hierarchy.py
143 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
"""
Hierarchical clustering (:mod:`scipy.cluster.hierarchy`)
========================================================
.. currentmodule:: scipy.cluster.hierarchy
These functions cut hierarchical clusterings into flat clusterings
or find the roots of the forest formed by a cut by providing the flat
cluster ids of each observation.
.. autosummary::
:toctree: generated/
fcluster
fclusterdata
leaders
These are routines for agglomerative clustering.
.. autosummary::
:toctree: generated/
linkage
single
complete
average
weighted
centroid
median
ward
These routines compute statistics on hierarchies.
.. autosummary::
:toctree: generated/
cophenet
from_mlab_linkage
inconsistent
maxinconsts
maxdists
maxRstat
to_mlab_linkage
Routines for visualizing flat clusters.
.. autosummary::
:toctree: generated/
dendrogram
These are data structures and routines for representing hierarchies as
tree objects.
.. autosummary::
:toctree: generated/
ClusterNode
leaves_list
to_tree
cut_tree
optimal_leaf_ordering
These are predicates for checking the validity of linkage and
inconsistency matrices as well as for checking isomorphism of two
flat cluster assignments.
.. autosummary::
:toctree: generated/
is_valid_im
is_valid_linkage
is_isomorphic
is_monotonic
correspond
num_obs_linkage
Utility routines for plotting:
.. autosummary::
:toctree: generated/
set_link_color_palette
"""
from __future__ import division, print_function, absolute_import
# Copyright (C) Damian Eads, 2007-2008. New BSD License.
# hierarchy.py (derived from cluster.py, http://scipy-cluster.googlecode.com)
#
# Author: Damian Eads
# Date: September 22, 2007
#
# Copyright (c) 2007, 2008, Damian Eads
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# - Redistributions of source code must retain the above
# copyright notice, this list of conditions and the
# following disclaimer.
# - Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# - Neither the name of the author nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import warnings
import bisect
from collections import deque
import numpy as np
from . import _hierarchy, _optimal_leaf_ordering
import scipy.spatial.distance as distance
from scipy._lib.six import string_types
from scipy._lib.six import xrange
_LINKAGE_METHODS = {'single': 0, 'complete': 1, 'average': 2, 'centroid': 3,
'median': 4, 'ward': 5, 'weighted': 6}
_EUCLIDEAN_METHODS = ('centroid', 'median', 'ward')
__all__ = ['ClusterNode', 'average', 'centroid', 'complete', 'cophenet',
'correspond', 'cut_tree', 'dendrogram', 'fcluster', 'fclusterdata',
'from_mlab_linkage', 'inconsistent', 'is_isomorphic',
'is_monotonic', 'is_valid_im', 'is_valid_linkage', 'leaders',
'leaves_list', 'linkage', 'maxRstat', 'maxdists', 'maxinconsts',
'median', 'num_obs_linkage', 'optimal_leaf_ordering',
'set_link_color_palette', 'single', 'to_mlab_linkage', 'to_tree',
'ward', 'weighted', 'distance']
class ClusterWarning(UserWarning):
pass
def _warning(s):
warnings.warn('scipy.cluster: %s' % s, ClusterWarning, stacklevel=3)
def _copy_array_if_base_present(a):
"""
Copy the array if its base points to a parent array.
"""
if a.base is not None:
return a.copy()
elif np.issubsctype(a, np.float32):
return np.array(a, dtype=np.double)
else:
return a
def _copy_arrays_if_base_present(T):
"""
Accept a tuple of arrays T. Copies the array T[i] if its base array
points to an actual array. Otherwise, the reference is just copied.
This is useful if the arrays are being passed to a C function that
does not do proper striding.
"""
l = [_copy_array_if_base_present(a) for a in T]
return l
def _randdm(pnts):
"""
Generate a random distance matrix stored in condensed form.
Parameters
----------
pnts : int
The number of points in the distance matrix. Has to be at least 2.
Returns
-------
D : ndarray
A ``pnts * (pnts - 1) / 2`` sized vector is returned.
"""
if pnts >= 2:
D = np.random.rand(pnts * (pnts - 1) / 2)
else:
raise ValueError("The number of points in the distance matrix "
"must be at least 2.")
return D
def single(y):
"""
Perform single/min/nearest linkage on the condensed distance matrix ``y``.
Parameters
----------
y : ndarray
The upper triangular of the distance matrix. The result of
``pdist`` is returned in this form.
Returns
-------
Z : ndarray
The linkage matrix.
See Also
--------
linkage: for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist : pairwise distance metrics
Examples
--------
>>> from scipy.cluster.hierarchy import single, fcluster
>>> from scipy.spatial.distance import pdist
First we need a toy dataset to play with::
x x x x
x x
x x
x x x x
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
Then we get a condensed distance matrix from this dataset:
>>> y = pdist(X)
Finally, we can perform the clustering:
>>> Z = single(y)
>>> Z
array([[ 0., 1., 1., 2.],
[ 2., 12., 1., 3.],
[ 3., 4., 1., 2.],
[ 5., 14., 1., 3.],
[ 6., 7., 1., 2.],
[ 8., 16., 1., 3.],
[ 9., 10., 1., 2.],
[11., 18., 1., 3.],
[13., 15., 2., 6.],
[17., 20., 2., 9.],
[19., 21., 2., 12.]])
The linkage matrix ``Z`` represents a dendrogram - see
`scipy.cluster.hierarchy.linkage` for a detailed explanation of its
contents.
We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster
each initial point would belong given a distance threshold:
>>> fcluster(Z, 0.9, criterion='distance')
array([ 7, 8, 9, 10, 11, 12, 4, 5, 6, 1, 2, 3], dtype=int32)
>>> fcluster(Z, 1, criterion='distance')
array([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32)
>>> fcluster(Z, 2, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
Also `scipy.cluster.hierarchy.dendrogram` can be used to generate a
plot of the dendrogram.
"""
return linkage(y, method='single', metric='euclidean')
def complete(y):
"""
Perform complete/max/farthest point linkage on a condensed distance matrix.
Parameters
----------
y : ndarray
The upper triangular of the distance matrix. The result of
``pdist`` is returned in this form.
Returns
-------
Z : ndarray
A linkage matrix containing the hierarchical clustering. See
the `linkage` function documentation for more information
on its structure.
See Also
--------
linkage: for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist : pairwise distance metrics
Examples
--------
>>> from scipy.cluster.hierarchy import complete, fcluster
>>> from scipy.spatial.distance import pdist
First we need a toy dataset to play with::
x x x x
x x
x x
x x x x
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
Then we get a condensed distance matrix from this dataset:
>>> y = pdist(X)
Finally, we can perform the clustering:
>>> Z = complete(y)
>>> Z
array([[ 0. , 1. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.41421356, 3. ],
[ 5. , 13. , 1.41421356, 3. ],
[ 8. , 14. , 1.41421356, 3. ],
[11. , 15. , 1.41421356, 3. ],
[16. , 17. , 4.12310563, 6. ],
[18. , 19. , 4.12310563, 6. ],
[20. , 21. , 5.65685425, 12. ]])
The linkage matrix ``Z`` represents a dendrogram - see
`scipy.cluster.hierarchy.linkage` for a detailed explanation of its
contents.
We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster
each initial point would belong given a distance threshold:
>>> fcluster(Z, 0.9, criterion='distance')
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32)
>>> fcluster(Z, 1.5, criterion='distance')
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
>>> fcluster(Z, 4.5, criterion='distance')
array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2], dtype=int32)
>>> fcluster(Z, 6, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
Also `scipy.cluster.hierarchy.dendrogram` can be used to generate a
plot of the dendrogram.
"""
return linkage(y, method='complete', metric='euclidean')
def average(y):
"""
Perform average/UPGMA linkage on a condensed distance matrix.
Parameters
----------
y : ndarray
The upper triangular of the distance matrix. The result of
``pdist`` is returned in this form.
Returns
-------
Z : ndarray
A linkage matrix containing the hierarchical clustering. See
`linkage` for more information on its structure.
See Also
--------
linkage: for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist : pairwise distance metrics
Examples
--------
>>> from scipy.cluster.hierarchy import average, fcluster
>>> from scipy.spatial.distance import pdist
First we need a toy dataset to play with::
x x x x
x x
x x
x x x x
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
Then we get a condensed distance matrix from this dataset:
>>> y = pdist(X)
Finally, we can perform the clustering:
>>> Z = average(y)
>>> Z
array([[ 0. , 1. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.20710678, 3. ],
[ 5. , 13. , 1.20710678, 3. ],
[ 8. , 14. , 1.20710678, 3. ],
[11. , 15. , 1.20710678, 3. ],
[16. , 17. , 3.39675184, 6. ],
[18. , 19. , 3.39675184, 6. ],
[20. , 21. , 4.09206523, 12. ]])
The linkage matrix ``Z`` represents a dendrogram - see
`scipy.cluster.hierarchy.linkage` for a detailed explanation of its
contents.
We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster
each initial point would belong given a distance threshold:
>>> fcluster(Z, 0.9, criterion='distance')
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32)
>>> fcluster(Z, 1.5, criterion='distance')
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
>>> fcluster(Z, 4, criterion='distance')
array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2], dtype=int32)
>>> fcluster(Z, 6, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
Also `scipy.cluster.hierarchy.dendrogram` can be used to generate a
plot of the dendrogram.
"""
return linkage(y, method='average', metric='euclidean')
def weighted(y):
"""
Perform weighted/WPGMA linkage on the condensed distance matrix.
See `linkage` for more information on the return
structure and algorithm.
Parameters
----------
y : ndarray
The upper triangular of the distance matrix. The result of
``pdist`` is returned in this form.
Returns
-------
Z : ndarray
A linkage matrix containing the hierarchical clustering. See
`linkage` for more information on its structure.
See Also
--------
linkage : for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist : pairwise distance metrics
Examples
--------
>>> from scipy.cluster.hierarchy import weighted, fcluster
>>> from scipy.spatial.distance import pdist
First we need a toy dataset to play with::
x x x x
x x
x x
x x x x
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
Then we get a condensed distance matrix from this dataset:
>>> y = pdist(X)
Finally, we can perform the clustering:
>>> Z = weighted(y)
>>> Z
array([[ 0. , 1. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 9. , 11. , 1. , 2. ],
[ 2. , 12. , 1.20710678, 3. ],
[ 8. , 13. , 1.20710678, 3. ],
[ 5. , 14. , 1.20710678, 3. ],
[10. , 15. , 1.20710678, 3. ],
[18. , 19. , 3.05595762, 6. ],
[16. , 17. , 3.32379407, 6. ],
[20. , 21. , 4.06357713, 12. ]])
The linkage matrix ``Z`` represents a dendrogram - see
`scipy.cluster.hierarchy.linkage` for a detailed explanation of its
contents.
We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster
each initial point would belong given a distance threshold:
>>> fcluster(Z, 0.9, criterion='distance')
array([ 7, 8, 9, 1, 2, 3, 10, 11, 12, 4, 6, 5], dtype=int32)
>>> fcluster(Z, 1.5, criterion='distance')
array([3, 3, 3, 1, 1, 1, 4, 4, 4, 2, 2, 2], dtype=int32)
>>> fcluster(Z, 4, criterion='distance')
array([2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1], dtype=int32)
>>> fcluster(Z, 6, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
Also `scipy.cluster.hierarchy.dendrogram` can be used to generate a
plot of the dendrogram.
"""
return linkage(y, method='weighted', metric='euclidean')
def centroid(y):
"""
Perform centroid/UPGMC linkage.
See `linkage` for more information on the input matrix,
return structure, and algorithm.
The following are common calling conventions:
1. ``Z = centroid(y)``
Performs centroid/UPGMC linkage on the condensed distance
matrix ``y``.
2. ``Z = centroid(X)``
Performs centroid/UPGMC linkage on the observation matrix ``X``
using Euclidean distance as the distance metric.
Parameters
----------
y : ndarray
A condensed distance matrix. A condensed
distance matrix is a flat array containing the upper
triangular of the distance matrix. This is the form that
``pdist`` returns. Alternatively, a collection of
m observation vectors in n dimensions may be passed as
a m by n array.
Returns
-------
Z : ndarray
A linkage matrix containing the hierarchical clustering. See
the `linkage` function documentation for more information
on its structure.
See Also
--------
linkage: for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist : pairwise distance metrics
Examples
--------
>>> from scipy.cluster.hierarchy import centroid, fcluster
>>> from scipy.spatial.distance import pdist
First we need a toy dataset to play with::
x x x x
x x
x x
x x x x
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
Then we get a condensed distance matrix from this dataset:
>>> y = pdist(X)
Finally, we can perform the clustering:
>>> Z = centroid(y)
>>> Z
array([[ 0. , 1. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 2. , 12. , 1.11803399, 3. ],
[ 5. , 13. , 1.11803399, 3. ],
[ 8. , 15. , 1.11803399, 3. ],
[11. , 14. , 1.11803399, 3. ],
[18. , 19. , 3.33333333, 6. ],
[16. , 17. , 3.33333333, 6. ],
[20. , 21. , 3.33333333, 12. ]])
The linkage matrix ``Z`` represents a dendrogram - see
`scipy.cluster.hierarchy.linkage` for a detailed explanation of its
contents.
We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster
each initial point would belong given a distance threshold:
>>> fcluster(Z, 0.9, criterion='distance')
array([ 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6], dtype=int32)
>>> fcluster(Z, 1.1, criterion='distance')
array([5, 5, 6, 7, 7, 8, 1, 1, 2, 3, 3, 4], dtype=int32)
>>> fcluster(Z, 2, criterion='distance')
array([3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2], dtype=int32)
>>> fcluster(Z, 4, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
Also `scipy.cluster.hierarchy.dendrogram` can be used to generate a
plot of the dendrogram.
"""
return linkage(y, method='centroid', metric='euclidean')
def median(y):
"""
Perform median/WPGMC linkage.
See `linkage` for more information on the return structure
and algorithm.
The following are common calling conventions:
1. ``Z = median(y)``
Performs median/WPGMC linkage on the condensed distance matrix
``y``. See ``linkage`` for more information on the return
structure and algorithm.
2. ``Z = median(X)``
Performs median/WPGMC linkage on the observation matrix ``X``
using Euclidean distance as the distance metric. See `linkage`
for more information on the return structure and algorithm.
Parameters
----------
y : ndarray
A condensed distance matrix. A condensed
distance matrix is a flat array containing the upper
triangular of the distance matrix. This is the form that
``pdist`` returns. Alternatively, a collection of
m observation vectors in n dimensions may be passed as
a m by n array.
Returns
-------
Z : ndarray
The hierarchical clustering encoded as a linkage matrix.
See Also
--------
linkage: for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist : pairwise distance metrics
Examples
--------
>>> from scipy.cluster.hierarchy import median, fcluster
>>> from scipy.spatial.distance import pdist
First we need a toy dataset to play with::
x x x x
x x
x x
x x x x
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
Then we get a condensed distance matrix from this dataset:
>>> y = pdist(X)
Finally, we can perform the clustering:
>>> Z = median(y)
>>> Z
array([[ 0. , 1. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 2. , 12. , 1.11803399, 3. ],
[ 5. , 13. , 1.11803399, 3. ],
[ 8. , 15. , 1.11803399, 3. ],
[11. , 14. , 1.11803399, 3. ],
[18. , 19. , 3. , 6. ],
[16. , 17. , 3.5 , 6. ],
[20. , 21. , 3.25 , 12. ]])
The linkage matrix ``Z`` represents a dendrogram - see
`scipy.cluster.hierarchy.linkage` for a detailed explanation of its
contents.
We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster
each initial point would belong given a distance threshold:
>>> fcluster(Z, 0.9, criterion='distance')
array([ 7, 8, 9, 10, 11, 12, 1, 2, 3, 4, 5, 6], dtype=int32)
>>> fcluster(Z, 1.1, criterion='distance')
array([5, 5, 6, 7, 7, 8, 1, 1, 2, 3, 3, 4], dtype=int32)
>>> fcluster(Z, 2, criterion='distance')
array([3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2], dtype=int32)
>>> fcluster(Z, 4, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
Also `scipy.cluster.hierarchy.dendrogram` can be used to generate a
plot of the dendrogram.
"""
return linkage(y, method='median', metric='euclidean')
def ward(y):
"""
Perform Ward's linkage on a condensed distance matrix.
See `linkage` for more information on the return structure
and algorithm.
The following are common calling conventions:
1. ``Z = ward(y)``
Performs Ward's linkage on the condensed distance matrix ``y``.
2. ``Z = ward(X)``
Performs Ward's linkage on the observation matrix ``X`` using
Euclidean distance as the distance metric.
Parameters
----------
y : ndarray
A condensed distance matrix. A condensed
distance matrix is a flat array containing the upper
triangular of the distance matrix. This is the form that
``pdist`` returns. Alternatively, a collection of
m observation vectors in n dimensions may be passed as
a m by n array.
Returns
-------
Z : ndarray
The hierarchical clustering encoded as a linkage matrix. See
`linkage` for more information on the return structure and
algorithm.
See Also
--------
linkage: for advanced creation of hierarchical clusterings.
scipy.spatial.distance.pdist : pairwise distance metrics
Examples
--------
>>> from scipy.cluster.hierarchy import ward, fcluster
>>> from scipy.spatial.distance import pdist
First we need a toy dataset to play with::
x x x x
x x
x x
x x x x
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
Then we get a condensed distance matrix from this dataset:
>>> y = pdist(X)
Finally, we can perform the clustering:
>>> Z = ward(y)
>>> Z
array([[ 0. , 1. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.29099445, 3. ],
[ 5. , 13. , 1.29099445, 3. ],
[ 8. , 14. , 1.29099445, 3. ],
[11. , 15. , 1.29099445, 3. ],
[16. , 17. , 5.77350269, 6. ],
[18. , 19. , 5.77350269, 6. ],
[20. , 21. , 8.16496581, 12. ]])
The linkage matrix ``Z`` represents a dendrogram - see
`scipy.cluster.hierarchy.linkage` for a detailed explanation of its
contents.
We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster
each initial point would belong given a distance threshold:
>>> fcluster(Z, 0.9, criterion='distance')
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32)
>>> fcluster(Z, 1.1, criterion='distance')
array([1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8], dtype=int32)
>>> fcluster(Z, 3, criterion='distance')
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
>>> fcluster(Z, 9, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
Also `scipy.cluster.hierarchy.dendrogram` can be used to generate a
plot of the dendrogram.
"""
return linkage(y, method='ward', metric='euclidean')
def linkage(y, method='single', metric='euclidean', optimal_ordering=False):
"""
Perform hierarchical/agglomerative clustering.
The input y may be either a 1d condensed distance matrix
or a 2d array of observation vectors.
If y is a 1d condensed distance matrix,
then y must be a :math:`\\binom{n}{2}` sized
vector where n is the number of original observations paired
in the distance matrix. The behavior of this function is very
similar to the MATLAB linkage function.
A :math:`(n-1)` by 4 matrix ``Z`` is returned. At the
:math:`i`-th iteration, clusters with indices ``Z[i, 0]`` and
``Z[i, 1]`` are combined to form cluster :math:`n + i`. A
cluster with an index less than :math:`n` corresponds to one of
the :math:`n` original observations. The distance between
clusters ``Z[i, 0]`` and ``Z[i, 1]`` is given by ``Z[i, 2]``. The
fourth value ``Z[i, 3]`` represents the number of original
observations in the newly formed cluster.
The following linkage methods are used to compute the distance
:math:`d(s, t)` between two clusters :math:`s` and
:math:`t`. The algorithm begins with a forest of clusters that
have yet to be used in the hierarchy being formed. When two
clusters :math:`s` and :math:`t` from this forest are combined
into a single cluster :math:`u`, :math:`s` and :math:`t` are
removed from the forest, and :math:`u` is added to the
forest. When only one cluster remains in the forest, the algorithm
stops, and this cluster becomes the root.
A distance matrix is maintained at each iteration. The ``d[i,j]``
entry corresponds to the distance between cluster :math:`i` and
:math:`j` in the original forest.
At each iteration, the algorithm must update the distance matrix
to reflect the distance of the newly formed cluster u with the
remaining clusters in the forest.
Suppose there are :math:`|u|` original observations
:math:`u[0], \\ldots, u[|u|-1]` in cluster :math:`u` and
:math:`|v|` original objects :math:`v[0], \\ldots, v[|v|-1]` in
cluster :math:`v`. Recall :math:`s` and :math:`t` are
combined to form cluster :math:`u`. Let :math:`v` be any
remaining cluster in the forest that is not :math:`u`.
The following are methods for calculating the distance between the
newly formed cluster :math:`u` and each :math:`v`.
* method='single' assigns
.. math::
d(u,v) = \\min(dist(u[i],v[j]))
for all points :math:`i` in cluster :math:`u` and
:math:`j` in cluster :math:`v`. This is also known as the
Nearest Point Algorithm.
* method='complete' assigns
.. math::
d(u, v) = \\max(dist(u[i],v[j]))
for all points :math:`i` in cluster u and :math:`j` in
cluster :math:`v`. This is also known by the Farthest Point
Algorithm or Voor Hees Algorithm.
* method='average' assigns
.. math::
d(u,v) = \\sum_{ij} \\frac{d(u[i], v[j])}
{(|u|*|v|)}
for all points :math:`i` and :math:`j` where :math:`|u|`
and :math:`|v|` are the cardinalities of clusters :math:`u`
and :math:`v`, respectively. This is also called the UPGMA
algorithm.
* method='weighted' assigns
.. math::
d(u,v) = (dist(s,v) + dist(t,v))/2
where cluster u was formed with cluster s and t and v
is a remaining cluster in the forest. (also called WPGMA)
* method='centroid' assigns
.. math::
dist(s,t) = ||c_s-c_t||_2
where :math:`c_s` and :math:`c_t` are the centroids of
clusters :math:`s` and :math:`t`, respectively. When two
clusters :math:`s` and :math:`t` are combined into a new
cluster :math:`u`, the new centroid is computed over all the
original objects in clusters :math:`s` and :math:`t`. The
distance then becomes the Euclidean distance between the
centroid of :math:`u` and the centroid of a remaining cluster
:math:`v` in the forest. This is also known as the UPGMC
algorithm.
* method='median' assigns :math:`d(s,t)` like the ``centroid``
method. When two clusters :math:`s` and :math:`t` are combined
into a new cluster :math:`u`, the average of centroids s and t
give the new centroid :math:`u`. This is also known as the
WPGMC algorithm.
* method='ward' uses the Ward variance minimization algorithm.
The new entry :math:`d(u,v)` is computed as follows,
.. math::
d(u,v) = \\sqrt{\\frac{|v|+|s|}
{T}d(v,s)^2
+ \\frac{|v|+|t|}
{T}d(v,t)^2
- \\frac{|v|}
{T}d(s,t)^2}
where :math:`u` is the newly joined cluster consisting of
clusters :math:`s` and :math:`t`, :math:`v` is an unused
cluster in the forest, :math:`T=|v|+|s|+|t|`, and
:math:`|*|` is the cardinality of its argument. This is also
known as the incremental algorithm.
Warning: When the minimum distance pair in the forest is chosen, there
may be two or more pairs with the same minimum distance. This
implementation may choose a different minimum than the MATLAB
version.
Parameters
----------
y : ndarray
A condensed distance matrix. A condensed distance matrix
is a flat array containing the upper triangular of the distance matrix.
This is the form that ``pdist`` returns. Alternatively, a collection of
:math:`m` observation vectors in :math:`n` dimensions may be passed as
an :math:`m` by :math:`n` array. All elements of the condensed distance
matrix must be finite, i.e. no NaNs or infs.
method : str, optional
The linkage algorithm to use. See the ``Linkage Methods`` section below
for full descriptions.
metric : str or function, optional
The distance metric to use in the case that y is a collection of
observation vectors; ignored otherwise. See the ``pdist``
function for a list of valid distance metrics. A custom distance
function can also be used.
optimal_ordering : bool, optional
If True, the linkage matrix will be reordered so that the distance
between successive leaves is minimal. This results in a more intuitive
tree structure when the data are visualized. defaults to False, because
this algorithm can be slow, particularly on large datasets [2]_. See
also the `optimal_leaf_ordering` function.
.. versionadded:: 1.0.0
Returns
-------
Z : ndarray
The hierarchical clustering encoded as a linkage matrix.
Notes
-----
1. For method 'single' an optimized algorithm based on minimum spanning
tree is implemented. It has time complexity :math:`O(n^2)`.
For methods 'complete', 'average', 'weighted' and 'ward' an algorithm
called nearest-neighbors chain is implemented. It also has time
complexity :math:`O(n^2)`.
For other methods a naive algorithm is implemented with :math:`O(n^3)`
time complexity.
All algorithms use :math:`O(n^2)` memory.
Refer to [1]_ for details about the algorithms.
2. Methods 'centroid', 'median' and 'ward' are correctly defined only if
Euclidean pairwise metric is used. If `y` is passed as precomputed
pairwise distances, then it is a user responsibility to assure that
these distances are in fact Euclidean, otherwise the produced result
will be incorrect.
See Also
--------
scipy.spatial.distance.pdist : pairwise distance metrics
References
----------
.. [1] Daniel Mullner, "Modern hierarchical, agglomerative clustering
algorithms", :arXiv:`1109.2378v1`.
.. [2] Ziv Bar-Joseph, David K. Gifford, Tommi S. Jaakkola, "Fast optimal
leaf ordering for hierarchical clustering", 2001. Bioinformatics
:doi:`10.1093/bioinformatics/17.suppl_1.S22`
Examples
--------
>>> from scipy.cluster.hierarchy import dendrogram, linkage
>>> from matplotlib import pyplot as plt
>>> X = [[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]]
>>> Z = linkage(X, 'ward')
>>> fig = plt.figure(figsize=(25, 10))
>>> dn = dendrogram(Z)
>>> Z = linkage(X, 'single')
>>> fig = plt.figure(figsize=(25, 10))
>>> dn = dendrogram(Z)
>>> plt.show()
"""
if method not in _LINKAGE_METHODS:
raise ValueError("Invalid method: {0}".format(method))
y = _convert_to_double(np.asarray(y, order='c'))
if y.ndim == 1:
distance.is_valid_y(y, throw=True, name='y')
[y] = _copy_arrays_if_base_present([y])
elif y.ndim == 2:
if method in _EUCLIDEAN_METHODS and metric != 'euclidean':
raise ValueError("Method '{0}' requires the distance metric "
"to be Euclidean".format(method))
if y.shape[0] == y.shape[1] and np.allclose(np.diag(y), 0):
if np.all(y >= 0) and np.allclose(y, y.T):
_warning('The symmetric non-negative hollow observation '
'matrix looks suspiciously like an uncondensed '
'distance matrix')
y = distance.pdist(y, metric)
else:
raise ValueError("`y` must be 1 or 2 dimensional.")
if not np.all(np.isfinite(y)):
raise ValueError("The condensed distance matrix must contain only "
"finite values.")
n = int(distance.num_obs_y(y))
method_code = _LINKAGE_METHODS[method]
if method == 'single':
result = _hierarchy.mst_single_linkage(y, n)
elif method in ['complete', 'average', 'weighted', 'ward']:
result = _hierarchy.nn_chain(y, n, method_code)
else:
result = _hierarchy.fast_linkage(y, n, method_code)
if optimal_ordering:
return optimal_leaf_ordering(result, y)
else:
return result
class ClusterNode(object):
"""
A tree node class for representing a cluster.
Leaf nodes correspond to original observations, while non-leaf nodes
correspond to non-singleton clusters.
The `to_tree` function converts a matrix returned by the linkage
function into an easy-to-use tree representation.
All parameter names are also attributes.
Parameters
----------
id : int
The node id.
left : ClusterNode instance, optional
The left child tree node.
right : ClusterNode instance, optional
The right child tree node.
dist : float, optional
Distance for this cluster in the linkage matrix.
count : int, optional
The number of samples in this cluster.
See Also
--------
to_tree : for converting a linkage matrix ``Z`` into a tree object.
"""
def __init__(self, id, left=None, right=None, dist=0, count=1):
if id < 0:
raise ValueError('The id must be non-negative.')
if dist < 0:
raise ValueError('The distance must be non-negative.')
if (left is None and right is not None) or \
(left is not None and right is None):
raise ValueError('Only full or proper binary trees are permitted.'
' This node has one child.')
if count < 1:
raise ValueError('A cluster must contain at least one original '
'observation.')
self.id = id
self.left = left
self.right = right
self.dist = dist
if self.left is None:
self.count = count
else:
self.count = left.count + right.count
def __lt__(self, node):
if not isinstance(node, ClusterNode):
raise ValueError("Can't compare ClusterNode "
"to type {}".format(type(node)))
return self.dist < node.dist
def __gt__(self, node):
if not isinstance(node, ClusterNode):
raise ValueError("Can't compare ClusterNode "
"to type {}".format(type(node)))
return self.dist > node.dist
def __eq__(self, node):
if not isinstance(node, ClusterNode):
raise ValueError("Can't compare ClusterNode "
"to type {}".format(type(node)))
return self.dist == node.dist
def get_id(self):
"""
The identifier of the target node.
For ``0 <= i < n``, `i` corresponds to original observation i.
For ``n <= i < 2n-1``, `i` corresponds to non-singleton cluster formed
at iteration ``i-n``.
Returns
-------
id : int
The identifier of the target node.
"""
return self.id
def get_count(self):
"""
The number of leaf nodes (original observations) belonging to
the cluster node nd. If the target node is a leaf, 1 is
returned.
Returns
-------
get_count : int
The number of leaf nodes below the target node.
"""
return self.count
def get_left(self):
"""
Return a reference to the left child tree object.
Returns
-------
left : ClusterNode
The left child of the target node. If the node is a leaf,
None is returned.
"""
return self.left
def get_right(self):
"""
Return a reference to the right child tree object.
Returns
-------
right : ClusterNode
The left child of the target node. If the node is a leaf,
None is returned.
"""
return self.right
def is_leaf(self):
"""
Return True if the target node is a leaf.
Returns
-------
leafness : bool
True if the target node is a leaf node.
"""
return self.left is None
def pre_order(self, func=(lambda x: x.id)):
"""
Perform pre-order traversal without recursive function calls.
When a leaf node is first encountered, ``func`` is called with
the leaf node as its argument, and its result is appended to
the list.
For example, the statement::
ids = root.pre_order(lambda x: x.id)
returns a list of the node ids corresponding to the leaf nodes
of the tree as they appear from left to right.
Parameters
----------
func : function
Applied to each leaf ClusterNode object in the pre-order traversal.
Given the ``i``-th leaf node in the pre-order traversal ``n[i]``,
the result of ``func(n[i])`` is stored in ``L[i]``. If not
provided, the index of the original observation to which the node
corresponds is used.
Returns
-------
L : list
The pre-order traversal.
"""
# Do a preorder traversal, caching the result. To avoid having to do
# recursion, we'll store the previous index we've visited in a vector.
n = self.count
curNode = [None] * (2 * n)
lvisited = set()
rvisited = set()
curNode[0] = self
k = 0
preorder = []
while k >= 0:
nd = curNode[k]
ndid = nd.id
if nd.is_leaf():
preorder.append(func(nd))
k = k - 1
else:
if ndid not in lvisited:
curNode[k + 1] = nd.left
lvisited.add(ndid)
k = k + 1
elif ndid not in rvisited:
curNode[k + 1] = nd.right
rvisited.add(ndid)
k = k + 1
# If we've visited the left and right of this non-leaf
# node already, go up in the tree.
else:
k = k - 1
return preorder
_cnode_bare = ClusterNode(0)
_cnode_type = type(ClusterNode)
def _order_cluster_tree(Z):
"""
Return clustering nodes in bottom-up order by distance.
Parameters
----------
Z : scipy.cluster.linkage array
The linkage matrix.
Returns
-------
nodes : list
A list of ClusterNode objects.
"""
q = deque()
tree = to_tree(Z)
q.append(tree)
nodes = []
while q:
node = q.popleft()
if not node.is_leaf():
bisect.insort_left(nodes, node)
q.append(node.get_right())
q.append(node.get_left())
return nodes
def cut_tree(Z, n_clusters=None, height=None):
"""
Given a linkage matrix Z, return the cut tree.
Parameters
----------
Z : scipy.cluster.linkage array
The linkage matrix.
n_clusters : array_like, optional
Number of clusters in the tree at the cut point.
height : array_like, optional
The height at which to cut the tree. Only possible for ultrametric
trees.
Returns
-------
cutree : array
An array indicating group membership at each agglomeration step. I.e.,
for a full cut tree, in the first column each data point is in its own
cluster. At the next step, two nodes are merged. Finally all
singleton and non-singleton clusters are in one group. If `n_clusters`
or `height` is given, the columns correspond to the columns of
`n_clusters` or `height`.
Examples
--------
>>> from scipy import cluster
>>> np.random.seed(23)
>>> X = np.random.randn(50, 4)
>>> Z = cluster.hierarchy.ward(X)
>>> cutree = cluster.hierarchy.cut_tree(Z, n_clusters=[5, 10])
>>> cutree[:10]
array([[0, 0],
[1, 1],
[2, 2],
[3, 3],
[3, 4],
[2, 2],
[0, 0],
[1, 5],
[3, 6],
[4, 7]])
"""
nobs = num_obs_linkage(Z)
nodes = _order_cluster_tree(Z)
if height is not None and n_clusters is not None:
raise ValueError("At least one of either height or n_clusters "
"must be None")
elif height is None and n_clusters is None: # return the full cut tree
cols_idx = np.arange(nobs)
elif height is not None:
heights = np.array([x.dist for x in nodes])
cols_idx = np.searchsorted(heights, height)
else:
cols_idx = nobs - np.searchsorted(np.arange(nobs), n_clusters)
try:
n_cols = len(cols_idx)
except TypeError: # scalar
n_cols = 1
cols_idx = np.array([cols_idx])
groups = np.zeros((n_cols, nobs), dtype=int)
last_group = np.arange(nobs)
if 0 in cols_idx:
groups[0] = last_group
for i, node in enumerate(nodes):
idx = node.pre_order()
this_group = last_group.copy()
this_group[idx] = last_group[idx].min()
this_group[this_group > last_group[idx].max()] -= 1
if i + 1 in cols_idx:
groups[np.nonzero(i + 1 == cols_idx)[0]] = this_group
last_group = this_group
return groups.T
def to_tree(Z, rd=False):
"""
Convert a linkage matrix into an easy-to-use tree object.
The reference to the root `ClusterNode` object is returned (by default).
Each `ClusterNode` object has a ``left``, ``right``, ``dist``, ``id``,
and ``count`` attribute. The left and right attributes point to
ClusterNode objects that were combined to generate the cluster.
If both are None then the `ClusterNode` object is a leaf node, its count
must be 1, and its distance is meaningless but set to 0.
*Note: This function is provided for the convenience of the library
user. ClusterNodes are not used as input to any of the functions in this
library.*
Parameters
----------
Z : ndarray
The linkage matrix in proper form (see the `linkage`
function documentation).
rd : bool, optional
When False (default), a reference to the root `ClusterNode` object is
returned. Otherwise, a tuple ``(r, d)`` is returned. ``r`` is a
reference to the root node while ``d`` is a list of `ClusterNode`
objects - one per original entry in the linkage matrix plus entries
for all clustering steps. If a cluster id is
less than the number of samples ``n`` in the data that the linkage
matrix describes, then it corresponds to a singleton cluster (leaf
node).
See `linkage` for more information on the assignment of cluster ids
to clusters.
Returns
-------
tree : ClusterNode or tuple (ClusterNode, list of ClusterNode)
If ``rd`` is False, a `ClusterNode`.
If ``rd`` is True, a list of length ``2*n - 1``, with ``n`` the number
of samples. See the description of `rd` above for more details.
See Also
--------
linkage, is_valid_linkage, ClusterNode
Examples
--------
>>> from scipy.cluster import hierarchy
>>> x = np.random.rand(10).reshape(5, 2)
>>> Z = hierarchy.linkage(x)
>>> hierarchy.to_tree(Z)
<scipy.cluster.hierarchy.ClusterNode object at ...
>>> rootnode, nodelist = hierarchy.to_tree(Z, rd=True)
>>> rootnode
<scipy.cluster.hierarchy.ClusterNode object at ...
>>> len(nodelist)
9
"""
Z = np.asarray(Z, order='c')
is_valid_linkage(Z, throw=True, name='Z')
# Number of original objects is equal to the number of rows minus 1.
n = Z.shape[0] + 1
# Create a list full of None's to store the node objects
d = [None] * (n * 2 - 1)
# Create the nodes corresponding to the n original objects.
for i in xrange(0, n):
d[i] = ClusterNode(i)
nd = None
for i in xrange(0, n - 1):
fi = int(Z[i, 0])
fj = int(Z[i, 1])
if fi > i + n:
raise ValueError(('Corrupt matrix Z. Index to derivative cluster '
'is used before it is formed. See row %d, '
'column 0') % fi)
if fj > i + n:
raise ValueError(('Corrupt matrix Z. Index to derivative cluster '
'is used before it is formed. See row %d, '
'column 1') % fj)
nd = ClusterNode(i + n, d[fi], d[fj], Z[i, 2])
# ^ id ^ left ^ right ^ dist
if Z[i, 3] != nd.count:
raise ValueError(('Corrupt matrix Z. The count Z[%d,3] is '
'incorrect.') % i)
d[n + i] = nd
if rd:
return (nd, d)
else:
return nd
def optimal_leaf_ordering(Z, y, metric='euclidean'):
"""
Given a linkage matrix Z and distance, reorder the cut tree.
Parameters
----------
Z : ndarray
The hierarchical clustering encoded as a linkage matrix. See
`linkage` for more information on the return structure and
algorithm.
y : ndarray
The condensed distance matrix from which Z was generated.
Alternatively, a collection of m observation vectors in n
dimensions may be passed as a m by n array.
metric : str or function, optional
The distance metric to use in the case that y is a collection of
observation vectors; ignored otherwise. See the ``pdist``
function for a list of valid distance metrics. A custom distance
function can also be used.
Returns
-------
Z_ordered : ndarray
A copy of the linkage matrix Z, reordered to minimize the distance
between adjacent leaves.
Examples
--------
>>> from scipy.cluster import hierarchy
>>> np.random.seed(23)
>>> X = np.random.randn(10,10)
>>> Z = hierarchy.ward(X)
>>> hierarchy.leaves_list(Z)
array([0, 5, 3, 9, 6, 8, 1, 4, 2, 7], dtype=int32)
>>> hierarchy.leaves_list(hierarchy.optimal_leaf_ordering(Z, X))
array([3, 9, 0, 5, 8, 2, 7, 4, 1, 6], dtype=int32)
"""
Z = np.asarray(Z, order='c')
is_valid_linkage(Z, throw=True, name='Z')
y = _convert_to_double(np.asarray(y, order='c'))
if y.ndim == 1:
distance.is_valid_y(y, throw=True, name='y')
[y] = _copy_arrays_if_base_present([y])
elif y.ndim == 2:
if y.shape[0] == y.shape[1] and np.allclose(np.diag(y), 0):
if np.all(y >= 0) and np.allclose(y, y.T):
_warning('The symmetric non-negative hollow observation '
'matrix looks suspiciously like an uncondensed '
'distance matrix')
y = distance.pdist(y, metric)
else:
raise ValueError("`y` must be 1 or 2 dimensional.")
if not np.all(np.isfinite(y)):
raise ValueError("The condensed distance matrix must contain only "
"finite values.")
return _optimal_leaf_ordering.optimal_leaf_ordering(Z, y)
def _convert_to_bool(X):
if X.dtype != bool:
X = X.astype(bool)
if not X.flags.contiguous:
X = X.copy()
return X
def _convert_to_double(X):
if X.dtype != np.double:
X = X.astype(np.double)
if not X.flags.contiguous:
X = X.copy()
return X
def cophenet(Z, Y=None):
"""
Calculate the cophenetic distances between each observation in
the hierarchical clustering defined by the linkage ``Z``.
Suppose ``p`` and ``q`` are original observations in
disjoint clusters ``s`` and ``t``, respectively and
``s`` and ``t`` are joined by a direct parent cluster
``u``. The cophenetic distance between observations
``i`` and ``j`` is simply the distance between
clusters ``s`` and ``t``.
Parameters
----------
Z : ndarray
The hierarchical clustering encoded as an array
(see `linkage` function).
Y : ndarray (optional)
Calculates the cophenetic correlation coefficient ``c`` of a
hierarchical clustering defined by the linkage matrix `Z`
of a set of :math:`n` observations in :math:`m`
dimensions. `Y` is the condensed distance matrix from which
`Z` was generated.
Returns
-------
c : ndarray
The cophentic correlation distance (if ``Y`` is passed).
d : ndarray
The cophenetic distance matrix in condensed form. The
:math:`ij` th entry is the cophenetic distance between
original observations :math:`i` and :math:`j`.
See Also
--------
linkage: for a description of what a linkage matrix is.
scipy.spatial.distance.squareform: transforming condensed matrices into square ones.
Examples
--------
>>> from scipy.cluster.hierarchy import single, cophenet
>>> from scipy.spatial.distance import pdist, squareform
Given a dataset ``X`` and a linkage matrix ``Z``, the cophenetic distance
between two points of ``X`` is the distance between the largest two
distinct clusters that each of the points:
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
``X`` corresponds to this dataset ::
x x x x
x x
x x
x x x x
>>> Z = single(pdist(X))
>>> Z
array([[ 0., 1., 1., 2.],
[ 2., 12., 1., 3.],
[ 3., 4., 1., 2.],
[ 5., 14., 1., 3.],
[ 6., 7., 1., 2.],
[ 8., 16., 1., 3.],
[ 9., 10., 1., 2.],
[11., 18., 1., 3.],
[13., 15., 2., 6.],
[17., 20., 2., 9.],
[19., 21., 2., 12.]])
>>> cophenet(Z)
array([1., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 2., 2., 2., 2., 2.,
2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 1., 2., 2.,
2., 2., 2., 2., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
1., 1., 2., 2., 2., 1., 2., 2., 2., 2., 2., 2., 1., 1., 1.])
The output of the `scipy.cluster.hierarchy.cophenet` method is
represented in condensed form. We can use
`scipy.spatial.distance.squareform` to see the output as a
regular matrix (where each element ``ij`` denotes the cophenetic distance
between each ``i``, ``j`` pair of points in ``X``):
>>> squareform(cophenet(Z))
array([[0., 1., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2.],
[1., 0., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2.],
[1., 1., 0., 2., 2., 2., 2., 2., 2., 2., 2., 2.],
[2., 2., 2., 0., 1., 1., 2., 2., 2., 2., 2., 2.],
[2., 2., 2., 1., 0., 1., 2., 2., 2., 2., 2., 2.],
[2., 2., 2., 1., 1., 0., 2., 2., 2., 2., 2., 2.],
[2., 2., 2., 2., 2., 2., 0., 1., 1., 2., 2., 2.],
[2., 2., 2., 2., 2., 2., 1., 0., 1., 2., 2., 2.],
[2., 2., 2., 2., 2., 2., 1., 1., 0., 2., 2., 2.],
[2., 2., 2., 2., 2., 2., 2., 2., 2., 0., 1., 1.],
[2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 0., 1.],
[2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 1., 0.]])
In this example, the cophenetic distance between points on ``X`` that are
very close (i.e. in the same corner) is 1. For other pairs of points is 2,
because the points will be located in clusters at different
corners - thus the distance between these clusters will be larger.
"""
Z = np.asarray(Z, order='c')
is_valid_linkage(Z, throw=True, name='Z')
Zs = Z.shape
n = Zs[0] + 1
zz = np.zeros((n * (n-1)) // 2, dtype=np.double)
# Since the C code does not support striding using strides.
# The dimensions are used instead.
Z = _convert_to_double(Z)
_hierarchy.cophenetic_distances(Z, zz, int(n))
if Y is None:
return zz
Y = np.asarray(Y, order='c')
distance.is_valid_y(Y, throw=True, name='Y')
z = zz.mean()
y = Y.mean()
Yy = Y - y
Zz = zz - z
numerator = (Yy * Zz)
denomA = Yy**2
denomB = Zz**2
c = numerator.sum() / np.sqrt((denomA.sum() * denomB.sum()))
return (c, zz)
def inconsistent(Z, d=2):
r"""
Calculate inconsistency statistics on a linkage matrix.
Parameters
----------
Z : ndarray
The :math:`(n-1)` by 4 matrix encoding the linkage (hierarchical
clustering). See `linkage` documentation for more information on its
form.
d : int, optional
The number of links up to `d` levels below each non-singleton cluster.
Returns
-------
R : ndarray
A :math:`(n-1)` by 4 matrix where the ``i``'th row contains the link
statistics for the non-singleton cluster ``i``. The link statistics are
computed over the link heights for links :math:`d` levels below the
cluster ``i``. ``R[i,0]`` and ``R[i,1]`` are the mean and standard
deviation of the link heights, respectively; ``R[i,2]`` is the number
of links included in the calculation; and ``R[i,3]`` is the
inconsistency coefficient,
.. math:: \frac{\mathtt{Z[i,2]} - \mathtt{R[i,0]}} {R[i,1]}
Notes
-----
This function behaves similarly to the MATLAB(TM) ``inconsistent``
function.
Examples
--------
>>> from scipy.cluster.hierarchy import inconsistent, linkage
>>> from matplotlib import pyplot as plt
>>> X = [[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]]
>>> Z = linkage(X, 'ward')
>>> print(Z)
[[ 5. 6. 0. 2. ]
[ 2. 7. 0. 2. ]
[ 0. 4. 1. 2. ]
[ 1. 8. 1.15470054 3. ]
[ 9. 10. 2.12132034 4. ]
[ 3. 12. 4.11096096 5. ]
[11. 13. 14.07183949 8. ]]
>>> inconsistent(Z)
array([[ 0. , 0. , 1. , 0. ],
[ 0. , 0. , 1. , 0. ],
[ 1. , 0. , 1. , 0. ],
[ 0.57735027, 0.81649658, 2. , 0.70710678],
[ 1.04044011, 1.06123822, 3. , 1.01850858],
[ 3.11614065, 1.40688837, 2. , 0.70710678],
[ 6.44583366, 6.76770586, 3. , 1.12682288]])
"""
Z = np.asarray(Z, order='c')
Zs = Z.shape
is_valid_linkage(Z, throw=True, name='Z')
if (not d == np.floor(d)) or d < 0:
raise ValueError('The second argument d must be a nonnegative '
'integer value.')
# Since the C code does not support striding using strides.
# The dimensions are used instead.
[Z] = _copy_arrays_if_base_present([Z])
n = Zs[0] + 1
R = np.zeros((n - 1, 4), dtype=np.double)
_hierarchy.inconsistent(Z, R, int(n), int(d))
return R
def from_mlab_linkage(Z):
"""
Convert a linkage matrix generated by MATLAB(TM) to a new
linkage matrix compatible with this module.
The conversion does two things:
* the indices are converted from ``1..N`` to ``0..(N-1)`` form,
and
* a fourth column ``Z[:,3]`` is added where ``Z[i,3]`` represents the
number of original observations (leaves) in the non-singleton
cluster ``i``.
This function is useful when loading in linkages from legacy data
files generated by MATLAB.
Parameters
----------
Z : ndarray
A linkage matrix generated by MATLAB(TM).
Returns
-------
ZS : ndarray
A linkage matrix compatible with ``scipy.cluster.hierarchy``.
See Also
--------
linkage: for a description of what a linkage matrix is.
to_mlab_linkage: transform from SciPy to MATLAB format.
Examples
--------
>>> import numpy as np
>>> from scipy.cluster.hierarchy import ward, from_mlab_linkage
Given a linkage matrix in MATLAB format ``mZ``, we can use
`scipy.cluster.hierarchy.from_mlab_linkage` to import
it into SciPy format:
>>> mZ = np.array([[1, 2, 1], [4, 5, 1], [7, 8, 1],
... [10, 11, 1], [3, 13, 1.29099445],
... [6, 14, 1.29099445],
... [9, 15, 1.29099445],
... [12, 16, 1.29099445],
... [17, 18, 5.77350269],
... [19, 20, 5.77350269],
... [21, 22, 8.16496581]])
>>> Z = from_mlab_linkage(mZ)
>>> Z
array([[ 0. , 1. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.29099445, 3. ],
[ 5. , 13. , 1.29099445, 3. ],
[ 8. , 14. , 1.29099445, 3. ],
[ 11. , 15. , 1.29099445, 3. ],
[ 16. , 17. , 5.77350269, 6. ],
[ 18. , 19. , 5.77350269, 6. ],
[ 20. , 21. , 8.16496581, 12. ]])
As expected, the linkage matrix ``Z`` returned includes an
additional column counting the number of original samples in
each cluster. Also, all cluster indexes are reduced by 1
(MATLAB format uses 1-indexing, whereas SciPy uses 0-indexing).
"""
Z = np.asarray(Z, dtype=np.double, order='c')
Zs = Z.shape
# If it's empty, return it.
if len(Zs) == 0 or (len(Zs) == 1 and Zs[0] == 0):
return Z.copy()
if len(Zs) != 2:
raise ValueError("The linkage array must be rectangular.")
# If it contains no rows, return it.
if Zs[0] == 0:
return Z.copy()
Zpart = Z.copy()
if Zpart[:, 0:2].min() != 1.0 and Zpart[:, 0:2].max() != 2 * Zs[0]:
raise ValueError('The format of the indices is not 1..N')
Zpart[:, 0:2] -= 1.0
CS = np.zeros((Zs[0],), dtype=np.double)
_hierarchy.calculate_cluster_sizes(Zpart, CS, int(Zs[0]) + 1)
return np.hstack([Zpart, CS.reshape(Zs[0], 1)])
def to_mlab_linkage(Z):
"""
Convert a linkage matrix to a MATLAB(TM) compatible one.
Converts a linkage matrix ``Z`` generated by the linkage function
of this module to a MATLAB(TM) compatible one. The return linkage
matrix has the last column removed and the cluster indices are
converted to ``1..N`` indexing.
Parameters
----------
Z : ndarray
A linkage matrix generated by ``scipy.cluster.hierarchy``.
Returns
-------
to_mlab_linkage : ndarray
A linkage matrix compatible with MATLAB(TM)'s hierarchical
clustering functions.
The return linkage matrix has the last column removed
and the cluster indices are converted to ``1..N`` indexing.
See Also
--------
linkage: for a description of what a linkage matrix is.
from_mlab_linkage: transform from Matlab to SciPy format.
Examples
--------
>>> from scipy.cluster.hierarchy import ward, to_mlab_linkage
>>> from scipy.spatial.distance import pdist
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
>>> Z = ward(pdist(X))
>>> Z
array([[ 0. , 1. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.29099445, 3. ],
[ 5. , 13. , 1.29099445, 3. ],
[ 8. , 14. , 1.29099445, 3. ],
[11. , 15. , 1.29099445, 3. ],
[16. , 17. , 5.77350269, 6. ],
[18. , 19. , 5.77350269, 6. ],
[20. , 21. , 8.16496581, 12. ]])
After a linkage matrix ``Z`` has been created, we can use
`scipy.cluster.hierarchy.to_mlab_linkage` to convert it
into MATLAB format:
>>> mZ = to_mlab_linkage(Z)
>>> mZ
array([[ 1. , 2. , 1. ],
[ 4. , 5. , 1. ],
[ 7. , 8. , 1. ],
[ 10. , 11. , 1. ],
[ 3. , 13. , 1.29099445],
[ 6. , 14. , 1.29099445],
[ 9. , 15. , 1.29099445],
[ 12. , 16. , 1.29099445],
[ 17. , 18. , 5.77350269],
[ 19. , 20. , 5.77350269],
[ 21. , 22. , 8.16496581]])
The new linkage matrix ``mZ`` uses 1-indexing for all the
clusters (instead of 0-indexing). Also, the last column of
the original linkage matrix has been dropped.
"""
Z = np.asarray(Z, order='c', dtype=np.double)
Zs = Z.shape
if len(Zs) == 0 or (len(Zs) == 1 and Zs[0] == 0):
return Z.copy()
is_valid_linkage(Z, throw=True, name='Z')
ZP = Z[:, 0:3].copy()
ZP[:, 0:2] += 1.0
return ZP
def is_monotonic(Z):
"""
Return True if the linkage passed is monotonic.
The linkage is monotonic if for every cluster :math:`s` and :math:`t`
joined, the distance between them is no less than the distance
between any previously joined clusters.
Parameters
----------
Z : ndarray
The linkage matrix to check for monotonicity.
Returns
-------
b : bool
A boolean indicating whether the linkage is monotonic.
See Also
--------
linkage: for a description of what a linkage matrix is.
Examples
--------
>>> from scipy.cluster.hierarchy import median, ward, is_monotonic
>>> from scipy.spatial.distance import pdist
By definition, some hierarchical clustering algorithms - such as
`scipy.cluster.hierarchy.ward` - produce monotonic assignments of
samples to clusters; however, this is not always true for other
hierarchical methods - e.g. `scipy.cluster.hierarchy.median`.
Given a linkage matrix ``Z`` (as the result of a hierarchical clustering
method) we can test programmatically whether if is has the monotonicity
property or not, using `scipy.cluster.hierarchy.is_monotonic`:
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
>>> Z = ward(pdist(X))
>>> Z
array([[ 0. , 1. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.29099445, 3. ],
[ 5. , 13. , 1.29099445, 3. ],
[ 8. , 14. , 1.29099445, 3. ],
[11. , 15. , 1.29099445, 3. ],
[16. , 17. , 5.77350269, 6. ],
[18. , 19. , 5.77350269, 6. ],
[20. , 21. , 8.16496581, 12. ]])
>>> is_monotonic(Z)
True
>>> Z = median(pdist(X))
>>> Z
array([[ 0. , 1. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 2. , 12. , 1.11803399, 3. ],
[ 5. , 13. , 1.11803399, 3. ],
[ 8. , 15. , 1.11803399, 3. ],
[11. , 14. , 1.11803399, 3. ],
[18. , 19. , 3. , 6. ],
[16. , 17. , 3.5 , 6. ],
[20. , 21. , 3.25 , 12. ]])
>>> is_monotonic(Z)
False
Note that this method is equivalent to just verifying that the distances
in the third column of the linkage matrix appear in a monotonically
increasing order.
"""
Z = np.asarray(Z, order='c')
is_valid_linkage(Z, throw=True, name='Z')
# We expect the i'th value to be greater than its successor.
return (Z[1:, 2] >= Z[:-1, 2]).all()
def is_valid_im(R, warning=False, throw=False, name=None):
"""Return True if the inconsistency matrix passed is valid.
It must be a :math:`n` by 4 array of doubles. The standard
deviations ``R[:,1]`` must be nonnegative. The link counts
``R[:,2]`` must be positive and no greater than :math:`n-1`.
Parameters
----------
R : ndarray
The inconsistency matrix to check for validity.
warning : bool, optional
When True, issues a Python warning if the linkage
matrix passed is invalid.
throw : bool, optional
When True, throws a Python exception if the linkage
matrix passed is invalid.
name : str, optional
This string refers to the variable name of the invalid
linkage matrix.
Returns
-------
b : bool
True if the inconsistency matrix is valid.
See Also
--------
linkage: for a description of what a linkage matrix is.
inconsistent: for the creation of a inconsistency matrix.
Examples
--------
>>> from scipy.cluster.hierarchy import ward, inconsistent, is_valid_im
>>> from scipy.spatial.distance import pdist
Given a data set ``X``, we can apply a clustering method to obtain a
linkage matrix ``Z``. `scipy.cluster.hierarchy.inconsistent` can
be also used to obtain the inconsistency matrix ``R`` associated to
this clustering process:
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
>>> Z = ward(pdist(X))
>>> R = inconsistent(Z)
>>> Z
array([[ 0. , 1. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.29099445, 3. ],
[ 5. , 13. , 1.29099445, 3. ],
[ 8. , 14. , 1.29099445, 3. ],
[11. , 15. , 1.29099445, 3. ],
[16. , 17. , 5.77350269, 6. ],
[18. , 19. , 5.77350269, 6. ],
[20. , 21. , 8.16496581, 12. ]])
>>> R
array([[1. , 0. , 1. , 0. ],
[1. , 0. , 1. , 0. ],
[1. , 0. , 1. , 0. ],
[1. , 0. , 1. , 0. ],
[1.14549722, 0.20576415, 2. , 0.70710678],
[1.14549722, 0.20576415, 2. , 0.70710678],
[1.14549722, 0.20576415, 2. , 0.70710678],
[1.14549722, 0.20576415, 2. , 0.70710678],
[2.78516386, 2.58797734, 3. , 1.15470054],
[2.78516386, 2.58797734, 3. , 1.15470054],
[6.57065706, 1.38071187, 3. , 1.15470054]])
Now we can use `scipy.cluster.hierarchy.is_valid_im` to verify that
``R`` is correct:
>>> is_valid_im(R)
True
However, if ``R`` is wrongly constructed (e.g one of the standard
deviations is set to a negative value) then the check will fail:
>>> R[-1,1] = R[-1,1] * -1
>>> is_valid_im(R)
False
"""
R = np.asarray(R, order='c')
valid = True
name_str = "%r " % name if name else ''
try:
if type(R) != np.ndarray:
raise TypeError('Variable %spassed as inconsistency matrix is not '
'a numpy array.' % name_str)
if R.dtype != np.double:
raise TypeError('Inconsistency matrix %smust contain doubles '
'(double).' % name_str)
if len(R.shape) != 2:
raise ValueError('Inconsistency matrix %smust have shape=2 (i.e. '
'be two-dimensional).' % name_str)
if R.shape[1] != 4:
raise ValueError('Inconsistency matrix %smust have 4 columns.' %
name_str)
if R.shape[0] < 1:
raise ValueError('Inconsistency matrix %smust have at least one '
'row.' % name_str)
if (R[:, 0] < 0).any():
raise ValueError('Inconsistency matrix %scontains negative link '
'height means.' % name_str)
if (R[:, 1] < 0).any():
raise ValueError('Inconsistency matrix %scontains negative link '
'height standard deviations.' % name_str)
if (R[:, 2] < 0).any():
raise ValueError('Inconsistency matrix %scontains negative link '
'counts.' % name_str)
except Exception as e:
if throw:
raise
if warning:
_warning(str(e))
valid = False
return valid
def is_valid_linkage(Z, warning=False, throw=False, name=None):
"""
Check the validity of a linkage matrix.
A linkage matrix is valid if it is a two dimensional array (type double)
with :math:`n` rows and 4 columns. The first two columns must contain
indices between 0 and :math:`2n-1`. For a given row ``i``, the following
two expressions have to hold:
.. math::
0 \\leq \\mathtt{Z[i,0]} \\leq i+n-1
0 \\leq Z[i,1] \\leq i+n-1
I.e. a cluster cannot join another cluster unless the cluster being joined
has been generated.
Parameters
----------
Z : array_like
Linkage matrix.
warning : bool, optional
When True, issues a Python warning if the linkage
matrix passed is invalid.
throw : bool, optional
When True, throws a Python exception if the linkage
matrix passed is invalid.
name : str, optional
This string refers to the variable name of the invalid
linkage matrix.
Returns
-------
b : bool
True if the inconsistency matrix is valid.
See Also
--------
linkage: for a description of what a linkage matrix is.
Examples
--------
>>> from scipy.cluster.hierarchy import ward, is_valid_linkage
>>> from scipy.spatial.distance import pdist
All linkage matrices generated by the clustering methods in this module
will be valid (i.e. they will have the appropriate dimensions and the two
required expressions will hold for all the rows).
We can check this using `scipy.cluster.hierarchy.is_valid_linkage`:
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
>>> Z = ward(pdist(X))
>>> Z
array([[ 0. , 1. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.29099445, 3. ],
[ 5. , 13. , 1.29099445, 3. ],
[ 8. , 14. , 1.29099445, 3. ],
[11. , 15. , 1.29099445, 3. ],
[16. , 17. , 5.77350269, 6. ],
[18. , 19. , 5.77350269, 6. ],
[20. , 21. , 8.16496581, 12. ]])
>>> is_valid_linkage(Z)
True
However, is we create a linkage matrix in a wrong way - or if we modify
a valid one in a way that any of the required expressions don't hold
anymore, then the check will fail:
>>> Z[3][1] = 20 # the cluster number 20 is not defined at this point
>>> is_valid_linkage(Z)
False
"""
Z = np.asarray(Z, order='c')
valid = True
name_str = "%r " % name if name else ''
try:
if type(Z) != np.ndarray:
raise TypeError('Passed linkage argument %sis not a valid array.' %
name_str)
if Z.dtype != np.double:
raise TypeError('Linkage matrix %smust contain doubles.' % name_str)
if len(Z.shape) != 2:
raise ValueError('Linkage matrix %smust have shape=2 (i.e. be '
'two-dimensional).' % name_str)
if Z.shape[1] != 4:
raise ValueError('Linkage matrix %smust have 4 columns.' % name_str)
if Z.shape[0] == 0:
raise ValueError('Linkage must be computed on at least two '
'observations.')
n = Z.shape[0]
if n > 1:
if ((Z[:, 0] < 0).any() or (Z[:, 1] < 0).any()):
raise ValueError('Linkage %scontains negative indices.' %
name_str)
if (Z[:, 2] < 0).any():
raise ValueError('Linkage %scontains negative distances.' %
name_str)
if (Z[:, 3] < 0).any():
raise ValueError('Linkage %scontains negative counts.' %
name_str)
if _check_hierarchy_uses_cluster_before_formed(Z):
raise ValueError('Linkage %suses non-singleton cluster before '
'it is formed.' % name_str)
if _check_hierarchy_uses_cluster_more_than_once(Z):
raise ValueError('Linkage %suses the same cluster more than once.'
% name_str)
except Exception as e:
if throw:
raise
if warning:
_warning(str(e))
valid = False
return valid
def _check_hierarchy_uses_cluster_before_formed(Z):
n = Z.shape[0] + 1
for i in xrange(0, n - 1):
if Z[i, 0] >= n + i or Z[i, 1] >= n + i:
return True
return False
def _check_hierarchy_uses_cluster_more_than_once(Z):
n = Z.shape[0] + 1
chosen = set([])
for i in xrange(0, n - 1):
if (Z[i, 0] in chosen) or (Z[i, 1] in chosen) or Z[i, 0] == Z[i, 1]:
return True
chosen.add(Z[i, 0])
chosen.add(Z[i, 1])
return False
def _check_hierarchy_not_all_clusters_used(Z):
n = Z.shape[0] + 1
chosen = set([])
for i in xrange(0, n - 1):
chosen.add(int(Z[i, 0]))
chosen.add(int(Z[i, 1]))
must_chosen = set(range(0, 2 * n - 2))
return len(must_chosen.difference(chosen)) > 0
def num_obs_linkage(Z):
"""
Return the number of original observations of the linkage matrix passed.
Parameters
----------
Z : ndarray
The linkage matrix on which to perform the operation.
Returns
-------
n : int
The number of original observations in the linkage.
Examples
--------
>>> from scipy.cluster.hierarchy import ward, num_obs_linkage
>>> from scipy.spatial.distance import pdist
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
>>> Z = ward(pdist(X))
``Z`` is a linkage matrix obtained after using the Ward clustering method
with ``X``, a dataset with 12 data points.
>>> num_obs_linkage(Z)
12
"""
Z = np.asarray(Z, order='c')
is_valid_linkage(Z, throw=True, name='Z')
return (Z.shape[0] + 1)
def correspond(Z, Y):
"""
Check for correspondence between linkage and condensed distance matrices.
They must have the same number of original observations for
the check to succeed.
This function is useful as a sanity check in algorithms that make
extensive use of linkage and distance matrices that must
correspond to the same set of original observations.
Parameters
----------
Z : array_like
The linkage matrix to check for correspondence.
Y : array_like
The condensed distance matrix to check for correspondence.
Returns
-------
b : bool
A boolean indicating whether the linkage matrix and distance
matrix could possibly correspond to one another.
See Also
--------
linkage: for a description of what a linkage matrix is.
Examples
--------
>>> from scipy.cluster.hierarchy import ward, correspond
>>> from scipy.spatial.distance import pdist
This method can be used to check if a given linkage matrix ``Z`` has been
obtained from the application of a cluster method over a dataset ``X``:
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
>>> X_condensed = pdist(X)
>>> Z = ward(X_condensed)
Here we can compare ``Z`` and ``X`` (in condensed form):
>>> correspond(Z, X_condensed)
True
"""
is_valid_linkage(Z, throw=True)
distance.is_valid_y(Y, throw=True)
Z = np.asarray(Z, order='c')
Y = np.asarray(Y, order='c')
return distance.num_obs_y(Y) == num_obs_linkage(Z)
def fcluster(Z, t, criterion='inconsistent', depth=2, R=None, monocrit=None):
"""
Form flat clusters from the hierarchical clustering defined by
the given linkage matrix.
Parameters
----------
Z : ndarray
The hierarchical clustering encoded with the matrix returned
by the `linkage` function.
t : scalar
For criteria 'inconsistent', 'distance' or 'monocrit',
this is the threshold to apply when forming flat clusters.
For 'maxclust' or 'maxclust_monocrit' criteria,
this would be max number of clusters requested.
criterion : str, optional
The criterion to use in forming flat clusters. This can
be any of the following values:
``inconsistent`` :
If a cluster node and all its
descendants have an inconsistent value less than or equal
to `t` then all its leaf descendants belong to the
same flat cluster. When no non-singleton cluster meets
this criterion, every node is assigned to its own
cluster. (Default)
``distance`` :
Forms flat clusters so that the original
observations in each flat cluster have no greater a
cophenetic distance than `t`.
``maxclust`` :
Finds a minimum threshold ``r`` so that
the cophenetic distance between any two original
observations in the same flat cluster is no more than
``r`` and no more than `t` flat clusters are formed.
``monocrit`` :
Forms a flat cluster from a cluster node c
with index i when ``monocrit[j] <= t``.
For example, to threshold on the maximum mean distance
as computed in the inconsistency matrix R with a
threshold of 0.8 do::
MR = maxRstat(Z, R, 3)
cluster(Z, t=0.8, criterion='monocrit', monocrit=MR)
``maxclust_monocrit`` :
Forms a flat cluster from a
non-singleton cluster node ``c`` when ``monocrit[i] <=
r`` for all cluster indices ``i`` below and including
``c``. ``r`` is minimized such that no more than ``t``
flat clusters are formed. monocrit must be
monotonic. For example, to minimize the threshold t on
maximum inconsistency values so that no more than 3 flat
clusters are formed, do::
MI = maxinconsts(Z, R)
cluster(Z, t=3, criterion='maxclust_monocrit', monocrit=MI)
depth : int, optional
The maximum depth to perform the inconsistency calculation.
It has no meaning for the other criteria. Default is 2.
R : ndarray, optional
The inconsistency matrix to use for the 'inconsistent'
criterion. This matrix is computed if not provided.
monocrit : ndarray, optional
An array of length n-1. `monocrit[i]` is the
statistics upon which non-singleton i is thresholded. The
monocrit vector must be monotonic, i.e. given a node c with
index i, for all node indices j corresponding to nodes
below c, ``monocrit[i] >= monocrit[j]``.
Returns
-------
fcluster : ndarray
An array of length ``n``. ``T[i]`` is the flat cluster number to
which original observation ``i`` belongs.
See Also
--------
linkage : for information about hierarchical clustering methods work.
Examples
--------
>>> from scipy.cluster.hierarchy import ward, fcluster
>>> from scipy.spatial.distance import pdist
All cluster linkage methods - e.g. `scipy.cluster.hierarchy.ward`
generate a linkage matrix ``Z`` as their output:
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
>>> Z = ward(pdist(X))
>>> Z
array([[ 0. , 1. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.29099445, 3. ],
[ 5. , 13. , 1.29099445, 3. ],
[ 8. , 14. , 1.29099445, 3. ],
[11. , 15. , 1.29099445, 3. ],
[16. , 17. , 5.77350269, 6. ],
[18. , 19. , 5.77350269, 6. ],
[20. , 21. , 8.16496581, 12. ]])
This matrix represents a dendrogram, where the first and second elements
are the two clusters merged at each step, the third element is the
distance between these clusters, and the fourth element is the size of
the new cluster - the number of original data points included.
`scipy.cluster.hierarchy.fcluster` can be used to flatten the
dendrogram, obtaining as a result an assignation of the original data
points to single clusters.
This assignation mostly depends on a distance threshold ``t`` - the maximum
inter-cluster distance allowed:
>>> fcluster(Z, t=0.9, criterion='distance')
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], dtype=int32)
>>> fcluster(Z, t=1.1, criterion='distance')
array([1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8], dtype=int32)
>>> fcluster(Z, t=3, criterion='distance')
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
>>> fcluster(Z, t=9, criterion='distance')
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)
In the first case, the threshold ``t`` is too small to allow any two
samples in the data to form a cluster, so 12 different clusters are
returned.
In the second case, the threshold is large enough to allow the first
4 points to be merged with their nearest neighbors. So here only 8
clusters are returned.
The third case, with a much higher threshold, allows for up to 8 data
points to be connected - so 4 clusters are returned here.
Lastly, the threshold of the fourth case is large enough to allow for
all data points to be merged together - so a single cluster is returned.
"""
Z = np.asarray(Z, order='c')
is_valid_linkage(Z, throw=True, name='Z')
n = Z.shape[0] + 1
T = np.zeros((n,), dtype='i')
# Since the C code does not support striding using strides.
# The dimensions are used instead.
[Z] = _copy_arrays_if_base_present([Z])
if criterion == 'inconsistent':
if R is None:
R = inconsistent(Z, depth)
else:
R = np.asarray(R, order='c')
is_valid_im(R, throw=True, name='R')
# Since the C code does not support striding using strides.
# The dimensions are used instead.
[R] = _copy_arrays_if_base_present([R])
_hierarchy.cluster_in(Z, R, T, float(t), int(n))
elif criterion == 'distance':
_hierarchy.cluster_dist(Z, T, float(t), int(n))
elif criterion == 'maxclust':
_hierarchy.cluster_maxclust_dist(Z, T, int(n), int(t))
elif criterion == 'monocrit':
[monocrit] = _copy_arrays_if_base_present([monocrit])
_hierarchy.cluster_monocrit(Z, monocrit, T, float(t), int(n))
elif criterion == 'maxclust_monocrit':
[monocrit] = _copy_arrays_if_base_present([monocrit])
_hierarchy.cluster_maxclust_monocrit(Z, monocrit, T, int(n), int(t))
else:
raise ValueError('Invalid cluster formation criterion: %s'
% str(criterion))
return T
def fclusterdata(X, t, criterion='inconsistent',
metric='euclidean', depth=2, method='single', R=None):
"""
Cluster observation data using a given metric.
Clusters the original observations in the n-by-m data
matrix X (n observations in m dimensions), using the euclidean
distance metric to calculate distances between original observations,
performs hierarchical clustering using the single linkage algorithm,
and forms flat clusters using the inconsistency method with `t` as the
cut-off threshold.
A one-dimensional array ``T`` of length ``n`` is returned. ``T[i]`` is
the index of the flat cluster to which the original observation ``i``
belongs.
Parameters
----------
X : (N, M) ndarray
N by M data matrix with N observations in M dimensions.
t : scalar
For criteria 'inconsistent', 'distance' or 'monocrit',
this is the threshold to apply when forming flat clusters.
For 'maxclust' or 'maxclust_monocrit' criteria,
this would be max number of clusters requested.
criterion : str, optional
Specifies the criterion for forming flat clusters. Valid
values are 'inconsistent' (default), 'distance', or 'maxclust'
cluster formation algorithms. See `fcluster` for descriptions.
metric : str, optional
The distance metric for calculating pairwise distances. See
``distance.pdist`` for descriptions and linkage to verify
compatibility with the linkage method.
depth : int, optional
The maximum depth for the inconsistency calculation. See
`inconsistent` for more information.
method : str, optional
The linkage method to use (single, complete, average,
weighted, median centroid, ward). See `linkage` for more
information. Default is "single".
R : ndarray, optional
The inconsistency matrix. It will be computed if necessary
if it is not passed.
Returns
-------
fclusterdata : ndarray
A vector of length n. T[i] is the flat cluster number to
which original observation i belongs.
See Also
--------
scipy.spatial.distance.pdist : pairwise distance metrics
Notes
-----
This function is similar to the MATLAB function ``clusterdata``.
Examples
--------
>>> from scipy.cluster.hierarchy import fclusterdata
This is a convenience method that abstracts all the steps to perform in a
typical SciPy's hierarchical clustering workflow.
* Transform the input data into a condensed matrix with `scipy.spatial.distance.pdist`.
* Apply a clustering method.
* Obtain flat clusters at a user defined distance threshold ``t`` using `scipy.cluster.hierarchy.fcluster`.
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
>>> fclusterdata(X, t=1)
array([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32)
The output here (for the dataset ``X``, distance threshold ``t``, and the
default settings) is four clusters with three data points each.
"""
X = np.asarray(X, order='c', dtype=np.double)
if type(X) != np.ndarray or len(X.shape) != 2:
raise TypeError('The observation matrix X must be an n by m numpy '
'array.')
Y = distance.pdist(X, metric=metric)
Z = linkage(Y, method=method)
if R is None:
R = inconsistent(Z, d=depth)
else:
R = np.asarray(R, order='c')
T = fcluster(Z, criterion=criterion, depth=depth, R=R, t=t)
return T
def leaves_list(Z):
"""
Return a list of leaf node ids.
The return corresponds to the observation vector index as it appears
in the tree from left to right. Z is a linkage matrix.
Parameters
----------
Z : ndarray
The hierarchical clustering encoded as a matrix. `Z` is
a linkage matrix. See `linkage` for more information.
Returns
-------
leaves_list : ndarray
The list of leaf node ids.
See Also
--------
dendrogram: for information about dendrogram structure.
Examples
--------
>>> from scipy.cluster.hierarchy import ward, dendrogram, leaves_list
>>> from scipy.spatial.distance import pdist
>>> from matplotlib import pyplot as plt
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
>>> Z = ward(pdist(X))
The linkage matrix ``Z`` represents a dendrogram, that is, a tree that
encodes the structure of the clustering performed.
`scipy.cluster.hierarchy.leaves_list` shows the mapping between
indexes in the ``X`` dataset and leaves in the dendrogram:
>>> leaves_list(Z)
array([ 2, 0, 1, 5, 3, 4, 8, 6, 7, 11, 9, 10], dtype=int32)
>>> fig = plt.figure(figsize=(25, 10))
>>> dn = dendrogram(Z)
>>> plt.show()
"""
Z = np.asarray(Z, order='c')
is_valid_linkage(Z, throw=True, name='Z')
n = Z.shape[0] + 1
ML = np.zeros((n,), dtype='i')
[Z] = _copy_arrays_if_base_present([Z])
_hierarchy.prelist(Z, ML, int(n))
return ML
# Maps number of leaves to text size.
#
# p <= 20, size="12"
# 20 < p <= 30, size="10"
# 30 < p <= 50, size="8"
# 50 < p <= np.inf, size="6"
_dtextsizes = {20: 12, 30: 10, 50: 8, 85: 6, np.inf: 5}
_drotation = {20: 0, 40: 45, np.inf: 90}
_dtextsortedkeys = list(_dtextsizes.keys())
_dtextsortedkeys.sort()
_drotationsortedkeys = list(_drotation.keys())
_drotationsortedkeys.sort()
def _remove_dups(L):
"""
Remove duplicates AND preserve the original order of the elements.
The set class is not guaranteed to do this.
"""
seen_before = set([])
L2 = []
for i in L:
if i not in seen_before:
seen_before.add(i)
L2.append(i)
return L2
def _get_tick_text_size(p):
for k in _dtextsortedkeys:
if p <= k:
return _dtextsizes[k]
def _get_tick_rotation(p):
for k in _drotationsortedkeys:
if p <= k:
return _drotation[k]
def _plot_dendrogram(icoords, dcoords, ivl, p, n, mh, orientation,
no_labels, color_list, leaf_font_size=None,
leaf_rotation=None, contraction_marks=None,
ax=None, above_threshold_color='b'):
# Import matplotlib here so that it's not imported unless dendrograms
# are plotted. Raise an informative error if importing fails.
try:
# if an axis is provided, don't use pylab at all
if ax is None:
import matplotlib.pylab
import matplotlib.patches
import matplotlib.collections
except ImportError:
raise ImportError("You must install the matplotlib library to plot "
"the dendrogram. Use no_plot=True to calculate the "
"dendrogram without plotting.")
if ax is None:
ax = matplotlib.pylab.gca()
# if we're using pylab, we want to trigger a draw at the end
trigger_redraw = True
else:
trigger_redraw = False
# Independent variable plot width
ivw = len(ivl) * 10
# Dependent variable plot height
dvw = mh + mh * 0.05
iv_ticks = np.arange(5, len(ivl) * 10 + 5, 10)
if orientation in ('top', 'bottom'):
if orientation == 'top':
ax.set_ylim([0, dvw])
ax.set_xlim([0, ivw])
else:
ax.set_ylim([dvw, 0])
ax.set_xlim([0, ivw])
xlines = icoords
ylines = dcoords
if no_labels:
ax.set_xticks([])
ax.set_xticklabels([])
else:
ax.set_xticks(iv_ticks)
if orientation == 'top':
ax.xaxis.set_ticks_position('bottom')
else:
ax.xaxis.set_ticks_position('top')
# Make the tick marks invisible because they cover up the links
for line in ax.get_xticklines():
line.set_visible(False)
leaf_rot = (float(_get_tick_rotation(len(ivl)))
if (leaf_rotation is None) else leaf_rotation)
leaf_font = (float(_get_tick_text_size(len(ivl)))
if (leaf_font_size is None) else leaf_font_size)
ax.set_xticklabels(ivl, rotation=leaf_rot, size=leaf_font)
elif orientation in ('left', 'right'):
if orientation == 'left':
ax.set_xlim([dvw, 0])
ax.set_ylim([0, ivw])
else:
ax.set_xlim([0, dvw])
ax.set_ylim([0, ivw])
xlines = dcoords
ylines = icoords
if no_labels:
ax.set_yticks([])
ax.set_yticklabels([])
else:
ax.set_yticks(iv_ticks)
if orientation == 'left':
ax.yaxis.set_ticks_position('right')
else:
ax.yaxis.set_ticks_position('left')
# Make the tick marks invisible because they cover up the links
for line in ax.get_yticklines():
line.set_visible(False)
leaf_font = (float(_get_tick_text_size(len(ivl)))
if (leaf_font_size is None) else leaf_font_size)
if leaf_rotation is not None:
ax.set_yticklabels(ivl, rotation=leaf_rotation, size=leaf_font)
else:
ax.set_yticklabels(ivl, size=leaf_font)
# Let's use collections instead. This way there is a separate legend item
# for each tree grouping, rather than stupidly one for each line segment.
colors_used = _remove_dups(color_list)
color_to_lines = {}
for color in colors_used:
color_to_lines[color] = []
for (xline, yline, color) in zip(xlines, ylines, color_list):
color_to_lines[color].append(list(zip(xline, yline)))
colors_to_collections = {}
# Construct the collections.
for color in colors_used:
coll = matplotlib.collections.LineCollection(color_to_lines[color],
colors=(color,))
colors_to_collections[color] = coll
# Add all the groupings below the color threshold.
for color in colors_used:
if color != above_threshold_color:
ax.add_collection(colors_to_collections[color])
# If there's a grouping of links above the color threshold, it goes last.
if above_threshold_color in colors_to_collections:
ax.add_collection(colors_to_collections[above_threshold_color])
if contraction_marks is not None:
Ellipse = matplotlib.patches.Ellipse
for (x, y) in contraction_marks:
if orientation in ('left', 'right'):
e = Ellipse((y, x), width=dvw / 100, height=1.0)
else:
e = Ellipse((x, y), width=1.0, height=dvw / 100)
ax.add_artist(e)
e.set_clip_box(ax.bbox)
e.set_alpha(0.5)
e.set_facecolor('k')
if trigger_redraw:
matplotlib.pylab.draw_if_interactive()
_link_line_colors = ['g', 'r', 'c', 'm', 'y', 'k']
def set_link_color_palette(palette):
"""
Set list of matplotlib color codes for use by dendrogram.
Note that this palette is global (i.e. setting it once changes the colors
for all subsequent calls to `dendrogram`) and that it affects only the
the colors below ``color_threshold``.
Note that `dendrogram` also accepts a custom coloring function through its
``link_color_func`` keyword, which is more flexible and non-global.
Parameters
----------
palette : list of str or None
A list of matplotlib color codes. The order of the color codes is the
order in which the colors are cycled through when color thresholding in
the dendrogram.
If ``None``, resets the palette to its default (which is
``['g', 'r', 'c', 'm', 'y', 'k']``).
Returns
-------
None
See Also
--------
dendrogram
Notes
-----
Ability to reset the palette with ``None`` added in SciPy 0.17.0.
Examples
--------
>>> from scipy.cluster import hierarchy
>>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268.,
... 400., 754., 564., 138., 219., 869., 669.])
>>> Z = hierarchy.linkage(ytdist, 'single')
>>> dn = hierarchy.dendrogram(Z, no_plot=True)
>>> dn['color_list']
['g', 'b', 'b', 'b', 'b']
>>> hierarchy.set_link_color_palette(['c', 'm', 'y', 'k'])
>>> dn = hierarchy.dendrogram(Z, no_plot=True)
>>> dn['color_list']
['c', 'b', 'b', 'b', 'b']
>>> dn = hierarchy.dendrogram(Z, no_plot=True, color_threshold=267,
... above_threshold_color='k')
>>> dn['color_list']
['c', 'm', 'm', 'k', 'k']
Now reset the color palette to its default:
>>> hierarchy.set_link_color_palette(None)
"""
if palette is None:
# reset to its default
palette = ['g', 'r', 'c', 'm', 'y', 'k']
elif type(palette) not in (list, tuple):
raise TypeError("palette must be a list or tuple")
_ptypes = [isinstance(p, string_types) for p in palette]
if False in _ptypes:
raise TypeError("all palette list elements must be color strings")
for i in list(_link_line_colors):
_link_line_colors.remove(i)
_link_line_colors.extend(list(palette))
def dendrogram(Z, p=30, truncate_mode=None, color_threshold=None,
get_leaves=True, orientation='top', labels=None,
count_sort=False, distance_sort=False, show_leaf_counts=True,
no_plot=False, no_labels=False, leaf_font_size=None,
leaf_rotation=None, leaf_label_func=None,
show_contracted=False, link_color_func=None, ax=None,
above_threshold_color='b'):
"""
Plot the hierarchical clustering as a dendrogram.
The dendrogram illustrates how each cluster is
composed by drawing a U-shaped link between a non-singleton
cluster and its children. The top of the U-link indicates a
cluster merge. The two legs of the U-link indicate which clusters
were merged. The length of the two legs of the U-link represents
the distance between the child clusters. It is also the
cophenetic distance between original observations in the two
children clusters.
Parameters
----------
Z : ndarray
The linkage matrix encoding the hierarchical clustering to
render as a dendrogram. See the ``linkage`` function for more
information on the format of ``Z``.
p : int, optional
The ``p`` parameter for ``truncate_mode``.
truncate_mode : str, optional
The dendrogram can be hard to read when the original
observation matrix from which the linkage is derived is
large. Truncation is used to condense the dendrogram. There
are several modes:
``None``
No truncation is performed (default).
Note: ``'none'`` is an alias for ``None`` that's kept for
backward compatibility.
``'lastp'``
The last ``p`` non-singleton clusters formed in the linkage are the
only non-leaf nodes in the linkage; they correspond to rows
``Z[n-p-2:end]`` in ``Z``. All other non-singleton clusters are
contracted into leaf nodes.
``'level'``
No more than ``p`` levels of the dendrogram tree are displayed.
A "level" includes all nodes with ``p`` merges from the last merge.
Note: ``'mtica'`` is an alias for ``'level'`` that's kept for
backward compatibility.
color_threshold : double, optional
For brevity, let :math:`t` be the ``color_threshold``.
Colors all the descendent links below a cluster node
:math:`k` the same color if :math:`k` is the first node below
the cut threshold :math:`t`. All links connecting nodes with
distances greater than or equal to the threshold are colored
blue. If :math:`t` is less than or equal to zero, all nodes
are colored blue. If ``color_threshold`` is None or
'default', corresponding with MATLAB(TM) behavior, the
threshold is set to ``0.7*max(Z[:,2])``.
get_leaves : bool, optional
Includes a list ``R['leaves']=H`` in the result
dictionary. For each :math:`i`, ``H[i] == j``, cluster node
``j`` appears in position ``i`` in the left-to-right traversal
of the leaves, where :math:`j < 2n-1` and :math:`i < n`.
orientation : str, optional
The direction to plot the dendrogram, which can be any
of the following strings:
``'top'``
Plots the root at the top, and plot descendent links going downwards.
(default).
``'bottom'``
Plots the root at the bottom, and plot descendent links going
upwards.
``'left'``
Plots the root at the left, and plot descendent links going right.
``'right'``
Plots the root at the right, and plot descendent links going left.
labels : ndarray, optional
By default ``labels`` is None so the index of the original observation
is used to label the leaf nodes. Otherwise, this is an :math:`n`
-sized list (or tuple). The ``labels[i]`` value is the text to put
under the :math:`i` th leaf node only if it corresponds to an original
observation and not a non-singleton cluster.
count_sort : str or bool, optional
For each node n, the order (visually, from left-to-right) n's
two descendent links are plotted is determined by this
parameter, which can be any of the following values:
``False``
Nothing is done.
``'ascending'`` or ``True``
The child with the minimum number of original objects in its cluster
is plotted first.
``'descending'``
The child with the maximum number of original objects in its cluster
is plotted first.
Note ``distance_sort`` and ``count_sort`` cannot both be True.
distance_sort : str or bool, optional
For each node n, the order (visually, from left-to-right) n's
two descendent links are plotted is determined by this
parameter, which can be any of the following values:
``False``
Nothing is done.
``'ascending'`` or ``True``
The child with the minimum distance between its direct descendents is
plotted first.
``'descending'``
The child with the maximum distance between its direct descendents is
plotted first.
Note ``distance_sort`` and ``count_sort`` cannot both be True.
show_leaf_counts : bool, optional
When True, leaf nodes representing :math:`k>1` original
observation are labeled with the number of observations they
contain in parentheses.
no_plot : bool, optional
When True, the final rendering is not performed. This is
useful if only the data structures computed for the rendering
are needed or if matplotlib is not available.
no_labels : bool, optional
When True, no labels appear next to the leaf nodes in the
rendering of the dendrogram.
leaf_rotation : double, optional
Specifies the angle (in degrees) to rotate the leaf
labels. When unspecified, the rotation is based on the number of
nodes in the dendrogram (default is 0).
leaf_font_size : int, optional
Specifies the font size (in points) of the leaf labels. When
unspecified, the size based on the number of nodes in the
dendrogram.
leaf_label_func : lambda or function, optional
When leaf_label_func is a callable function, for each
leaf with cluster index :math:`k < 2n-1`. The function
is expected to return a string with the label for the
leaf.
Indices :math:`k < n` correspond to original observations
while indices :math:`k \\geq n` correspond to non-singleton
clusters.
For example, to label singletons with their node id and
non-singletons with their id, count, and inconsistency
coefficient, simply do::
# First define the leaf label function.
def llf(id):
if id < n:
return str(id)
else:
return '[%d %d %1.2f]' % (id, count, R[n-id,3])
# The text for the leaf nodes is going to be big so force
# a rotation of 90 degrees.
dendrogram(Z, leaf_label_func=llf, leaf_rotation=90)
show_contracted : bool, optional
When True the heights of non-singleton nodes contracted
into a leaf node are plotted as crosses along the link
connecting that leaf node. This really is only useful when
truncation is used (see ``truncate_mode`` parameter).
link_color_func : callable, optional
If given, `link_color_function` is called with each non-singleton id
corresponding to each U-shaped link it will paint. The function is
expected to return the color to paint the link, encoded as a matplotlib
color string code. For example::
dendrogram(Z, link_color_func=lambda k: colors[k])
colors the direct links below each untruncated non-singleton node
``k`` using ``colors[k]``.
ax : matplotlib Axes instance, optional
If None and `no_plot` is not True, the dendrogram will be plotted
on the current axes. Otherwise if `no_plot` is not True the
dendrogram will be plotted on the given ``Axes`` instance. This can be
useful if the dendrogram is part of a more complex figure.
above_threshold_color : str, optional
This matplotlib color string sets the color of the links above the
color_threshold. The default is 'b'.
Returns
-------
R : dict
A dictionary of data structures computed to render the
dendrogram. Its has the following keys:
``'color_list'``
A list of color names. The k'th element represents the color of the
k'th link.
``'icoord'`` and ``'dcoord'``
Each of them is a list of lists. Let ``icoord = [I1, I2, ..., Ip]``
where ``Ik = [xk1, xk2, xk3, xk4]`` and ``dcoord = [D1, D2, ..., Dp]``
where ``Dk = [yk1, yk2, yk3, yk4]``, then the k'th link painted is
``(xk1, yk1)`` - ``(xk2, yk2)`` - ``(xk3, yk3)`` - ``(xk4, yk4)``.
``'ivl'``
A list of labels corresponding to the leaf nodes.
``'leaves'``
For each i, ``H[i] == j``, cluster node ``j`` appears in position
``i`` in the left-to-right traversal of the leaves, where
:math:`j < 2n-1` and :math:`i < n`. If ``j`` is less than ``n``, the
``i``-th leaf node corresponds to an original observation.
Otherwise, it corresponds to a non-singleton cluster.
See Also
--------
linkage, set_link_color_palette
Notes
-----
It is expected that the distances in ``Z[:,2]`` be monotonic, otherwise
crossings appear in the dendrogram.
Examples
--------
>>> from scipy.cluster import hierarchy
>>> import matplotlib.pyplot as plt
A very basic example:
>>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268.,
... 400., 754., 564., 138., 219., 869., 669.])
>>> Z = hierarchy.linkage(ytdist, 'single')
>>> plt.figure()
>>> dn = hierarchy.dendrogram(Z)
Now plot in given axes, improve the color scheme and use both vertical and
horizontal orientations:
>>> hierarchy.set_link_color_palette(['m', 'c', 'y', 'k'])
>>> fig, axes = plt.subplots(1, 2, figsize=(8, 3))
>>> dn1 = hierarchy.dendrogram(Z, ax=axes[0], above_threshold_color='y',
... orientation='top')
>>> dn2 = hierarchy.dendrogram(Z, ax=axes[1],
... above_threshold_color='#bcbddc',
... orientation='right')
>>> hierarchy.set_link_color_palette(None) # reset to default after use
>>> plt.show()
"""
# This feature was thought about but never implemented (still useful?):
#
# ... = dendrogram(..., leaves_order=None)
#
# Plots the leaves in the order specified by a vector of
# original observation indices. If the vector contains duplicates
# or results in a crossing, an exception will be thrown. Passing
# None orders leaf nodes based on the order they appear in the
# pre-order traversal.
Z = np.asarray(Z, order='c')
if orientation not in ["top", "left", "bottom", "right"]:
raise ValueError("orientation must be one of 'top', 'left', "
"'bottom', or 'right'")
is_valid_linkage(Z, throw=True, name='Z')
Zs = Z.shape
n = Zs[0] + 1
if type(p) in (int, float):
p = int(p)
else:
raise TypeError('The second argument must be a number')
if truncate_mode not in ('lastp', 'mlab', 'mtica', 'level', 'none', None):
# 'mlab' and 'mtica' are kept working for backwards compat.
raise ValueError('Invalid truncation mode.')
if truncate_mode == 'lastp' or truncate_mode == 'mlab':
if p > n or p == 0:
p = n
if truncate_mode == 'mtica':
# 'mtica' is an alias
truncate_mode = 'level'
if truncate_mode == 'level':
if p <= 0:
p = np.inf
if get_leaves:
lvs = []
else:
lvs = None
icoord_list = []
dcoord_list = []
color_list = []
current_color = [0]
currently_below_threshold = [False]
ivl = [] # list of leaves
if color_threshold is None or (isinstance(color_threshold, string_types) and
color_threshold == 'default'):
color_threshold = max(Z[:, 2]) * 0.7
R = {'icoord': icoord_list, 'dcoord': dcoord_list, 'ivl': ivl,
'leaves': lvs, 'color_list': color_list}
# Empty list will be filled in _dendrogram_calculate_info
contraction_marks = [] if show_contracted else None
_dendrogram_calculate_info(
Z=Z, p=p,
truncate_mode=truncate_mode,
color_threshold=color_threshold,
get_leaves=get_leaves,
orientation=orientation,
labels=labels,
count_sort=count_sort,
distance_sort=distance_sort,
show_leaf_counts=show_leaf_counts,
i=2*n - 2,
iv=0.0,
ivl=ivl,
n=n,
icoord_list=icoord_list,
dcoord_list=dcoord_list,
lvs=lvs,
current_color=current_color,
color_list=color_list,
currently_below_threshold=currently_below_threshold,
leaf_label_func=leaf_label_func,
contraction_marks=contraction_marks,
link_color_func=link_color_func,
above_threshold_color=above_threshold_color)
if not no_plot:
mh = max(Z[:, 2])
_plot_dendrogram(icoord_list, dcoord_list, ivl, p, n, mh, orientation,
no_labels, color_list,
leaf_font_size=leaf_font_size,
leaf_rotation=leaf_rotation,
contraction_marks=contraction_marks,
ax=ax,
above_threshold_color=above_threshold_color)
return R
def _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func,
i, labels):
# If the leaf id structure is not None and is a list then the caller
# to dendrogram has indicated that cluster id's corresponding to the
# leaf nodes should be recorded.
if lvs is not None:
lvs.append(int(i))
# If leaf node labels are to be displayed...
if ivl is not None:
# If a leaf_label_func has been provided, the label comes from the
# string returned from the leaf_label_func, which is a function
# passed to dendrogram.
if leaf_label_func:
ivl.append(leaf_label_func(int(i)))
else:
# Otherwise, if the dendrogram caller has passed a labels list
# for the leaf nodes, use it.
if labels is not None:
ivl.append(labels[int(i - n)])
else:
# Otherwise, use the id as the label for the leaf.x
ivl.append(str(int(i)))
def _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func,
i, labels, show_leaf_counts):
# If the leaf id structure is not None and is a list then the caller
# to dendrogram has indicated that cluster id's corresponding to the
# leaf nodes should be recorded.
if lvs is not None:
lvs.append(int(i))
if ivl is not None:
if leaf_label_func:
ivl.append(leaf_label_func(int(i)))
else:
if show_leaf_counts:
ivl.append("(" + str(int(Z[i - n, 3])) + ")")
else:
ivl.append("")
def _append_contraction_marks(Z, iv, i, n, contraction_marks):
_append_contraction_marks_sub(Z, iv, int(Z[i - n, 0]), n, contraction_marks)
_append_contraction_marks_sub(Z, iv, int(Z[i - n, 1]), n, contraction_marks)
def _append_contraction_marks_sub(Z, iv, i, n, contraction_marks):
if i >= n:
contraction_marks.append((iv, Z[i - n, 2]))
_append_contraction_marks_sub(Z, iv, int(Z[i - n, 0]), n, contraction_marks)
_append_contraction_marks_sub(Z, iv, int(Z[i - n, 1]), n, contraction_marks)
def _dendrogram_calculate_info(Z, p, truncate_mode,
color_threshold=np.inf, get_leaves=True,
orientation='top', labels=None,
count_sort=False, distance_sort=False,
show_leaf_counts=False, i=-1, iv=0.0,
ivl=[], n=0, icoord_list=[], dcoord_list=[],
lvs=None, mhr=False,
current_color=[], color_list=[],
currently_below_threshold=[],
leaf_label_func=None, level=0,
contraction_marks=None,
link_color_func=None,
above_threshold_color='b'):
"""
Calculate the endpoints of the links as well as the labels for the
the dendrogram rooted at the node with index i. iv is the independent
variable value to plot the left-most leaf node below the root node i
(if orientation='top', this would be the left-most x value where the
plotting of this root node i and its descendents should begin).
ivl is a list to store the labels of the leaf nodes. The leaf_label_func
is called whenever ivl != None, labels == None, and
leaf_label_func != None. When ivl != None and labels != None, the
labels list is used only for labeling the leaf nodes. When
ivl == None, no labels are generated for leaf nodes.
When get_leaves==True, a list of leaves is built as they are visited
in the dendrogram.
Returns a tuple with l being the independent variable coordinate that
corresponds to the midpoint of cluster to the left of cluster i if
i is non-singleton, otherwise the independent coordinate of the leaf
node if i is a leaf node.
Returns
-------
A tuple (left, w, h, md), where:
* left is the independent variable coordinate of the center of the
the U of the subtree
* w is the amount of space used for the subtree (in independent
variable units)
* h is the height of the subtree in dependent variable units
* md is the ``max(Z[*,2]``) for all nodes ``*`` below and including
the target node.
"""
if n == 0:
raise ValueError("Invalid singleton cluster count n.")
if i == -1:
raise ValueError("Invalid root cluster index i.")
if truncate_mode == 'lastp':
# If the node is a leaf node but corresponds to a non-singleton
# cluster, its label is either the empty string or the number of
# original observations belonging to cluster i.
if 2*n - p > i >= n:
d = Z[i - n, 2]
_append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl,
leaf_label_func, i, labels,
show_leaf_counts)
if contraction_marks is not None:
_append_contraction_marks(Z, iv + 5.0, i, n, contraction_marks)
return (iv + 5.0, 10.0, 0.0, d)
elif i < n:
_append_singleton_leaf_node(Z, p, n, level, lvs, ivl,
leaf_label_func, i, labels)
return (iv + 5.0, 10.0, 0.0, 0.0)
elif truncate_mode == 'level':
if i > n and level > p:
d = Z[i - n, 2]
_append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl,
leaf_label_func, i, labels,
show_leaf_counts)
if contraction_marks is not None:
_append_contraction_marks(Z, iv + 5.0, i, n, contraction_marks)
return (iv + 5.0, 10.0, 0.0, d)
elif i < n:
_append_singleton_leaf_node(Z, p, n, level, lvs, ivl,
leaf_label_func, i, labels)
return (iv + 5.0, 10.0, 0.0, 0.0)
elif truncate_mode in ('mlab',):
msg = "Mode 'mlab' is deprecated in scipy 0.19.0 (it never worked)."
warnings.warn(msg, DeprecationWarning)
# Otherwise, only truncate if we have a leaf node.
#
# Only place leaves if they correspond to original observations.
if i < n:
_append_singleton_leaf_node(Z, p, n, level, lvs, ivl,
leaf_label_func, i, labels)
return (iv + 5.0, 10.0, 0.0, 0.0)
# !!! Otherwise, we don't have a leaf node, so work on plotting a
# non-leaf node.
# Actual indices of a and b
aa = int(Z[i - n, 0])
ab = int(Z[i - n, 1])
if aa > n:
# The number of singletons below cluster a
na = Z[aa - n, 3]
# The distance between a's two direct children.
da = Z[aa - n, 2]
else:
na = 1
da = 0.0
if ab > n:
nb = Z[ab - n, 3]
db = Z[ab - n, 2]
else:
nb = 1
db = 0.0
if count_sort == 'ascending' or count_sort:
# If a has a count greater than b, it and its descendents should
# be drawn to the right. Otherwise, to the left.
if na > nb:
# The cluster index to draw to the left (ua) will be ab
# and the one to draw to the right (ub) will be aa
ua = ab
ub = aa
else:
ua = aa
ub = ab
elif count_sort == 'descending':
# If a has a count less than or equal to b, it and its
# descendents should be drawn to the left. Otherwise, to
# the right.
if na > nb:
ua = aa
ub = ab
else:
ua = ab
ub = aa
elif distance_sort == 'ascending' or distance_sort:
# If a has a distance greater than b, it and its descendents should
# be drawn to the right. Otherwise, to the left.
if da > db:
ua = ab
ub = aa
else:
ua = aa
ub = ab
elif distance_sort == 'descending':
# If a has a distance less than or equal to b, it and its
# descendents should be drawn to the left. Otherwise, to
# the right.
if da > db:
ua = aa
ub = ab
else:
ua = ab
ub = aa
else:
ua = aa
ub = ab
# Updated iv variable and the amount of space used.
(uiva, uwa, uah, uamd) = \
_dendrogram_calculate_info(
Z=Z, p=p,
truncate_mode=truncate_mode,
color_threshold=color_threshold,
get_leaves=get_leaves,
orientation=orientation,
labels=labels,
count_sort=count_sort,
distance_sort=distance_sort,
show_leaf_counts=show_leaf_counts,
i=ua, iv=iv, ivl=ivl, n=n,
icoord_list=icoord_list,
dcoord_list=dcoord_list, lvs=lvs,
current_color=current_color,
color_list=color_list,
currently_below_threshold=currently_below_threshold,
leaf_label_func=leaf_label_func,
level=level + 1, contraction_marks=contraction_marks,
link_color_func=link_color_func,
above_threshold_color=above_threshold_color)
h = Z[i - n, 2]
if h >= color_threshold or color_threshold <= 0:
c = above_threshold_color
if currently_below_threshold[0]:
current_color[0] = (current_color[0] + 1) % len(_link_line_colors)
currently_below_threshold[0] = False
else:
currently_below_threshold[0] = True
c = _link_line_colors[current_color[0]]
(uivb, uwb, ubh, ubmd) = \
_dendrogram_calculate_info(
Z=Z, p=p,
truncate_mode=truncate_mode,
color_threshold=color_threshold,
get_leaves=get_leaves,
orientation=orientation,
labels=labels,
count_sort=count_sort,
distance_sort=distance_sort,
show_leaf_counts=show_leaf_counts,
i=ub, iv=iv + uwa, ivl=ivl, n=n,
icoord_list=icoord_list,
dcoord_list=dcoord_list, lvs=lvs,
current_color=current_color,
color_list=color_list,
currently_below_threshold=currently_below_threshold,
leaf_label_func=leaf_label_func,
level=level + 1, contraction_marks=contraction_marks,
link_color_func=link_color_func,
above_threshold_color=above_threshold_color)
max_dist = max(uamd, ubmd, h)
icoord_list.append([uiva, uiva, uivb, uivb])
dcoord_list.append([uah, h, h, ubh])
if link_color_func is not None:
v = link_color_func(int(i))
if not isinstance(v, string_types):
raise TypeError("link_color_func must return a matplotlib "
"color string!")
color_list.append(v)
else:
color_list.append(c)
return (((uiva + uivb) / 2), uwa + uwb, h, max_dist)
def is_isomorphic(T1, T2):
"""
Determine if two different cluster assignments are equivalent.
Parameters
----------
T1 : array_like
An assignment of singleton cluster ids to flat cluster ids.
T2 : array_like
An assignment of singleton cluster ids to flat cluster ids.
Returns
-------
b : bool
Whether the flat cluster assignments `T1` and `T2` are
equivalent.
See Also
--------
linkage: for a description of what a linkage matrix is.
fcluster: for the creation of flat cluster assignments.
Examples
--------
>>> from scipy.cluster.hierarchy import fcluster, is_isomorphic
>>> from scipy.cluster.hierarchy import single, complete
>>> from scipy.spatial.distance import pdist
Two flat cluster assignments can be isomorphic if they represent the same
cluster assignment, with different labels.
For example, we can use the `scipy.cluster.hierarchy.single`: method
and flatten the output to four clusters:
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
>>> Z = single(pdist(X))
>>> T = fcluster(Z, 1, criterion='distance')
>>> T
array([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32)
We can then do the same using the
`scipy.cluster.hierarchy.complete`: method:
>>> Z = complete(pdist(X))
>>> T_ = fcluster(Z, 1.5, criterion='distance')
>>> T_
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
As we can see, in both cases we obtain four clusters and all the data
points are distributed in the same way - the only thing that changes
are the flat cluster labels (3 => 1, 4 =>2, 2 =>3 and 4 =>1), so both
cluster assignments are isomorphic:
>>> is_isomorphic(T, T_)
True
"""
T1 = np.asarray(T1, order='c')
T2 = np.asarray(T2, order='c')
if type(T1) != np.ndarray:
raise TypeError('T1 must be a numpy array.')
if type(T2) != np.ndarray:
raise TypeError('T2 must be a numpy array.')
T1S = T1.shape
T2S = T2.shape
if len(T1S) != 1:
raise ValueError('T1 must be one-dimensional.')
if len(T2S) != 1:
raise ValueError('T2 must be one-dimensional.')
if T1S[0] != T2S[0]:
raise ValueError('T1 and T2 must have the same number of elements.')
n = T1S[0]
d1 = {}
d2 = {}
for i in xrange(0, n):
if T1[i] in d1:
if not T2[i] in d2:
return False
if d1[T1[i]] != T2[i] or d2[T2[i]] != T1[i]:
return False
elif T2[i] in d2:
return False
else:
d1[T1[i]] = T2[i]
d2[T2[i]] = T1[i]
return True
def maxdists(Z):
"""
Return the maximum distance between any non-singleton cluster.
Parameters
----------
Z : ndarray
The hierarchical clustering encoded as a matrix. See
``linkage`` for more information.
Returns
-------
maxdists : ndarray
A ``(n-1)`` sized numpy array of doubles; ``MD[i]`` represents
the maximum distance between any cluster (including
singletons) below and including the node with index i. More
specifically, ``MD[i] = Z[Q(i)-n, 2].max()`` where ``Q(i)`` is the
set of all node indices below and including node i.
See Also
--------
linkage: for a description of what a linkage matrix is.
is_monotonic: for testing for monotonicity of a linkage matrix.
Examples
--------
>>> from scipy.cluster.hierarchy import median, maxdists
>>> from scipy.spatial.distance import pdist
Given a linkage matrix ``Z``, `scipy.cluster.hierarchy.maxdists`
computes for each new cluster generated (i.e. for each row of the linkage
matrix) what is the maximum distance between any two child clusters.
Due to the nature of hierarchical clustering, in many cases this is going
to be just the distance between the two child clusters that were merged
to form the current one - that is, Z[:,2].
However, for non-monotonic cluster assignments such as
`scipy.cluster.hierarchy.median` clustering this is not always the
case: There may be cluster formations were the distance between the two
clusters merged is smaller than the distance between their children.
We can see this in an example:
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
>>> Z = median(pdist(X))
>>> Z
array([[ 0. , 1. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 2. , 12. , 1.11803399, 3. ],
[ 5. , 13. , 1.11803399, 3. ],
[ 8. , 15. , 1.11803399, 3. ],
[11. , 14. , 1.11803399, 3. ],
[18. , 19. , 3. , 6. ],
[16. , 17. , 3.5 , 6. ],
[20. , 21. , 3.25 , 12. ]])
>>> maxdists(Z)
array([1. , 1. , 1. , 1. , 1.11803399,
1.11803399, 1.11803399, 1.11803399, 3. , 3.5 ,
3.5 ])
Note that while the distance between the two clusters merged when creating the
last cluster is 3.25, there are two children (clusters 16 and 17) whose distance
is larger (3.5). Thus, `scipy.cluster.hierarchy.maxdists` returns 3.5 in
this case.
"""
Z = np.asarray(Z, order='c', dtype=np.double)
is_valid_linkage(Z, throw=True, name='Z')
n = Z.shape[0] + 1
MD = np.zeros((n - 1,))
[Z] = _copy_arrays_if_base_present([Z])
_hierarchy.get_max_dist_for_each_cluster(Z, MD, int(n))
return MD
def maxinconsts(Z, R):
"""
Return the maximum inconsistency coefficient for each
non-singleton cluster and its children.
Parameters
----------
Z : ndarray
The hierarchical clustering encoded as a matrix. See
`linkage` for more information.
R : ndarray
The inconsistency matrix.
Returns
-------
MI : ndarray
A monotonic ``(n-1)``-sized numpy array of doubles.
See Also
--------
linkage: for a description of what a linkage matrix is.
inconsistent: for the creation of a inconsistency matrix.
Examples
--------
>>> from scipy.cluster.hierarchy import median, inconsistent, maxinconsts
>>> from scipy.spatial.distance import pdist
Given a data set ``X``, we can apply a clustering method to obtain a
linkage matrix ``Z``. `scipy.cluster.hierarchy.inconsistent` can
be also used to obtain the inconsistency matrix ``R`` associated to
this clustering process:
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
>>> Z = median(pdist(X))
>>> R = inconsistent(Z)
>>> Z
array([[ 0. , 1. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 2. , 12. , 1.11803399, 3. ],
[ 5. , 13. , 1.11803399, 3. ],
[ 8. , 15. , 1.11803399, 3. ],
[11. , 14. , 1.11803399, 3. ],
[18. , 19. , 3. , 6. ],
[16. , 17. , 3.5 , 6. ],
[20. , 21. , 3.25 , 12. ]])
>>> R
array([[1. , 0. , 1. , 0. ],
[1. , 0. , 1. , 0. ],
[1. , 0. , 1. , 0. ],
[1. , 0. , 1. , 0. ],
[1.05901699, 0.08346263, 2. , 0.70710678],
[1.05901699, 0.08346263, 2. , 0.70710678],
[1.05901699, 0.08346263, 2. , 0.70710678],
[1.05901699, 0.08346263, 2. , 0.70710678],
[1.74535599, 1.08655358, 3. , 1.15470054],
[1.91202266, 1.37522872, 3. , 1.15470054],
[3.25 , 0.25 , 3. , 0. ]])
Here `scipy.cluster.hierarchy.maxinconsts` can be used to compute
the maximum value of the inconsistency statistic (the last column of
``R``) for each non-singleton cluster and its children:
>>> maxinconsts(Z, R)
array([0. , 0. , 0. , 0. , 0.70710678,
0.70710678, 0.70710678, 0.70710678, 1.15470054, 1.15470054,
1.15470054])
"""
Z = np.asarray(Z, order='c')
R = np.asarray(R, order='c')
is_valid_linkage(Z, throw=True, name='Z')
is_valid_im(R, throw=True, name='R')
n = Z.shape[0] + 1
if Z.shape[0] != R.shape[0]:
raise ValueError("The inconsistency matrix and linkage matrix each "
"have a different number of rows.")
MI = np.zeros((n - 1,))
[Z, R] = _copy_arrays_if_base_present([Z, R])
_hierarchy.get_max_Rfield_for_each_cluster(Z, R, MI, int(n), 3)
return MI
def maxRstat(Z, R, i):
"""
Return the maximum statistic for each non-singleton cluster and its
children.
Parameters
----------
Z : array_like
The hierarchical clustering encoded as a matrix. See `linkage` for more
information.
R : array_like
The inconsistency matrix.
i : int
The column of `R` to use as the statistic.
Returns
-------
MR : ndarray
Calculates the maximum statistic for the i'th column of the
inconsistency matrix `R` for each non-singleton cluster
node. ``MR[j]`` is the maximum over ``R[Q(j)-n, i]`` where
``Q(j)`` the set of all node ids corresponding to nodes below
and including ``j``.
See Also
--------
linkage: for a description of what a linkage matrix is.
inconsistent: for the creation of a inconsistency matrix.
Examples
--------
>>> from scipy.cluster.hierarchy import median, inconsistent, maxRstat
>>> from scipy.spatial.distance import pdist
Given a data set ``X``, we can apply a clustering method to obtain a
linkage matrix ``Z``. `scipy.cluster.hierarchy.inconsistent` can
be also used to obtain the inconsistency matrix ``R`` associated to
this clustering process:
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
>>> Z = median(pdist(X))
>>> R = inconsistent(Z)
>>> R
array([[1. , 0. , 1. , 0. ],
[1. , 0. , 1. , 0. ],
[1. , 0. , 1. , 0. ],
[1. , 0. , 1. , 0. ],
[1.05901699, 0.08346263, 2. , 0.70710678],
[1.05901699, 0.08346263, 2. , 0.70710678],
[1.05901699, 0.08346263, 2. , 0.70710678],
[1.05901699, 0.08346263, 2. , 0.70710678],
[1.74535599, 1.08655358, 3. , 1.15470054],
[1.91202266, 1.37522872, 3. , 1.15470054],
[3.25 , 0.25 , 3. , 0. ]])
`scipy.cluster.hierarchy.maxRstat` can be used to compute
the maximum value of each column of ``R``, for each non-singleton
cluster and its children:
>>> maxRstat(Z, R, 0)
array([1. , 1. , 1. , 1. , 1.05901699,
1.05901699, 1.05901699, 1.05901699, 1.74535599, 1.91202266,
3.25 ])
>>> maxRstat(Z, R, 1)
array([0. , 0. , 0. , 0. , 0.08346263,
0.08346263, 0.08346263, 0.08346263, 1.08655358, 1.37522872,
1.37522872])
>>> maxRstat(Z, R, 3)
array([0. , 0. , 0. , 0. , 0.70710678,
0.70710678, 0.70710678, 0.70710678, 1.15470054, 1.15470054,
1.15470054])
"""
Z = np.asarray(Z, order='c')
R = np.asarray(R, order='c')
is_valid_linkage(Z, throw=True, name='Z')
is_valid_im(R, throw=True, name='R')
if type(i) is not int:
raise TypeError('The third argument must be an integer.')
if i < 0 or i > 3:
raise ValueError('i must be an integer between 0 and 3 inclusive.')
if Z.shape[0] != R.shape[0]:
raise ValueError("The inconsistency matrix and linkage matrix each "
"have a different number of rows.")
n = Z.shape[0] + 1
MR = np.zeros((n - 1,))
[Z, R] = _copy_arrays_if_base_present([Z, R])
_hierarchy.get_max_Rfield_for_each_cluster(Z, R, MR, int(n), i)
return MR
def leaders(Z, T):
"""
Return the root nodes in a hierarchical clustering.
Returns the root nodes in a hierarchical clustering corresponding
to a cut defined by a flat cluster assignment vector ``T``. See
the ``fcluster`` function for more information on the format of ``T``.
For each flat cluster :math:`j` of the :math:`k` flat clusters
represented in the n-sized flat cluster assignment vector ``T``,
this function finds the lowest cluster node :math:`i` in the linkage
tree Z such that:
* leaf descendants belong only to flat cluster j
(i.e. ``T[p]==j`` for all :math:`p` in :math:`S(i)` where
:math:`S(i)` is the set of leaf ids of descendant leaf nodes
with cluster node :math:`i`)
* there does not exist a leaf that is not a descendant with
:math:`i` that also belongs to cluster :math:`j`
(i.e. ``T[q]!=j`` for all :math:`q` not in :math:`S(i)`). If
this condition is violated, ``T`` is not a valid cluster
assignment vector, and an exception will be thrown.
Parameters
----------
Z : ndarray
The hierarchical clustering encoded as a matrix. See
`linkage` for more information.
T : ndarray
The flat cluster assignment vector.
Returns
-------
L : ndarray
The leader linkage node id's stored as a k-element 1-D array
where ``k`` is the number of flat clusters found in ``T``.
``L[j]=i`` is the linkage cluster node id that is the
leader of flat cluster with id M[j]. If ``i < n``, ``i``
corresponds to an original observation, otherwise it
corresponds to a non-singleton cluster.
M : ndarray
The leader linkage node id's stored as a k-element 1-D array where
``k`` is the number of flat clusters found in ``T``. This allows the
set of flat cluster ids to be any arbitrary set of ``k`` integers.
For example: if ``L[3]=2`` and ``M[3]=8``, the flat cluster with
id 8's leader is linkage node 2.
See Also
--------
fcluster: for the creation of flat cluster assignments.
Examples
--------
>>> from scipy.cluster.hierarchy import ward, fcluster, leaders
>>> from scipy.spatial.distance import pdist
Given a linkage matrix ``Z`` - obtained after apply a clustering method
to a dataset ``X`` - and a flat cluster assignment array ``T``:
>>> X = [[0, 0], [0, 1], [1, 0],
... [0, 4], [0, 3], [1, 4],
... [4, 0], [3, 0], [4, 1],
... [4, 4], [3, 4], [4, 3]]
>>> Z = ward(pdist(X))
>>> Z
array([[ 0. , 1. , 1. , 2. ],
[ 3. , 4. , 1. , 2. ],
[ 6. , 7. , 1. , 2. ],
[ 9. , 10. , 1. , 2. ],
[ 2. , 12. , 1.29099445, 3. ],
[ 5. , 13. , 1.29099445, 3. ],
[ 8. , 14. , 1.29099445, 3. ],
[11. , 15. , 1.29099445, 3. ],
[16. , 17. , 5.77350269, 6. ],
[18. , 19. , 5.77350269, 6. ],
[20. , 21. , 8.16496581, 12. ]])
>>> T = fcluster(Z, 3, criterion='distance')
>>> T
array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
`scipy.cluster.hierarchy.leaders` returns the indexes of the nodes
in the dendrogram that are the leaders of each flat cluster:
>>> L, M = leaders(Z, T)
>>> L
array([16, 17, 18, 19], dtype=int32)
(remember that indexes 0-11 point to the 12 data points in ``X``
whereas indexes 12-22 point to the 11 rows of ``Z``)
`scipy.cluster.hierarchy.leaders` also returns the indexes of
the flat clusters in ``T``:
>>> M
array([1, 2, 3, 4], dtype=int32)
"""
Z = np.asarray(Z, order='c')
T = np.asarray(T, order='c')
if type(T) != np.ndarray or T.dtype != 'i':
raise TypeError('T must be a one-dimensional numpy array of integers.')
is_valid_linkage(Z, throw=True, name='Z')
if len(T) != Z.shape[0] + 1:
raise ValueError('Mismatch: len(T)!=Z.shape[0] + 1.')
Cl = np.unique(T)
kk = len(Cl)
L = np.zeros((kk,), dtype='i')
M = np.zeros((kk,), dtype='i')
n = Z.shape[0] + 1
[Z, T] = _copy_arrays_if_base_present([Z, T])
s = _hierarchy.leaders(Z, T, L, M, int(kk), int(n))
if s >= 0:
raise ValueError(('T is not a valid assignment vector. Error found '
'when examining linkage node %d (< 2n-1).') % s)
return (L, M)