = max(1, n, int(abs(work[0])))
    work = zeros((lwork,), t)
    results = lapack_routine(m, mc, mn, q, max(1, m), tau, work, lwork, 0)
    if results['info'] != 0:
        raise LinAlgError('%s returns %d' % (routine_name, results['info']))

    q = _fastCopyAndTranspose(result_t, q[:mc])
    r = _fastCopyAndTranspose(result_t, a[:, :mc])

    return wrap(q), wrap(triu(r))


# Eigenvalues


@array_function_dispatch(_unary_dispatcher)
def eigvals(a):
    """
    Compute the eigenvalues of a general matrix.

    Main difference between `eigvals` and `eig`: the eigenvectors aren't
    returned.

    Parameters
    ----------
    a : (..., M, M) array_like
        A complex- or real-valued matrix whose eigenvalues will be computed.

    Returns
    -------
    w : (..., M,) ndarray
        The eigenvalues, each repeated according to its multiplicity.
        They are not necessarily ordered, nor are they necessarily
        real for real matrices.

    Raises
    ------
    LinAlgError
        If the eigenvalue computation does not converge.

    See Also
    --------
    eig : eigenvalues and right eigenvectors of general arrays
    eigvalsh : eigenvalues of real symmetric or complex Hermitian
               (conjugate symmetric) arrays.
    eigh : eigenvalues and eigenvectors of real symmetric or complex
           Hermitian (conjugate symmetric) arrays.

    Notes
    -----

    .. versionadded:: 1.8.0

    Broadcasting rules apply, see the `numpy.linalg` documentation for
    details.

    This is implemented using the ``_geev`` LAPACK routines which compute
    the eigenvalues and eigenvectors of general square arrays.

    Examples
    --------
    Illustration, using the fact that the eigenvalues of a diagonal matrix
    are its diagonal elements, that multiplying a matrix on the left
    by an orthogonal matrix, `Q`, and on the right by `Q.T` (the transpose
    of `Q`), preserves the eigenvalues of the "middle" matrix.  In other words,
    if `Q` is orthogonal, then ``Q * A * Q.T`` has the same eigenvalues as
    ``A``:

    >>> from numpy import linalg as LA
    >>> x = np.random.random()
    >>> Q = np.array([[np.cos(x), -np.sin(x)], [np.sin(x), np.cos(x)]])
    >>> LA.norm(Q[0, :]), LA.norm(Q[1, :]), np.dot(Q[0, :],Q[1, :])
    (1.0, 1.0, 0.0)

    Now multiply a diagonal matrix by ``Q`` on one side and by ``Q.T`` on the other:

    >>> D = np.diag((-1,1))
    >>> LA.eigvals(D)
    array([-1.,  1.])
    >>> A = np.dot(Q, D)
    >>> A = np.dot(A, Q.T)
    >>> LA.eigvals(A)
    array([ 1., -1.]) # random

    """
    a, wrap = _makearray(a)
    _assert_stacked_2d(a)
    _assert_stacked_square(a)
    _assert_finite(a)
    t, result_t = _commonType(a)

    extobj = get_linalg_error_extobj(
        _raise_linalgerror_eigenvalues_nonconvergence)
    signature = 'D->D' if isComplexType(t) else 'd->D'
    w = _umath_linalg.eigvals(a, signature=signature, extobj=extobj)

    if not isComplexType(t):
        if all(w.imag == 0):
            w = w.real
            result_t = _realType(result_t)
        else:
            result_t = _complexType(result_t)

    return w.astype(result_t, copy=False)


def _eigvalsh_dispatcher(a, UPLO=None):
    return (a,)


@array_function_dispatch(_eigvalsh_dispatcher)
def eigvalsh(a, UPLO='L'):
    """
    Compute the eigenvalues of a complex Hermitian or real symmetric matrix.

    Main difference from eigh: the eigenvectors are not computed.

    Parameters
    ----------
    a : (..., M, M) array_like
        A complex- or real-valued matrix whose eigenvalues are to be
        computed.
    UPLO : {'L', 'U'}, optional
        Specifies whether the calculation is done with the lower triangular
        part of `a` ('L', default) or the upper triangular part ('U').
        Irrespective of this value only the real parts of the diagonal will
        be considered in the computation to preserve the notion of a Hermitian
        matrix. It therefore follows that the imaginary part of the diagonal
        will always be treated as zero.

    Returns
    -------
    w : (..., M,) ndarray
        The eigenvalues in ascending order, each repeated according to
        its multiplicity.

    Raises
    ------
    LinAlgError
        If the eigenvalue computation does not converge.

    See Also
    --------
    eigh : eigenvalues and eigenvectors of real symmetric or complex Hermitian
           (conjugate symmetric) arrays.
    eigvals : eigenvalues of general real or complex arrays.
    eig : eigenvalues and right eigenvectors of general real or complex
          arrays.

    Notes
    -----

    .. versionadded:: 1.8.0

    Broadcasting rules apply, see the `numpy.linalg` documentation for
    details.

    The eigenvalues are computed using LAPACK routines ``_syevd``, ``_heevd``.

    Examples
    --------
    >>> from numpy import linalg as LA
    >>> a = np.array([[1, -2j], [2j, 5]])
    >>> LA.eigvalsh(a)
    array([ 0.17157288,  5.82842712]) # may vary

    >>> # demonstrate the treatment of the imaginary part of the diagonal
    >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
    >>> a
    array([[5.+2.j, 9.-2.j],
           [0.+2.j, 2.-1.j]])
    >>> # with UPLO='L' this is numerically equivalent to using LA.eigvals()
    >>> # with:
    >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
    >>> b
    array([[5.+0.j, 0.-2.j],
           [0.+2.j, 2.+0.j]])
    >>> wa = LA.eigvalsh(a)
    >>> wb = LA.eigvals(b)
    >>> wa; wb
    array([1., 6.])
    array([6.+0.j, 1.+0.j])

    """
    UPLO = UPLO.upper()
    if UPLO not in ('L', 'U'):
        raise ValueError("UPLO argument must be 'L' or 'U'")

    extobj = get_linalg_error_extobj(
        _raise_linalgerror_eigenvalues_nonconvergence)
    if UPLO == 'L':
        gufunc = _umath_linalg.eigvalsh_lo
    else:
        gufunc = _umath_linalg.eigvalsh_up

    a, wrap = _makearray(a)
    _assert_stacked_2d(a)
    _assert_stacked_square(a)
    t, result_t = _commonType(a)
    signature = 'D->d' if isComplexType(t) else 'd->d'
    w = gufunc(a, signature=signature, extobj=extobj)
    return w.astype(_realType(result_t), copy=False)

def _convertarray(a):
    t, result_t = _commonType(a)
    a = _fastCT(a.astype(t))
    return a, t, result_t


# Eigenvectors


@array_function_dispatch(_unary_dispatcher)
def eig(a):
    """
    Compute the eigenvalues and right eigenvectors of a square array.

    Parameters
    ----------
    a : (..., M, M) array
        Matrices for which the eigenvalues and right eigenvectors will
        be computed

    Returns
    -------
    w : (..., M) array
        The eigenvalues, each repeated according to its multiplicity.
        The eigenvalues are not necessarily ordered. The resulting
        array will be of complex type, unless the imaginary part is
        zero in which case it will be cast to a real type. When `a`
        is real the resulting eigenvalues will be real (0 imaginary
        part) or occur in conjugate pairs

    v : (..., M, M) array
        The normalized (unit "length") eigenvectors, such that the
        column ``v[:,i]`` is the eigenvector corresponding to the
        eigenvalue ``w[i]``.

    Raises
    ------
    LinAlgError
        If the eigenvalue computation does not converge.

    See Also
    --------
    eigvals : eigenvalues of a non-symmetric array.

    eigh : eigenvalues and eigenvectors of a real symmetric or complex
           Hermitian (conjugate symmetric) array.

    eigvalsh : eigenvalues of a real symmetric or complex Hermitian
               (conjugate symmetric) array.

    Notes
    -----

    .. versionadded:: 1.8.0

    Broadcasting rules apply, see the `numpy.linalg` documentation for
    details.

    This is implemented using the ``_geev`` LAPACK routines which compute
    the eigenvalues and eigenvectors of general square arrays.

    The number `w` is an eigenvalue of `a` if there exists a vector
    `v` such that ``dot(a,v) = w * v``. Thus, the arrays `a`, `w`, and
    `v` satisfy the equations ``dot(a[:,:], v[:,i]) = w[i] * v[:,i]``
    for :math:`i \\in \\{0,...,M-1\\}`.

    The array `v` of eigenvectors may not be of maximum rank, that is, some
    of the columns may be linearly dependent, although round-off error may
    obscure that fact. If the eigenvalues are all different, then theoretically
    the eigenvectors are linearly independent. Likewise, the (complex-valued)
    matrix of eigenvectors `v` is unitary if the matrix `a` is normal, i.e.,
    if ``dot(a, a.H) = dot(a.H, a)``, where `a.H` denotes the conjugate
    transpose of `a`.

    Finally, it is emphasized that `v` consists of the *right* (as in
    right-hand side) eigenvectors of `a`.  A vector `y` satisfying
    ``dot(y.T, a) = z * y.T`` for some number `z` is called a *left*
    eigenvector of `a`, and, in general, the left and right eigenvectors
    of a matrix are not necessarily the (perhaps conjugate) transposes
    of each other.

    References
    ----------
    G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando, FL,
    Academic Press, Inc., 1980, Various pp.

    Examples
    --------
    >>> from numpy import linalg as LA

    (Almost) trivial example with real e-values and e-vectors.

    >>> w, v = LA.eig(np.diag((1, 2, 3)))
    >>> w; v
    array([1., 2., 3.])
    array([[1., 0., 0.],
           [0., 1., 0.],
           [0., 0., 1.]])

    Real matrix possessing complex e-values and e-vectors; note that the
    e-values are complex conjugates of each other.

    >>> w, v = LA.eig(np.array([[1, -1], [1, 1]]))
    >>> w; v
    array([1.+1.j, 1.-1.j])
    array([[0.70710678+0.j        , 0.70710678-0.j        ],
           [0.        -0.70710678j, 0.        +0.70710678j]])

    Complex-valued matrix with real e-values (but complex-valued e-vectors);
    note that ``a.conj().T == a``, i.e., `a` is Hermitian.

    >>> a = np.array([[1, 1j], [-1j, 1]])
    >>> w, v = LA.eig(a)
    >>> w; v
    array([2.+0.j, 0.+0.j])
    array([[ 0.        +0.70710678j,  0.70710678+0.j        ], # may vary
           [ 0.70710678+0.j        , -0.        +0.70710678j]])

    Be careful about round-off error!

    >>> a = np.array([[1 + 1e-9, 0], [0, 1 - 1e-9]])
    >>> # Theor. e-values are 1 +/- 1e-9
    >>> w, v = LA.eig(a)
    >>> w; v
    array([1., 1.])
    array([[1., 0.],
           [0., 1.]])

    """
    a, wrap = _makearray(a)
    _assert_stacked_2d(a)
    _assert_stacked_square(a)
    _assert_finite(a)
    t, result_t = _commonType(a)

    extobj = get_linalg_error_extobj(
        _raise_linalgerror_eigenvalues_nonconvergence)
    signature = 'D->DD' if isComplexType(t) else 'd->DD'
    w, vt = _umath_linalg.eig(a, signature=signature, extobj=extobj)

    if not isComplexType(t) and all(w.imag == 0.0):
        w = w.real
        vt = vt.real
        result_t = _realType(result_t)
    else:
        result_t = _complexType(result_t)

    vt = vt.astype(result_t, copy=False)
    return w.astype(result_t, copy=False), wrap(vt)


@array_function_dispatch(_eigvalsh_dispatcher)
def eigh(a, UPLO='L'):
    """
    Return the eigenvalues and eigenvectors of a complex Hermitian
    (conjugate symmetric) or a real symmetric matrix.

    Returns two objects, a 1-D array containing the eigenvalues of `a`, and
    a 2-D square array or matrix (depending on the input type) of the
    corresponding eigenvectors (in columns).

    Parameters
    ----------
    a : (..., M, M) array
        Hermitian or real symmetric matrices whose eigenvalues and
        eigenvectors are to be computed.
    UPLO : {'L', 'U'}, optional
        Specifies whether the calculation is done with the lower triangular
        part of `a` ('L', default) or the upper triangular part ('U').
        Irrespective of this value only the real parts of the diagonal will
        be considered in the computation to preserve the notion of a Hermitian
        matrix. It therefore follows that the imaginary part of the diagonal
        will always be treated as zero.

    Returns
    -------
    w : (..., M) ndarray
        The eigenvalues in ascending order, each repeated according to
        its multiplicity.
    v : {(..., M, M) ndarray, (..., M, M) matrix}
        The column ``v[:, i]`` is the normalized eigenvector corresponding
        to the eigenvalue ``w[i]``.  Will return a matrix object if `a` is
        a matrix object.

    Raises
    ------
    LinAlgError
        If the eigenvalue computation does not converge.

    See Also
    --------
    eigvalsh : eigenvalues of real symmetric or complex Hermitian
               (conjugate symmetric) arrays.
    eig : eigenvalues and right eigenvectors for non-symmetric arrays.
    eigvals : eigenvalues of non-symmetric arrays.

    Notes
    -----

    .. versionadded:: 1.8.0

    Broadcasting rules apply, see the `numpy.linalg` documentation for
    details.

    The eigenvalues/eigenvectors are computed using LAPACK routines ``_syevd``,
    ``_heevd``.

    The eigenvalues of real symmetric or complex Hermitian matrices are
    always real. [1]_ The array `v` of (column) eigenvectors is unitary
    and `a`, `w`, and `v` satisfy the equations
    ``dot(a, v[:, i]) = w[i] * v[:, i]``.

    References
    ----------
    .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
           FL, Academic Press, Inc., 1980, pg. 222.

    Examples
    --------
    >>> from numpy import linalg as LA
    >>> a = np.array([[1, -2j], [2j, 5]])
    >>> a
    array([[ 1.+0.j, -0.-2.j],
           [ 0.+2.j,  5.+0.j]])
    >>> w, v = LA.eigh(a)
    >>> w; v
    array([0.17157288, 5.82842712])
    array([[-0.92387953+0.j        , -0.38268343+0.j        ], # may vary
           [ 0.        +0.38268343j,  0.        -0.92387953j]])

    >>> np.dot(a, v[:, 0]) - w[0] * v[:, 0] # verify 1st e-val/vec pair
    array([5.55111512e-17+0.0000000e+00j, 0.00000000e+00+1.2490009e-16j])
    >>> np.dot(a, v[:, 1]) - w[1] * v[:, 1] # verify 2nd e-val/vec pair
    array([0.+0.j, 0.+0.j])

    >>> A = np.matrix(a) # what happens if input is a matrix object
    >>> A
    matrix([[ 1.+0.j, -0.-2.j],
            [ 0.+2.j,  5.+0.j]])
    >>> w, v = LA.eigh(A)
    >>> w; v
    array([0.17157288, 5.82842712])
    matrix([[-0.92387953+0.j        , -0.38268343+0.j        ], # may vary
            [ 0.        +0.38268343j,  0.        -0.92387953j]])

    >>> # demonstrate the treatment of the imaginary part of the diagonal
    >>> a = np.array([[5+2j, 9-2j], [0+2j, 2-1j]])
    >>> a
    array([[5.+2.j, 9.-2.j],
           [0.+2.j, 2.-1.j]])
    >>> # with UPLO='L' this is numerically equivalent to using LA.eig() with:
    >>> b = np.array([[5.+0.j, 0.-2.j], [0.+2.j, 2.-0.j]])
    >>> b
    array([[5.+0.j, 0.-2.j],
           [0.+2.j, 2.+0.j]])
    >>> wa, va = LA.eigh(a)
    >>> wb, vb = LA.eig(b)
    >>> wa; wb
    array([1., 6.])
    array([6.+0.j, 1.+0.j])
    >>> va; vb
    array([[-0.4472136 +0.j        , -0.89442719+0.j        ], # may vary
           [ 0.        +0.89442719j,  0.        -0.4472136j ]])
    array([[ 0.89442719+0.j       , -0.        +0.4472136j],
           [-0.        +0.4472136j,  0.89442719+0.j       ]])
    """
    UPLO = UPLO.upper()
    if UPLO not in ('L', 'U'):
        raise ValueError("UPLO argument must be 'L' or 'U'")

    a, wrap = _makearray(a)
    _assert_stacked_2d(a)
    _assert_stacked_square(a)
    t, result_t = _commonType(a)

    extobj = get_linalg_error_extobj(
        _raise_linalgerror_eigenvalues_nonconvergence)
    if UPLO == 'L':
        gufunc = _umath_linalg.eigh_lo
    else:
        gufunc = _umath_linalg.eigh_up

    signature = 'D->dD' if isComplexType(t) else 'd->dd'
    w, vt = gufunc(a, signature=signature, extobj=extobj)
    w = w.astype(_realType(result_t), copy=False)
    vt = vt.astype(result_t, copy=False)
    return w, wrap(vt)


# Singular value decomposition

def _svd_dispatcher(a, full_matrices=None, compute_uv=None, hermitian=None):
    return (a,)


@array_function_dispatch(_svd_dispatcher)
def svd(a, full_matrices=True, compute_uv=True, hermitian=False):
    """
    Singular Value Decomposition.

    When `a` is a 2D array, it is factorized as ``u @ np.diag(s) @ vh
    = (u * s) @ vh``, where `u` and `vh` are 2D unitary arrays and `s` is a 1D
    array of `a`'s singular values. When `a` is higher-dimensional, SVD is
    applied in stacked mode as explained below.

    Parameters
    ----------
    a : (..., M, N) array_like
        A real or complex array with ``a.ndim >= 2``.
    full_matrices : bool, optional
        If True (default), `u` and `vh` have the shapes ``(..., M, M)`` and
        ``(..., N, N)``, respectively.  Otherwise, the shapes are
        ``(..., M, K)`` and ``(..., K, N)``, respectively, where
        ``K = min(M, N)``.
    compute_uv : bool, optional
        Whether or not to compute `u` and `vh` in addition to `s`.  True
        by default.
    hermitian : bool, optional
        If True, `a` is assumed to be Hermitian (symmetric if real-valued),
        enabling a more efficient method for finding singular values.
        Defaults to False.

        .. versionadded:: 1.17.0

    Returns
    -------
    u : { (..., M, M), (..., M, K) } array
        Unitary array(s). The first ``a.ndim - 2`` dimensions have the same
        size as those of the input `a`. The size of the last two dimensions
        depends on the value of `full_matrices`. Only returned when
        `compute_uv` is True.
    s : (..., K) array
        Vector(s) with the singular values, within each vector sorted in
        descending order. The first ``a.ndim - 2`` dimensions have the same
        size as those of the input `a`.
    vh : { (..., N, N), (..., K, N) } array
        Unitary array(s). The first ``a.ndim - 2`` dimensions have the same
        size as those of the input `a`. The size of the last two dimensions
        depends on the value of `full_matrices`. Only returned when
        `compute_uv` is True.

    Raises
    ------
    LinAlgError
        If SVD computation does not converge.

    Notes
    -----

    .. versionchanged:: 1.8.0
       Broadcasting rules apply, see the `numpy.linalg` documentation for
       details.

    The decomposition is performed using LAPACK routine ``_gesdd``.

    SVD is usually described for the factorization of a 2D matrix :math:`A`.
    The higher-dimensional case will be discussed below. In the 2D case, SVD is
    written as :math:`A = U S V^H`, where :math:`A = a`, :math:`U= u`,
    :math:`S= \\mathtt{np.diag}(s)` and :math:`V^H = vh`. The 1D array `s`
    contains the singular values of `a` and `u` and `vh` are unitary. The rows
    of `vh` are the eigenvectors of :math:`A^H A` and the columns of `u` are
    the eigenvectors of :math:`A A^H`. In both cases the corresponding
    (possibly non-zero) eigenvalues are given by ``s**2``.

    If `a` has more than two dimensions, then broadcasting rules apply, as
    explained in :ref:`routines.linalg-broadcasting`. This means that SVD is
    working in "stacked" mode: it iterates over all indices of the first
    ``a.ndim - 2`` dimensions and for each combination SVD is applied to the
    last two indices. The matrix `a` can be reconstructed from the
    decomposition with either ``(u * s[..., None, :]) @ vh`` or
    ``u @ (s[..., None] * vh)``. (The ``@`` operator can be replaced by the
    function ``np.matmul`` for python versions below 3.5.)

    If `a` is a ``matrix`` object (as opposed to an ``ndarray``), then so are
    all the return values.

    Examples
    --------
    >>> a = np.random.randn(9, 6) + 1j*np.random.randn(9, 6)
    >>> b = np.random.randn(2, 7, 8, 3) + 1j*np.random.randn(2, 7, 8, 3)

    Reconstruction based on full SVD, 2D case:

    >>> u, s, vh = np.linalg.svd(a, full_matrices=True)
    >>> u.shape, s.shape, vh.shape
    ((9, 9), (6,), (6, 6))
    >>> np.allclose(a, np.dot(u[:, :6] * s, vh))
    True
    >>> smat = np.zeros((9, 6), dtype=complex)
    >>> smat[:6, :6] = np.diag(s)
    >>> np.allclose(a, np.dot(u, np.dot(smat, vh)))
    True

    Reconstruction based on reduced SVD, 2D case:

    >>> u, s, vh = np.linalg.svd(a, full_matrices=False)
    >>> u.shape, s.shape, vh.shape
    ((9, 6), (6,), (6, 6))
    >>> np.allclose(a, np.dot(u * s, vh))
    True
    >>> smat = np.diag(s)
    >>> np.allclose(a, np.dot(u, np.dot(smat, vh)))
    True

    Reconstruction based on full SVD, 4D case:

    >>> u, s, vh = np.linalg.svd(b, full_matrices=True)
    >>> u.shape, s.shape, vh.shape
    ((2, 7, 8, 8), (2, 7, 3), (2, 7, 3, 3))
    >>> np.allclose(b, np.matmul(u[..., :3] * s[..., None, :], vh))
    True
    >>> np.allclose(b, np.matmul(u[..., :3], s[..., None] * vh))
    True

    Reconstruction based on reduced SVD, 4D case:

    >>> u, s, vh = np.linalg.svd(b, full_matrices=False)
    >>> u.shape, s.shape, vh.shape
    ((2, 7, 8, 3), (2, 7, 3), (2, 7, 3, 3))
    >>> np.allclose(b, np.matmul(u * s[..., None, :], vh))
    True
    >>> np.allclose(b, np.matmul(u, s[..., None] * vh))
    True

    """
    a, wrap = _makearray(a)

    if hermitian:
        # note: lapack returns eigenvalues in reverse order to our contract.
        # reversing is cheap by design in numpy, so we do so to be consistent
        if compute_uv:
            s, u = eigh(a)
            s = s[..., ::-1]
            u = u[..., ::-1]
            # singular values are unsigned, move the sign into v
            vt = transpose(u * sign(s)[..., None, :]).conjugate()
            s = abs(s)
            return wrap(u), s, wrap(vt)
        else:
            s = eigvalsh(a)
            s = s[..., ::-1]
            s = abs(s)
            return s

    _assert_stacked_2d(a)
    t, result_t = _commonType(a)

    extobj = get_linalg_error_extobj(_raise_linalgerror_svd_nonconvergence)

    m, n = a.shape[-2:]
    if compute_uv:
        if full_matrices:
            if m < n:
                gufunc = _umath_linalg.svd_m_f
            else:
                gufunc = _umath_linalg.svd_n_f
        else:
            if m < n:
                gufunc = _umath_linalg.svd_m_s
            else:
                gufunc = _umath_linalg.svd_n_s

        signature = 'D->DdD' if isComplexType(t) else 'd->ddd'
        u, s, vh = gufunc(a, signature=signature, extobj=extobj)
        u = u.astype(result_t, copy=False)
        s = s.astype(_realType(result_t), copy=False)
        vh = vh.astype(result_t, copy=False)
        return wrap(u), s, wrap(vh)
    else:
        if m < n:
            gufunc = _umath_linalg.svd_m
        else:
            gufunc = _umath_linalg.svd_n

        signature = 'D->d' if isComplexType(t) else 'd->d'
        s = gufunc(a, signature=signature, extobj=extobj)
        s = s.astype(_realType(result_t), copy=False)
        return s


def _cond_dispatcher(x, p=None):
    return (x,)


@array_function_dispatch(_cond_dispatcher)
def cond(x, p=None):
    """
    Compute the condition number of a matrix.

    This function is capable of returning the condition number using
    one of seven different norms, depending on the value of `p` (see
    Parameters below).

    Parameters
    ----------
    x : (..., M, N) array_like
        The matrix whose condition number is sought.
    p : {None, 1, -1, 2, -2, inf, -inf, 'fro'}, optional
        Order of the norm:

        =====  ============================
        p      norm for matrices
        =====  ============================
        None   2-norm, computed directly using the ``SVD``
        'fro'  Frobenius norm
        inf    max(sum(abs(x), axis=1))
        -inf   min(sum(abs(x), axis=1))
        1      max(sum(abs(x), axis=0))
        -1     min(sum(abs(x), axis=0))
        2      2-norm (largest sing. value)
        -2     smallest singular value
        =====  ============================

        inf means the numpy.inf object, and the Frobenius norm is
        the root-of-sum-of-squares norm.

    Returns
    -------
    c : {float, inf}
        The condition number of the matrix. May be infinite.

    See Also
    --------
    numpy.linalg.norm

    Notes
    -----
    The condition number of `x` is defined as the norm of `x` times the
    norm of the inverse of `x` [1]_; the norm can be the usual L2-norm
    (root-of-sum-of-squares) or one of a number of other matrix norms.

    References
    ----------
    .. [1] G. Strang, *Linear Algebra and Its Applications*, Orlando, FL,
           Academic Press, Inc., 1980, pg. 285.

    Examples
    --------
    >>> from numpy import linalg as LA
    >>> a = np.array([[1, 0, -1], [0, 1, 0], [1, 0, 1]])
    >>> a
    array([[ 1,  0, -1],
           [ 0,  1,  0],
           [ 1,  0,  1]])
    >>> LA.cond(a)
    1.4142135623730951
    >>> LA.cond(a, 'fro')
    3.1622776601683795
    >>> LA.cond(a, np.inf)
    2.0
    >>> LA.cond(a, -np.inf)
    1.0
    >>> LA.cond(a, 1)
    2.0
    >>> LA.cond(a, -1)
    1.0
    >>> LA.cond(a, 2)
    1.4142135623730951
    >>> LA.cond(a, -2)
    0.70710678118654746 # may vary
    >>> min(LA.svd(a, compute_uv=False))*min(LA.svd(LA.inv(a), compute_uv=False))
    0.70710678118654746 # may vary

    """
    x = asarray(x)  # in case we have a matrix
    if _is_empty_2d(x):
        raise LinAlgError("cond is not defined on empty arrays")
    if p is None or p == 2 or p == -2:
        s = svd(x, compute_uv=False)
        with errstate(all='ignore'):
            if p == -2:
                r = s[..., -1] / s[..., 0]
            else:
                r = s[..., 0] / s[..., -1]
    else:
        # Call inv(x) ignoring errors. The result array will
        # contain nans in the entries where inversion failed.
        _assert_stacked_2d(x)
        _assert_stacked_square(x)
        t, result_t = _commonType(x)
        signature = 'D->D' if isComplexType(t) else 'd->d'
        with errstate(all='ignore'):
            invx = _umath_linalg.inv(x, signature=signature)
            r = norm(x, p, axis=(-2, -1)) * norm(invx, p, axis=(-2, -1))
        r = r.astype(result_t, copy=False)

    # Convert nans to infs unless the original array had nan entries
    r = asarray(r)
    nan_mask = isnan(r)
    if nan_mask.any():
        nan_mask &= ~isnan(x).any(axis=(-2, -1))
        if r.ndim > 0:
            r[nan_mask] = Inf
        elif nan_mask:
            r[()] = Inf

    # Convention is to return scalars instead of 0d arrays
    if r.ndim == 0:
        r = r[()]

    return r


def _matrix_rank_dispatcher(M, tol=None, hermitian=None):
    return (M,)


@array_function_dispatch(_matrix_rank_dispatcher)
def matrix_rank(M, tol=None, hermitian=False):
    """
    Return matrix rank of array using SVD method

    Rank of the array is the number of singular values of the array that are
    greater than `tol`.

    .. versionchanged:: 1.14
       Can now operate on stacks of matrices

    Parameters
    ----------
    M : {(M,), (..., M, N)} array_like
        Input vector or stack of matrices.
    tol : (...) array_like, float, optional
        Threshold below which SVD values are considered zero. If `tol` is
        None, and ``S`` is an array with singular values for `M`, and
        ``eps`` is the epsilon value for datatype of ``S``, then `tol` is
        set to ``S.max() * max(M.shape) * eps``.

        .. versionchanged:: 1.14
           Broadcasted against the stack of matrices
    hermitian : bool, optional
        If True, `M` is assumed to be Hermitian (symmetric if real-valued),
        enabling a more efficient method for finding singular values.
        Defaults to False.

        .. versionadded:: 1.14

    Returns
    -------
    rank : (...) array_like
        Rank of M.

    Notes
    -----
    The default threshold to detect rank deficiency is a test on the magnitude
    of the singular values of `M`.  By default, we identify singular values less
    than ``S.max() * max(M.shape) * eps`` as indicating rank deficiency (with
    the symbols defined above). This is the algorithm MATLAB uses [1].  It also
    appears in *Numerical recipes* in the discussion of SVD solutions for linear
    least squares [2].

    This default threshold is designed to detect rank deficiency accounting for
    the numerical errors of the SVD computation.  Imagine that there is a column
    in `M` that is an exact (in floating point) linear combination of other
    columns in `M`. Computing the SVD on `M` will not produce a singular value
    exactly equal to 0 in general: any difference of the smallest SVD value from
    0 will be caused by numerical imprecision in the calculation of the SVD.
    Our threshold for small SVD values takes this numerical imprecision into
    account, and the default threshold will detect such numerical rank
    deficiency.  The threshold may declare a matrix `M` rank deficient even if
    the linear combination of some columns of `M` is not exactly equal to
    another column of `M` but only numerically very close to another column of
    `M`.

    We chose our default threshold because it is in wide use.  Other thresholds
    are possible.  For example, elsewhere in the 2007 edition of *Numerical
    recipes* there is an alternative threshold of ``S.max() *
    np.finfo(M.dtype).eps / 2. * np.sqrt(m + n + 1.)``. The authors describe
    this threshold as being based on "expected roundoff error" (p 71).

    The thresholds above deal with floating point roundoff error in the
    calculation of the SVD.  However, you may have more information about the
    sources of error in `M` that would make you consider other tolerance values
    to detect *effective* rank deficiency.  The most useful measure of the
    tolerance depends on the operations you intend to use on your matrix.  For
    example, if your data come from uncertain measurements with uncertainties
    greater than floating point epsilon, choosing a tolerance near that
    uncertainty may be preferable.  The tolerance may be absolute if the
    uncertainties are absolute rather than relative.

    References
    ----------
    .. [1] MATLAB reference documention, "Rank"
           https://www.mathworks.com/help/techdoc/ref/rank.html
    .. [2] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,
           "Numerical Recipes (3rd edition)", Cambridge University Press, 2007,
           page 795.

    Examples
    --------
    >>> from numpy.linalg import matrix_rank
    >>> matrix_rank(np.eye(4)) # Full rank matrix
    4
    >>> I=np.eye(4); I[-1,-1] = 0. # rank deficient matrix
    >>> matrix_rank(I)
    3
    >>> matrix_rank(np.ones((4,))) # 1 dimension - rank 1 unless all 0
    1
    >>> matrix_rank(np.zeros((4,)))
    0
    """
    M = asarray(M)
    if M.ndim < 2:
        return int(not all(M==0))
    S = svd(M, compute_uv=False, hermitian=hermitian)
    if tol is None:
        tol = S.max(axis=-1, keepdims=True) * max(M.shape[-2:]) * finfo(S.dtype).eps
    else:
        tol = asarray(tol)[..., newaxis]
    return count_nonzero(S > tol, axis=-1)


# Generalized inverse

def _pinv_dispatcher(a, rcond=None, hermitian=None):
    return (a,)


@array_function_dispatch(_pinv_dispatcher)
def pinv(a, rcond=1e-15, hermitian=False):
    """
    Compute the (Moore-Penrose) pseudo-inverse of a matrix.

    Calculate the generalized inverse of a matrix using its
    singular-value decomposition (SVD) and including all
    *large* singular values.

    .. versionchanged:: 1.14
       Can now operate on stacks of matrices

    Parameters
    ----------
    a : (..., M, N) array_like
        Matrix or stack of matrices to be pseudo-inverted.
    rcond : (...) array_like of float
        Cutoff for small singular values.
        Singular values less than or equal to
        ``rcond * largest_singular_value`` are set to zero.
        Broadcasts against the stack of matrices.
    hermitian : bool, optional
        If True, `a` is assumed to be Hermitian (symmetric if real-valued),
        enabling a more efficient method for finding singular values.
        Defaults to False.

        .. versionadded:: 1.17.0

    Returns
    -------
    B : (..., N, M) ndarray
        The pseudo-inverse of `a`. If `a` is a `matrix` instance, then so
        is `B`.

    Raises
    ------
    LinAlgError
        If the SVD computation does not converge.

    Notes
    -----
    The pseudo-inverse of a matrix A, denoted :math:`A^+`, is
    defined as: "the matrix that 'solves' [the least-squares problem]
    :math:`Ax = b`," i.e., if :math:`\\bar{x}` is said solution, then
    :math:`A^+` is that matrix such that :math:`\\bar{x} = A^+b`.

    It can be shown that if :math:`Q_1 \\Sigma Q_2^T = A` is the singular
    value decomposition of A, then
    :math:`A^+ = Q_2 \\Sigma^+ Q_1^T`, where :math:`Q_{1,2}` are
    orthogonal matrices, :math:`\\Sigma` is a diagonal matrix consisting
    of A's so-called singular values, (followed, typically, by
    zeros), and then :math:`\\Sigma^+` is simply the diagonal matrix
    consisting of the reciprocals of A's singular values
    (again, followed by zeros). [1]_

    References
    ----------
    .. [1] G. Strang, *Linear Algebra and Its Applications*, 2nd Ed., Orlando,
           FL, Academic Press, Inc., 1980, pp. 139-142.

    Examples
    --------
    The following example checks that ``a * a+ * a == a`` and
    ``a+ * a * a+ == a+``:

    >>> a = np.random.randn(9, 6)
    >>> B = np.linalg.pinv(a)
    >>> np.allclose(a, np.dot(a, np.dot(B, a)))
    True
    >>> np.allclose(B, np.dot(B, np.dot(a, B)))
    True

    """
    a, wrap = _makearray(a)
    rcond = asarray(rcond)
    if _is_empty_2d(a):
        m, n = a.shape[-2:]
        res = empty(a.shape[:-2] + (n, m), dtype=a.dtype)
        return wrap(res)
    a = a.conjugate()
    u, s, vt = svd(a, full_matrices=False, hermitian=hermitian)

    # discard small singular values
    cutoff = rcond[..., newaxis] * amax(s, axis=-1, keepdims=True)
    large = s > cutoff
    s = divide(1, s, where=large, out=s)
    s[~large] = 0

    res = matmul(transpose(vt), multiply(s[..., newaxis], transpose(u)))
    return wrap(res)


# Determinant


@array_function_dispatch(_unary_dispatcher)
def slogdet(a):
    """
    Compute the sign and (natural) logarithm of the determinant of an array.

    If an array has a very small or very large determinant, then a call to
    `det` may overflow or underflow. This routine is more robust against such
    issues, because it computes the logarithm of the determinant rather than
    the determinant itself.

    Parameters
    ----------
    a : (..., M, M) array_like
        Input array, has to be a square 2-D array.

    Returns
    -------
    sign : (...) array_like
        A number representing the sign of the determinant. For a real matrix,
        this is 1, 0, or -1. For a complex matrix, this is a complex number
        with absolute value 1 (i.e., it is on the unit circle), or else 0.
    logdet : (...) array_like
        The natural log of the absolute value of the determinant.

    If the determinant is zero, then `sign` will be 0 and `logdet` will be
    -Inf. In all cases, the determinant is equal to ``sign * np.exp(logdet)``.

    See Also
    --------
    det

    Notes
    -----

    .. versionadded:: 1.8.0

    Broadcasting rules apply, see the `numpy.linalg` documentation for
    details.

    .. versionadded:: 1.6.0

    The determinant is computed via LU factorization using the LAPACK
    routine ``z/dgetrf``.


    Examples
    --------
    The determinant of a 2-D array ``[[a, b], [c, d]]`` is ``ad - bc``:

    >>> a = np.array([[1, 2], [3, 4]])
    >>> (sign, logdet) = np.linalg.slogdet(a)
    >>> (sign, logdet)
    (-1, 0.69314718055994529) # may vary
    >>> sign * np.exp(logdet)
    -2.0

    Computing log-determinants for a stack of matrices:

    >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
    >>> a.shape
    (3, 2, 2)
    >>> sign, logdet = np.linalg.slogdet(a)
    >>> (sign, logdet)
    (array([-1., -1., -1.]), array([ 0.69314718,  1.09861229,  2.07944154]))
    >>> sign * np.exp(logdet)
    array([-2., -3., -8.])

    This routine succeeds where ordinary `det` does not:

    >>> np.linalg.det(np.eye(500) * 0.1)
    0.0
    >>> np.linalg.slogdet(np.eye(500) * 0.1)
    (1, -1151.2925464970228)

    """
    a = asarray(a)
    _assert_stacked_2d(a)
    _assert_stacked_square(a)
    t, result_t = _commonType(a)
    real_t = _realType(result_t)
    signature = 'D->Dd' if isComplexType(t) else 'd->dd'
    sign, logdet = _umath_linalg.slogdet(a, signature=signature)
    sign = sign.astype(result_t, copy=False)
    logdet = logdet.astype(real_t, copy=False)
    return sign, logdet


@array_function_dispatch(_unary_dispatcher)
def det(a):
    """
    Compute the determinant of an array.

    Parameters
    ----------
    a : (..., M, M) array_like
        Input array to compute determinants for.

    Returns
    -------
    det : (...) array_like
        Determinant of `a`.

    See Also
    --------
    slogdet : Another way to represent the determinant, more suitable
      for large matrices where underflow/overflow may occur.

    Notes
    -----

    .. versionadded:: 1.8.0

    Broadcasting rules apply, see the `numpy.linalg` documentation for
    details.

    The determinant is computed via LU factorization using the LAPACK
    routine ``z/dgetrf``.

    Examples
    --------
    The determinant of a 2-D array [[a, b], [c, d]] is ad - bc:

    >>> a = np.array([[1, 2], [3, 4]])
    >>> np.linalg.det(a)
    -2.0 # may vary

    Computing determinants for a stack of matrices:

    >>> a = np.array([ [[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]] ])
    >>> a.shape
    (3, 2, 2)
    >>> np.linalg.det(a)
    array([-2., -3., -8.])

    """
    a = asarray(a)
    _assert_stacked_2d(a)
    _assert_stacked_square(a)
    t, result_t = _commonType(a)
    signature = 'D->D' if isComplexType(t) else 'd->d'
    r = _umath_linalg.det(a, signature=signature)
    r = r.astype(result_t, copy=False)
    return r


# Linear Least Squares

def _lstsq_dispatcher(a, b, rcond=None):
    return (a, b)


@array_function_dispatch(_lstsq_dispatcher)
def lstsq(a, b, rcond="warn"):
    r"""
    Return the least-squares solution to a linear matrix equation.

    Solves the equation :math:`a x = b` by computing a vector `x` that
    minimizes the squared Euclidean 2-norm :math:`\| b - a x \|^2_2`.
    The equation may be under-, well-, or over-determined (i.e., the
    number of linearly independent rows of `a` can be less than, equal
    to, or greater than its number of linearly independent columns).
    If `a` is square and of full rank, then `x` (but for round-off error)
    is the "exact" solution of the equation.

    Parameters
    ----------
    a : (M, N) array_like
        "Coefficient" matrix.
    b : {(M,), (M, K)} array_like
        Ordinate or "dependent variable" values. If `b` is two-dimensional,
        the least-squares solution is calculated for each of the `K` columns
        of `b`.
    rcond : float, optional
        Cut-off ratio for small singular values of `a`.
        For the purposes of rank determination, singular values are treated
        as zero if they are smaller than `rcond` times the largest singular
        value of `a`.

        .. versionchanged:: 1.14.0
           If not set, a FutureWarning is given. The previous default
           of ``-1`` will use the machine precision as `rcond` parameter,
           the new default will use the machine precision times `max(M, N)`.
           To silence the warning and use the new default, use ``rcond=None``,
           to keep using the old behavior, use ``rcond=-1``.

    Returns
    -------
    x : {(N,), (N, K)} ndarray
        Least-squares solution. If `b` is two-dimensional,
        the solutions are in the `K` columns of `x`.
    residuals : {(1,), (K,), (0,)} ndarray
        Sums of residuals; squared Euclidean 2-norm for each column in
        ``b - a*x``.
        If the rank of `a` is < N or M <= N, this is an empty array.
        If `b` is 1-dimensional, this is a (1,) shape array.
        Otherwise the shape is (K,).
    rank : int
        Rank of matrix `a`.
    s : (min(M, N),) ndarray
        Singular values of `a`.

    Raises
    ------
    LinAlgError
        If computation does not converge.

    Notes
    -----
    If `b` is a matrix, then all array results are returned as matrices.

    Examples
    --------
    Fit a line, ``y = mx + c``, through some noisy data-points:

    >>> x = np.array([0, 1, 2, 3])
    >>> y = np.array([-1, 0.2, 0.9, 2.1])

    By examining the coefficients, we see that the line should have a
    gradient of roughly 1 and cut the y-axis at, more or less, -1.

    We can rewrite the line equation as ``y = Ap``, where ``A = [[x 1]]``
    and ``p = [[m], [c]]``.  Now use `lstsq` to solve for `p`:

    >>> A = np.vstack([x, np.ones(len(x))]).T
    >>> A
    array([[ 0.,  1.],
           [ 1.,  1.],
           [ 2.,  1.],
           [ 3.,  1.]])

    >>> m, c = np.linalg.lstsq(A, y, rcond=None)[0]
    >>> m, c
    (1.0 -0.95) # may vary

    Plot the data along with the fitted line:

    >>> import matplotlib.pyplot as plt
    >>> _ = plt.plot(x, y, 'o', label='Original data', markersize=10)
    >>> _ = plt.plot(x, m*x + c, 'r', label='Fitted line')
    >>> _ = plt.legend()
    >>> plt.show()

    """
    a, _ = _makearray(a)
    b, wrap = _makearray(b)
    is_1d = b.ndim == 1
    if is_1d:
        b = b[:, newaxis]
    _assert_2d(a, b)
    m, n = a.shape[-2:]
    m2, n_rhs = b.shape[-2:]
    if m != m2:
        raise LinAlgError('Incompatible dimensions')

    t, result_t = _commonType(a, b)
    # FIXME: real_t is unused
    real_t = _linalgRealType(t)
    result_real_t = _realType(result_t)

    # Determine default rcond value
    if rcond == "warn":
        # 2017-08-19, 1.14.0
        warnings.warn("`rcond` parameter will change to the default of "
                      "machine precision times ``max(M, N)`` where M and N "
                      "are the input matrix dimensions.\n"
                      "To use the future default and silence this warning "
                      "we advise to pass `rcond=None`, to keep using the old, "
                      "explicitly pass `rcond=-1`.",
                      FutureWarning, stacklevel=3)
        rcond = -1
    if rcond is None:
        rcond = finfo(t).eps * max(n, m)

    if m <= n:
        gufunc = _umath_linalg.lstsq_m
    else:
        gufunc = _umath_linalg.lstsq_n

    signature = 'DDd->Ddid' if isComplexType(t) else 'ddd->ddid'
    extobj = get_linalg_error_extobj(_raise_linalgerror_lstsq)
    if n_rhs == 0:
        # lapack can't handle n_rhs = 0 - so allocate the array one larger in that axis
        b = zeros(b.shape[:-2] + (m, n_rhs + 1), dtype=b.dtype)
    x, resids, rank, s = gufunc(a, b, rcond, signature=signature, extobj=extobj)
    if m == 0:
        x[...] = 0
    if n_rhs == 0:
        # remove the item we added
        x = x[..., :n_rhs]
        resids = resids[..., :n_rhs]

    # remove the axis we added
    if is_1d:
        x = x.squeeze(axis=-1)
        # we probably should squeeze resids too, but we can't
        # without breaking compatibility.

    # as documented
    if rank != n or m <= n:
        resids = array([], result_real_t)

    # coerce output arrays
    s = s.astype(result_real_t, copy=False)
    resids = resids.astype(result_real_t, copy=False)
    x = x.astype(result_t, copy=True)  # Copying lets the memory in r_parts be freed
    return wrap(x), wrap(resids), rank, s


def _multi_svd_norm(x, row_axis, col_axis, op):
    """Compute a function of the singular values of the 2-D matrices in `x`.

    This is a private utility function used by `numpy.linalg.norm()`.

    Parameters
    ----------
    x : ndarray
    row_axis, col_axis : int
        The axes of `x` that hold the 2-D matrices.
    op : callable
        This should be either numpy.amin or `numpy.amax` or `numpy.sum`.

    Returns
    -------
    result : float or ndarray
        If `x` is 2-D, the return values is a float.
        Otherwise, it is an array with ``x.ndim - 2`` dimensions.
        The return values are either the minimum or maximum or sum of the
        singular values of the matrices, depending on whether `op`
        is `numpy.amin` or `numpy.amax` or `numpy.sum`.

    """
    y = moveaxis(x, (row_axis, col_axis), (-2, -1))
    result = op(svd(y, compute_uv=False), axis=-1)
    return result


def _norm_dispatcher(x, ord=None, axis=None, keepdims=None):
    return (x,)


@array_function_dispatch(_norm_dispatcher)
def norm(x, ord=None, axis=None, keepdims=False):
    """
    Matrix or vector norm.

    This function is able to return one of eight different matrix norms,
    or one of an infinite number of vector norms (described below), depending
    on the value of the ``ord`` parameter.

    Parameters
    ----------
    x : array_like
        Input array.  If `axis` is None, `x` must be 1-D or 2-D, unless `ord`
        is None. If both `axis` and `ord` are None, the 2-norm of
        ``x.ravel`` will be returned.
    ord : {non-zero int, inf, -inf, 'fro', 'nuc'}, optional
        Order of the norm (see table under ``Notes``). inf means numpy's
        `inf` object. The default is None.
    axis : {None, int, 2-tuple of ints}, optional.
        If `axis` is an integer, it specifies the axis of `x` along which to
        compute the vector norms.  If `axis` is a 2-tuple, it specifies the
        axes that hold 2-D matrices, and the matrix norms of these matrices
        are computed.  If `axis` is None then either a vector norm (when `x`
        is 1-D) or a matrix norm (when `x` is 2-D) is returned. The default
        is None.

        .. versionadded:: 1.8.0

    keepdims : bool, optional
        If this is set to True, the axes which are normed over are left in the
        result as dimensions with size one.  With this option the result will
        broadcast correctly against the original `x`.

        .. versionadded:: 1.10.0

    Returns
    -------
    n : float or ndarray
        Norm of the matrix or vector(s).

    Notes
    -----
    For values of ``ord <= 0``, the result is, strictly speaking, not a
    mathematical 'norm', but it may still be useful for various numerical
    purposes.

    The following norms can be calculated:

    =====  ============================  ==========================
    ord    norm for matrices             norm for vectors
    =====  ============================  ==========================
    None   Frobenius norm                2-norm
    'fro'  Frobenius norm                --
    'nuc'  nuclear norm                  --
    inf    max(sum(abs(x), axis=1))      max(abs(x))
    -inf   min(sum(abs(x), axis=1))      min(abs(x))
    0      --                            sum(x != 0)
    1      max(sum(abs(x), axis=0))      as below
    -1     min(sum(abs(x), axis=0))      as below
    2      2-norm (largest sing. value)  as below
    -2     smallest singular value       as below
    other  --                            sum(abs(x)**ord)**(1./ord)
    =====  ============================  ==========================

    The Frobenius norm is given by [1]_:

        :math:`||A||_F = [\\sum_{i,j} abs(a_{i,j})^2]^{1/2}`

    The nuclear norm is the sum of the singular values.

    References
    ----------
    .. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
           Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15

    Examples
    --------
    >>> from numpy import linalg as LA
    >>> a = np.arange(9) - 4
    >>> a
    array([-4, -3, -2, ...,  2,  3,  4])
    >>> b = a.reshape((3, 3))
    >>> b
    array([[-4, -3, -2],
           [-1,  0,  1],
           [ 2,  3,  4]])

    >>> LA.norm(a)
    7.745966692414834
    >>> LA.norm(b)
    7.745966692414834
    >>> LA.norm(b, 'fro')
    7.745966692414834
    >>> LA.norm(a, np.inf)
    4.0
    >>> LA.norm(b, np.inf)
    9.0
    >>> LA.norm(a, -np.inf)
    0.0
    >>> LA.norm(b, -np.inf)
    2.0

    >>> LA.norm(a, 1)
    20.0
    >>> LA.norm(b, 1)
    7.0
    >>> LA.norm(a, -1)
    -4.6566128774142013e-010
    >>> LA.norm(b, -1)
    6.0
    >>> LA.norm(a, 2)
    7.745966692414834
    >>> LA.norm(b, 2)
    7.3484692283495345

    >>> LA.norm(a, -2)
    0.0
    >>> LA.norm(b, -2)
    1.8570331885190563e-016 # may vary
    >>> LA.norm(a, 3)
    5.8480354764257312 # may vary
    >>> LA.norm(a, -3)
    0.0

    Using the `axis` argument to compute vector norms:

    >>> c = np.array([[ 1, 2, 3],
    ...               [-1, 1, 4]])
    >>> LA.norm(c, axis=0)
    array([ 1.41421356,  2.23606798,  5.        ])
    >>> LA.norm(c, axis=1)
    array([ 3.74165739,  4.24264069])
    >>> LA.norm(c, ord=1, axis=1)
    array([ 6.,  6.])

    Using the `axis` argument to compute matrix norms:

    >>> m = np.arange(8).reshape(2,2,2)
    >>> LA.norm(m, axis=(1,2))
    array([  3.74165739,  11.22497216])
    >>> LA.norm(m[0, :, :]), LA.norm(m[1, :, :])
    (3.7416573867739413, 11.224972160321824)

    """
    x = asarray(x)

    if not issubclass(x.dtype.type, (inexact, object_)):
        x = x.astype(float)

    # Immediately handle some default, simple, fast, and common cases.
    if axis is None:
        ndim = x.ndim
        if ((ord is None) or
            (ord in ('f', 'fro') and ndim == 2) or
            (ord == 2 and ndim == 1)):

            x = x.ravel(order='K')
            if isComplexType(x.dtype.type):
                sqnorm = dot(x.real, x.real) + dot(x.imag, x.imag)
            else:
                sqnorm = dot(x, x)
            ret = sqrt(sqnorm)
            if keepdims:
                ret = ret.reshape(ndim*[1])
            return ret

    # Normalize the `axis` argument to a tuple.
    nd = x.ndim
    if axis is None:
        axis = tuple(range(nd))
    elif not isinstance(axis, tuple):
        try:
            axis = int(axis)
        except Exception:
            raise TypeError("'axis' must be None, an integer or a tuple of integers")
        axis = (axis,)

    if len(axis) == 1:
        if ord == Inf:
            return abs(x).max(axis=axis, keepdims=keepdims)
        elif ord == -Inf:
            return abs(x).min(axis=axis, keepdims=keepdims)
        elif ord == 0:
            # Zero norm
            return (x != 0).astype(x.real.dtype).sum(axis=axis, keepdims=keepdims)
        elif ord == 1:
            # special case for speedup
            return add.reduce(abs(x), axis=axis, keepdims=keepdims)
        elif ord is None or ord == 2:
            # special case for speedup
            s = (x.conj() * x).real
            return sqrt(add.reduce(s, axis=axis, keepdims=keepdims))
        else:
            try:
                ord + 1
            except TypeError:
                raise ValueError("Invalid norm order for vectors.")
            absx = abs(x)
            absx **= ord
            ret = add.reduce(absx, axis=axis, keepdims=keepdims)
            ret **= (1 / ord)
            return ret
    elif len(axis) == 2:
        row_axis, col_axis = axis
        row_axis = normalize_axis_index(row_axis, nd)
        col_axis = normalize_axis_index(col_axis, nd)
        if row_axis == col_axis:
            raise ValueError('Duplicate axes given.')
        if ord == 2:
            ret =  _multi_svd_norm(x, row_axis, col_axis, amax)
        elif ord == -2:
            ret = _multi_svd_norm(x, row_axis, col_axis, amin)
        elif ord == 1:
            if col_axis > row_axis:
                col_axis -= 1
            ret = add.reduce(abs(x), axis=row_axis).max(axis=col_axis)
        elif ord == Inf:
            if row_axis > col_axis:
                row_axis -= 1
            ret = add.reduce(abs(x), axis=col_axis).max(axis=row_axis)
        elif ord == -1:
            if col_axis > row_axis:
                col_axis -= 1
            ret = add.reduce(abs(x), axis=row_axis).min(axis=col_axis)
        elif ord == -Inf:
            if row_axis > col_axis:
                row_axis -= 1
            ret = add.reduce(abs(x), axis=col_axis).min(axis=row_axis)
        elif ord in [None, 'fro', 'f']:
            ret = sqrt(add.reduce((x.conj() * x).real, axis=axis))
        elif ord == 'nuc':
            ret = _multi_svd_norm(x, row_axis, col_axis, sum)
        else:
            raise ValueError("Invalid norm order for matrices.")
        if keepdims:
            ret_shape = list(x.shape)
            ret_shape[axis[0]] = 1
            ret_shape[axis[1]] = 1
            ret = ret.reshape(ret_shape)
        return ret
    else:
        raise ValueError("Improper number of dimensions to norm.")


# multi_dot

def _multidot_dispatcher(arrays):
    return arrays


@array_function_dispatch(_multidot_dispatcher)
def multi_dot(arrays):
    """
    Compute the dot product of two or more arrays in a single function call,
    while automatically selecting the fastest evaluation order.

    `multi_dot` chains `numpy.dot` and uses optimal parenthesization
    of the matrices [1]_ [2]_. Depending on the shapes of the matrices,
    this can speed up the multiplication a lot.

    If the first argument is 1-D it is treated as a row vector.
    If the last argument is 1-D it is treated as a column vector.
    The other arguments must be 2-D.

    Think of `multi_dot` as::

        def multi_dot(arrays): return functools.reduce(np.dot, arrays)


    Parameters
    ----------
    arrays : sequence of array_like
        If the first argument is 1-D it is treated as row vector.
        If the last argument is 1-D it is treated as column vector.
        The other arguments must be 2-D.

    Returns
    -------
    output : ndarray
        Returns the dot product of the supplied arrays.

    See Also
    --------
    dot : dot multiplication with two arguments.

    References
    ----------

    .. [1] Cormen, "Introduction to Algorithms", Chapter 15.2, p. 370-378
    .. [2] https://en.wikipedia.org/wiki/Matrix_chain_multiplication

    Examples
    --------
    `multi_dot` allows you to write::

    >>> from numpy.linalg import multi_dot
    >>> # Prepare some data
    >>> A = np.random.random((10000, 100))
    >>> B = np.random.random((100, 1000))
    >>> C = np.random.random((1000, 5))
    >>> D = np.random.random((5, 333))
    >>> # the actual dot multiplication
    >>> _ = multi_dot([A, B, C, D])

    instead of::

    >>> _ = np.dot(np.dot(np.dot(A, B), C), D)
    >>> # or
    >>> _ = A.dot(B).dot(C).dot(D)

    Notes
    -----
    The cost for a matrix multiplication can be calculated with the
    following function::

        def cost(A, B):
            return A.shape[0] * A.shape[1] * B.shape[1]

    Assume we have three matrices
    :math:`A_{10x100}, B_{100x5}, C_{5x50}`.

    The costs for the two different parenthesizations are as follows::

        cost((AB)C) = 10*100*5 + 10*5*50   = 5000 + 2500   = 7500
        cost(A(BC)) = 10*100*50 + 100*5*50 = 50000 + 25000 = 75000

    """
    n = len(arrays)
    # optimization only makes sense for len(arrays) > 2
    if n < 2:
        raise ValueError("Expecting at least two arrays.")
    elif n == 2:
        return dot(arrays[0], arrays[1])

    arrays = [asanyarray(a) for a in arrays]

    # save original ndim to reshape the result array into the proper form later
    ndim_first, ndim_last = arrays[0].ndim, arrays[-1].ndim
    # Explicitly convert vectors to 2D arrays to keep the logic of the internal
    # _multi_dot_* functions as simple as possible.
    if arrays[0].ndim == 1:
        arrays[0] = atleast_2d(arrays[0])
    if arrays[-1].ndim == 1:
        arrays[-1] = atleast_2d(arrays[-1]).T
    _assert_2d(*arrays)

    # _multi_dot_three is much faster than _multi_dot_matrix_chain_order
    if n == 3:
        result = _multi_dot_three(arrays[0], arrays[1], arrays[2])
    else:
        order = _multi_dot_matrix_chain_order(arrays)
        result = _multi_dot(arrays, order, 0, n - 1)

    # return proper shape
    if ndim_first == 1 and ndim_last == 1:
        return result[0, 0]  # scalar
    elif ndim_first == 1 or ndim_last == 1:
        return result.ravel()  # 1-D
    else:
        return result


def _multi_dot_three(A, B, C):
    """
    Find the best order for three arrays and do the multiplication.

    For three arguments `_multi_dot_three` is approximately 15 times faster
    than `_multi_dot_matrix_chain_order`

    """
    a0, a1b0 = A.shape
    b1c0, c1 = C.shape
    # cost1 = cost((AB)C) = a0*a1b0*b1c0 + a0*b1c0*c1
    cost1 = a0 * b1c0 * (a1b0 + c1)
    # cost2 = cost(A(BC)) = a1b0*b1c0*c1 + a0*a1b0*c1
    cost2 = a1b0 * c1 * (a0 + b1c0)

    if cost1 < cost2:
        return dot(dot(A, B), C)
    else:
        return dot(A, dot(B, C))


def _multi_dot_matrix_chain_order(arrays, return_costs=False):
    """
    Return a np.array that encodes the optimal order of mutiplications.

    The optimal order array is then used by `_multi_dot()` to do the
    multiplication.

    Also return the cost matrix if `return_costs` is `True`

    The implementation CLOSELY follows Cormen, "Introduction to Algorithms",
    Chapter 15.2, p. 370-378.  Note that Cormen uses 1-based indices.

        cost[i, j] = min([
            cost[prefix] + cost[suffix] + cost_mult(prefix, suffix)
            for k in range(i, j)])

    """
    n = len(arrays)
    # p stores the dimensions of the matrices
    # Example for p: A_{10x100}, B_{100x5}, C_{5x50} --> p = [10, 100, 5, 50]
    p = [a.shape[0] for a in arrays] + [arrays[-1].shape[1]]
    # m is a matrix of costs of the subproblems
    # m[i,j]: min number of scalar multiplications needed to compute A_{i..j}
    m = zeros((n, n), dtype=double)
    # s is the actual ordering
    # s[i, j] is the value of k at which we split the product A_i..A_j
    s = empty((n, n), dtype=intp)

    for l in range(1, n):
        for i in range(n - l):
            j = i + l
            m[i, j] = Inf
            for k in range(i, j):
                q = m[i, k] + m[k+1, j] + p[i]*p[k+1]*p[j+1]
                if q < m[i, j]:
                    m[i, j] = q
                    s[i, j] = k  # Note that Cormen uses 1-based index

    return (s, m) if return_costs else s


def _multi_dot(arrays, order, i, j):
    """Actually do the multiplication with the given order."""
    if i == j:
        return arrays[i]
    else:
        return dot(_multi_dot(arrays, order, i, order[i, j]),
                   _multi_dot(arrays, order, order[i, j] + 1, j))