morphology.py
81 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
# Copyright (C) 2003-2005 Peter J. Verveer
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# 3. The name of the author may not be used to endorse or promote
# products derived from this software without specific prior
# written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from __future__ import division, print_function, absolute_import
import warnings
import operator
import numpy
from . import _ni_support
from . import _nd_image
from . import filters
__all__ = ['iterate_structure', 'generate_binary_structure', 'binary_erosion',
'binary_dilation', 'binary_opening', 'binary_closing',
'binary_hit_or_miss', 'binary_propagation', 'binary_fill_holes',
'grey_erosion', 'grey_dilation', 'grey_opening', 'grey_closing',
'morphological_gradient', 'morphological_laplace', 'white_tophat',
'black_tophat', 'distance_transform_bf', 'distance_transform_cdt',
'distance_transform_edt']
def _center_is_true(structure, origin):
structure = numpy.array(structure)
coor = tuple([oo + ss // 2 for ss, oo in zip(structure.shape,
origin)])
return bool(structure[coor])
def iterate_structure(structure, iterations, origin=None):
"""
Iterate a structure by dilating it with itself.
Parameters
----------
structure : array_like
Structuring element (an array of bools, for example), to be dilated with
itself.
iterations : int
number of dilations performed on the structure with itself
origin : optional
If origin is None, only the iterated structure is returned. If
not, a tuple of the iterated structure and the modified origin is
returned.
Returns
-------
iterate_structure : ndarray of bools
A new structuring element obtained by dilating `structure`
(`iterations` - 1) times with itself.
See also
--------
generate_binary_structure
Examples
--------
>>> from scipy import ndimage
>>> struct = ndimage.generate_binary_structure(2, 1)
>>> struct.astype(int)
array([[0, 1, 0],
[1, 1, 1],
[0, 1, 0]])
>>> ndimage.iterate_structure(struct, 2).astype(int)
array([[0, 0, 1, 0, 0],
[0, 1, 1, 1, 0],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0]])
>>> ndimage.iterate_structure(struct, 3).astype(int)
array([[0, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[1, 1, 1, 1, 1, 1, 1],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 1, 0, 0, 0]])
"""
structure = numpy.asarray(structure)
if iterations < 2:
return structure.copy()
ni = iterations - 1
shape = [ii + ni * (ii - 1) for ii in structure.shape]
pos = [ni * (structure.shape[ii] // 2) for ii in range(len(shape))]
slc = tuple(slice(pos[ii], pos[ii] + structure.shape[ii], None)
for ii in range(len(shape)))
out = numpy.zeros(shape, bool)
out[slc] = structure != 0
out = binary_dilation(out, structure, iterations=ni)
if origin is None:
return out
else:
origin = _ni_support._normalize_sequence(origin, structure.ndim)
origin = [iterations * o for o in origin]
return out, origin
def generate_binary_structure(rank, connectivity):
"""
Generate a binary structure for binary morphological operations.
Parameters
----------
rank : int
Number of dimensions of the array to which the structuring element
will be applied, as returned by `np.ndim`.
connectivity : int
`connectivity` determines which elements of the output array belong
to the structure, i.e. are considered as neighbors of the central
element. Elements up to a squared distance of `connectivity` from
the center are considered neighbors. `connectivity` may range from 1
(no diagonal elements are neighbors) to `rank` (all elements are
neighbors).
Returns
-------
output : ndarray of bools
Structuring element which may be used for binary morphological
operations, with `rank` dimensions and all dimensions equal to 3.
See also
--------
iterate_structure, binary_dilation, binary_erosion
Notes
-----
`generate_binary_structure` can only create structuring elements with
dimensions equal to 3, i.e. minimal dimensions. For larger structuring
elements, that are useful e.g. for eroding large objects, one may either
use `iterate_structure`, or create directly custom arrays with
numpy functions such as `numpy.ones`.
Examples
--------
>>> from scipy import ndimage
>>> struct = ndimage.generate_binary_structure(2, 1)
>>> struct
array([[False, True, False],
[ True, True, True],
[False, True, False]], dtype=bool)
>>> a = np.zeros((5,5))
>>> a[2, 2] = 1
>>> a
array([[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.]])
>>> b = ndimage.binary_dilation(a, structure=struct).astype(a.dtype)
>>> b
array([[ 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 1., 1., 1., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0.]])
>>> ndimage.binary_dilation(b, structure=struct).astype(a.dtype)
array([[ 0., 0., 1., 0., 0.],
[ 0., 1., 1., 1., 0.],
[ 1., 1., 1., 1., 1.],
[ 0., 1., 1., 1., 0.],
[ 0., 0., 1., 0., 0.]])
>>> struct = ndimage.generate_binary_structure(2, 2)
>>> struct
array([[ True, True, True],
[ True, True, True],
[ True, True, True]], dtype=bool)
>>> struct = ndimage.generate_binary_structure(3, 1)
>>> struct # no diagonal elements
array([[[False, False, False],
[False, True, False],
[False, False, False]],
[[False, True, False],
[ True, True, True],
[False, True, False]],
[[False, False, False],
[False, True, False],
[False, False, False]]], dtype=bool)
"""
if connectivity < 1:
connectivity = 1
if rank < 1:
return numpy.array(True, dtype=bool)
output = numpy.fabs(numpy.indices([3] * rank) - 1)
output = numpy.add.reduce(output, 0)
return output <= connectivity
def _binary_erosion(input, structure, iterations, mask, output,
border_value, origin, invert, brute_force):
try:
iterations = operator.index(iterations)
except TypeError:
raise TypeError('iterations parameter should be an integer')
input = numpy.asarray(input)
if numpy.iscomplexobj(input):
raise TypeError('Complex type not supported')
if structure is None:
structure = generate_binary_structure(input.ndim, 1)
else:
structure = numpy.asarray(structure, dtype=bool)
if structure.ndim != input.ndim:
raise RuntimeError('structure and input must have same dimensionality')
if not structure.flags.contiguous:
structure = structure.copy()
if numpy.prod(structure.shape, axis=0) < 1:
raise RuntimeError('structure must not be empty')
if mask is not None:
mask = numpy.asarray(mask)
if mask.shape != input.shape:
raise RuntimeError('mask and input must have equal sizes')
origin = _ni_support._normalize_sequence(origin, input.ndim)
cit = _center_is_true(structure, origin)
if isinstance(output, numpy.ndarray):
if numpy.iscomplexobj(output):
raise TypeError('Complex output type not supported')
else:
output = bool
output = _ni_support._get_output(output, input)
if iterations == 1:
_nd_image.binary_erosion(input, structure, mask, output,
border_value, origin, invert, cit, 0)
return output
elif cit and not brute_force:
changed, coordinate_list = _nd_image.binary_erosion(
input, structure, mask, output,
border_value, origin, invert, cit, 1)
structure = structure[tuple([slice(None, None, -1)] *
structure.ndim)]
for ii in range(len(origin)):
origin[ii] = -origin[ii]
if not structure.shape[ii] & 1:
origin[ii] -= 1
if mask is not None:
mask = numpy.asarray(mask, dtype=numpy.int8)
if not structure.flags.contiguous:
structure = structure.copy()
_nd_image.binary_erosion2(output, structure, mask, iterations - 1,
origin, invert, coordinate_list)
return output
else:
tmp_in = numpy.empty_like(input, dtype=bool)
tmp_out = output
if iterations >= 1 and not iterations & 1:
tmp_in, tmp_out = tmp_out, tmp_in
changed = _nd_image.binary_erosion(
input, structure, mask, tmp_out,
border_value, origin, invert, cit, 0)
ii = 1
while ii < iterations or (iterations < 1 and changed):
tmp_in, tmp_out = tmp_out, tmp_in
changed = _nd_image.binary_erosion(
tmp_in, structure, mask, tmp_out,
border_value, origin, invert, cit, 0)
ii += 1
return output
def binary_erosion(input, structure=None, iterations=1, mask=None, output=None,
border_value=0, origin=0, brute_force=False):
"""
Multi-dimensional binary erosion with a given structuring element.
Binary erosion is a mathematical morphology operation used for image
processing.
Parameters
----------
input : array_like
Binary image to be eroded. Non-zero (True) elements form
the subset to be eroded.
structure : array_like, optional
Structuring element used for the erosion. Non-zero elements are
considered True. If no structuring element is provided, an element
is generated with a square connectivity equal to one.
iterations : int, optional
The erosion is repeated `iterations` times (one, by default).
If iterations is less than 1, the erosion is repeated until the
result does not change anymore.
mask : array_like, optional
If a mask is given, only those elements with a True value at
the corresponding mask element are modified at each iteration.
output : ndarray, optional
Array of the same shape as input, into which the output is placed.
By default, a new array is created.
border_value : int (cast to 0 or 1), optional
Value at the border in the output array.
origin : int or tuple of ints, optional
Placement of the filter, by default 0.
brute_force : boolean, optional
Memory condition: if False, only the pixels whose value was changed in
the last iteration are tracked as candidates to be updated (eroded) in
the current iteration; if True all pixels are considered as candidates
for erosion, regardless of what happened in the previous iteration.
False by default.
Returns
-------
binary_erosion : ndarray of bools
Erosion of the input by the structuring element.
See also
--------
grey_erosion, binary_dilation, binary_closing, binary_opening,
generate_binary_structure
Notes
-----
Erosion [1]_ is a mathematical morphology operation [2]_ that uses a
structuring element for shrinking the shapes in an image. The binary
erosion of an image by a structuring element is the locus of the points
where a superimposition of the structuring element centered on the point
is entirely contained in the set of non-zero elements of the image.
References
----------
.. [1] https://en.wikipedia.org/wiki/Erosion_%28morphology%29
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
Examples
--------
>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[1:6, 2:5] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_erosion(a).astype(a.dtype)
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> #Erosion removes objects smaller than the structure
>>> ndimage.binary_erosion(a, structure=np.ones((5,5))).astype(a.dtype)
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
"""
return _binary_erosion(input, structure, iterations, mask,
output, border_value, origin, 0, brute_force)
def binary_dilation(input, structure=None, iterations=1, mask=None,
output=None, border_value=0, origin=0,
brute_force=False):
"""
Multi-dimensional binary dilation with the given structuring element.
Parameters
----------
input : array_like
Binary array_like to be dilated. Non-zero (True) elements form
the subset to be dilated.
structure : array_like, optional
Structuring element used for the dilation. Non-zero elements are
considered True. If no structuring element is provided an element
is generated with a square connectivity equal to one.
iterations : int, optional
The dilation is repeated `iterations` times (one, by default).
If iterations is less than 1, the dilation is repeated until the
result does not change anymore. Only an integer of iterations is
accepted.
mask : array_like, optional
If a mask is given, only those elements with a True value at
the corresponding mask element are modified at each iteration.
output : ndarray, optional
Array of the same shape as input, into which the output is placed.
By default, a new array is created.
border_value : int (cast to 0 or 1), optional
Value at the border in the output array.
origin : int or tuple of ints, optional
Placement of the filter, by default 0.
brute_force : boolean, optional
Memory condition: if False, only the pixels whose value was changed in
the last iteration are tracked as candidates to be updated (dilated)
in the current iteration; if True all pixels are considered as
candidates for dilation, regardless of what happened in the previous
iteration. False by default.
Returns
-------
binary_dilation : ndarray of bools
Dilation of the input by the structuring element.
See also
--------
grey_dilation, binary_erosion, binary_closing, binary_opening,
generate_binary_structure
Notes
-----
Dilation [1]_ is a mathematical morphology operation [2]_ that uses a
structuring element for expanding the shapes in an image. The binary
dilation of an image by a structuring element is the locus of the points
covered by the structuring element, when its center lies within the
non-zero points of the image.
References
----------
.. [1] https://en.wikipedia.org/wiki/Dilation_%28morphology%29
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
Examples
--------
>>> from scipy import ndimage
>>> a = np.zeros((5, 5))
>>> a[2, 2] = 1
>>> a
array([[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.]])
>>> ndimage.binary_dilation(a)
array([[False, False, False, False, False],
[False, False, True, False, False],
[False, True, True, True, False],
[False, False, True, False, False],
[False, False, False, False, False]], dtype=bool)
>>> ndimage.binary_dilation(a).astype(a.dtype)
array([[ 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 1., 1., 1., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0.]])
>>> # 3x3 structuring element with connectivity 1, used by default
>>> struct1 = ndimage.generate_binary_structure(2, 1)
>>> struct1
array([[False, True, False],
[ True, True, True],
[False, True, False]], dtype=bool)
>>> # 3x3 structuring element with connectivity 2
>>> struct2 = ndimage.generate_binary_structure(2, 2)
>>> struct2
array([[ True, True, True],
[ True, True, True],
[ True, True, True]], dtype=bool)
>>> ndimage.binary_dilation(a, structure=struct1).astype(a.dtype)
array([[ 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 1., 1., 1., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 0., 0.]])
>>> ndimage.binary_dilation(a, structure=struct2).astype(a.dtype)
array([[ 0., 0., 0., 0., 0.],
[ 0., 1., 1., 1., 0.],
[ 0., 1., 1., 1., 0.],
[ 0., 1., 1., 1., 0.],
[ 0., 0., 0., 0., 0.]])
>>> ndimage.binary_dilation(a, structure=struct1,\\
... iterations=2).astype(a.dtype)
array([[ 0., 0., 1., 0., 0.],
[ 0., 1., 1., 1., 0.],
[ 1., 1., 1., 1., 1.],
[ 0., 1., 1., 1., 0.],
[ 0., 0., 1., 0., 0.]])
"""
input = numpy.asarray(input)
if structure is None:
structure = generate_binary_structure(input.ndim, 1)
origin = _ni_support._normalize_sequence(origin, input.ndim)
structure = numpy.asarray(structure)
structure = structure[tuple([slice(None, None, -1)] *
structure.ndim)]
for ii in range(len(origin)):
origin[ii] = -origin[ii]
if not structure.shape[ii] & 1:
origin[ii] -= 1
return _binary_erosion(input, structure, iterations, mask,
output, border_value, origin, 1, brute_force)
def binary_opening(input, structure=None, iterations=1, output=None,
origin=0, mask=None, border_value=0, brute_force=False):
"""
Multi-dimensional binary opening with the given structuring element.
The *opening* of an input image by a structuring element is the
*dilation* of the *erosion* of the image by the structuring element.
Parameters
----------
input : array_like
Binary array_like to be opened. Non-zero (True) elements form
the subset to be opened.
structure : array_like, optional
Structuring element used for the opening. Non-zero elements are
considered True. If no structuring element is provided an element
is generated with a square connectivity equal to one (i.e., only
nearest neighbors are connected to the center, diagonally-connected
elements are not considered neighbors).
iterations : int, optional
The erosion step of the opening, then the dilation step are each
repeated `iterations` times (one, by default). If `iterations` is
less than 1, each operation is repeated until the result does
not change anymore. Only an integer of iterations is accepted.
output : ndarray, optional
Array of the same shape as input, into which the output is placed.
By default, a new array is created.
origin : int or tuple of ints, optional
Placement of the filter, by default 0.
mask : array_like, optional
If a mask is given, only those elements with a True value at
the corresponding mask element are modified at each iteration.
.. versionadded:: 1.1.0
border_value : int (cast to 0 or 1), optional
Value at the border in the output array.
.. versionadded:: 1.1.0
brute_force : boolean, optional
Memory condition: if False, only the pixels whose value was changed in
the last iteration are tracked as candidates to be updated in the
current iteration; if true all pixels are considered as candidates for
update, regardless of what happened in the previous iteration.
False by default.
.. versionadded:: 1.1.0
Returns
-------
binary_opening : ndarray of bools
Opening of the input by the structuring element.
See also
--------
grey_opening, binary_closing, binary_erosion, binary_dilation,
generate_binary_structure
Notes
-----
*Opening* [1]_ is a mathematical morphology operation [2]_ that
consists in the succession of an erosion and a dilation of the
input with the same structuring element. Opening therefore removes
objects smaller than the structuring element.
Together with *closing* (`binary_closing`), opening can be used for
noise removal.
References
----------
.. [1] https://en.wikipedia.org/wiki/Opening_%28morphology%29
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
Examples
--------
>>> from scipy import ndimage
>>> a = np.zeros((5,5), dtype=int)
>>> a[1:4, 1:4] = 1; a[4, 4] = 1
>>> a
array([[0, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 1]])
>>> # Opening removes small objects
>>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(int)
array([[0, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])
>>> # Opening can also smooth corners
>>> ndimage.binary_opening(a).astype(int)
array([[0, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0]])
>>> # Opening is the dilation of the erosion of the input
>>> ndimage.binary_erosion(a).astype(int)
array([[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0]])
>>> ndimage.binary_dilation(ndimage.binary_erosion(a)).astype(int)
array([[0, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 1, 1, 1, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 0]])
"""
input = numpy.asarray(input)
if structure is None:
rank = input.ndim
structure = generate_binary_structure(rank, 1)
tmp = binary_erosion(input, structure, iterations, mask, None,
border_value, origin, brute_force)
return binary_dilation(tmp, structure, iterations, mask, output,
border_value, origin, brute_force)
def binary_closing(input, structure=None, iterations=1, output=None,
origin=0, mask=None, border_value=0, brute_force=False):
"""
Multi-dimensional binary closing with the given structuring element.
The *closing* of an input image by a structuring element is the
*erosion* of the *dilation* of the image by the structuring element.
Parameters
----------
input : array_like
Binary array_like to be closed. Non-zero (True) elements form
the subset to be closed.
structure : array_like, optional
Structuring element used for the closing. Non-zero elements are
considered True. If no structuring element is provided an element
is generated with a square connectivity equal to one (i.e., only
nearest neighbors are connected to the center, diagonally-connected
elements are not considered neighbors).
iterations : int, optional
The dilation step of the closing, then the erosion step are each
repeated `iterations` times (one, by default). If iterations is
less than 1, each operations is repeated until the result does
not change anymore. Only an integer of iterations is accepted.
output : ndarray, optional
Array of the same shape as input, into which the output is placed.
By default, a new array is created.
origin : int or tuple of ints, optional
Placement of the filter, by default 0.
mask : array_like, optional
If a mask is given, only those elements with a True value at
the corresponding mask element are modified at each iteration.
.. versionadded:: 1.1.0
border_value : int (cast to 0 or 1), optional
Value at the border in the output array.
.. versionadded:: 1.1.0
brute_force : boolean, optional
Memory condition: if False, only the pixels whose value was changed in
the last iteration are tracked as candidates to be updated in the
current iteration; if true al pixels are considered as candidates for
update, regardless of what happened in the previous iteration.
False by default.
.. versionadded:: 1.1.0
Returns
-------
binary_closing : ndarray of bools
Closing of the input by the structuring element.
See also
--------
grey_closing, binary_opening, binary_dilation, binary_erosion,
generate_binary_structure
Notes
-----
*Closing* [1]_ is a mathematical morphology operation [2]_ that
consists in the succession of a dilation and an erosion of the
input with the same structuring element. Closing therefore fills
holes smaller than the structuring element.
Together with *opening* (`binary_opening`), closing can be used for
noise removal.
References
----------
.. [1] https://en.wikipedia.org/wiki/Closing_%28morphology%29
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
Examples
--------
>>> from scipy import ndimage
>>> a = np.zeros((5,5), dtype=int)
>>> a[1:-1, 1:-1] = 1; a[2,2] = 0
>>> a
array([[0, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 1, 0, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])
>>> # Closing removes small holes
>>> ndimage.binary_closing(a).astype(int)
array([[0, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])
>>> # Closing is the erosion of the dilation of the input
>>> ndimage.binary_dilation(a).astype(int)
array([[0, 1, 1, 1, 0],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[1, 1, 1, 1, 1],
[0, 1, 1, 1, 0]])
>>> ndimage.binary_erosion(ndimage.binary_dilation(a)).astype(int)
array([[0, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])
>>> a = np.zeros((7,7), dtype=int)
>>> a[1:6, 2:5] = 1; a[1:3,3] = 0
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 1, 0, 0],
[0, 0, 1, 0, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> # In addition to removing holes, closing can also
>>> # coarsen boundaries with fine hollows.
>>> ndimage.binary_closing(a).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_closing(a, structure=np.ones((2,2))).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
"""
input = numpy.asarray(input)
if structure is None:
rank = input.ndim
structure = generate_binary_structure(rank, 1)
tmp = binary_dilation(input, structure, iterations, mask, None,
border_value, origin, brute_force)
return binary_erosion(tmp, structure, iterations, mask, output,
border_value, origin, brute_force)
def binary_hit_or_miss(input, structure1=None, structure2=None,
output=None, origin1=0, origin2=None):
"""
Multi-dimensional binary hit-or-miss transform.
The hit-or-miss transform finds the locations of a given pattern
inside the input image.
Parameters
----------
input : array_like (cast to booleans)
Binary image where a pattern is to be detected.
structure1 : array_like (cast to booleans), optional
Part of the structuring element to be fitted to the foreground
(non-zero elements) of `input`. If no value is provided, a
structure of square connectivity 1 is chosen.
structure2 : array_like (cast to booleans), optional
Second part of the structuring element that has to miss completely
the foreground. If no value is provided, the complementary of
`structure1` is taken.
output : ndarray, optional
Array of the same shape as input, into which the output is placed.
By default, a new array is created.
origin1 : int or tuple of ints, optional
Placement of the first part of the structuring element `structure1`,
by default 0 for a centered structure.
origin2 : int or tuple of ints, optional
Placement of the second part of the structuring element `structure2`,
by default 0 for a centered structure. If a value is provided for
`origin1` and not for `origin2`, then `origin2` is set to `origin1`.
Returns
-------
binary_hit_or_miss : ndarray
Hit-or-miss transform of `input` with the given structuring
element (`structure1`, `structure2`).
See also
--------
binary_erosion
References
----------
.. [1] https://en.wikipedia.org/wiki/Hit-or-miss_transform
Examples
--------
>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[1, 1] = 1; a[2:4, 2:4] = 1; a[4:6, 4:6] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0],
[0, 0, 1, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> structure1 = np.array([[1, 0, 0], [0, 1, 1], [0, 1, 1]])
>>> structure1
array([[1, 0, 0],
[0, 1, 1],
[0, 1, 1]])
>>> # Find the matches of structure1 in the array a
>>> ndimage.binary_hit_or_miss(a, structure1=structure1).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> # Change the origin of the filter
>>> # origin1=1 is equivalent to origin1=(1,1) here
>>> ndimage.binary_hit_or_miss(a, structure1=structure1,\\
... origin1=1).astype(int)
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0]])
"""
input = numpy.asarray(input)
if structure1 is None:
structure1 = generate_binary_structure(input.ndim, 1)
if structure2 is None:
structure2 = numpy.logical_not(structure1)
origin1 = _ni_support._normalize_sequence(origin1, input.ndim)
if origin2 is None:
origin2 = origin1
else:
origin2 = _ni_support._normalize_sequence(origin2, input.ndim)
tmp1 = _binary_erosion(input, structure1, 1, None, None, 0, origin1,
0, False)
inplace = isinstance(output, numpy.ndarray)
result = _binary_erosion(input, structure2, 1, None, output, 0,
origin2, 1, False)
if inplace:
numpy.logical_not(output, output)
numpy.logical_and(tmp1, output, output)
else:
numpy.logical_not(result, result)
return numpy.logical_and(tmp1, result)
def binary_propagation(input, structure=None, mask=None,
output=None, border_value=0, origin=0):
"""
Multi-dimensional binary propagation with the given structuring element.
Parameters
----------
input : array_like
Binary image to be propagated inside `mask`.
structure : array_like, optional
Structuring element used in the successive dilations. The output
may depend on the structuring element, especially if `mask` has
several connex components. If no structuring element is
provided, an element is generated with a squared connectivity equal
to one.
mask : array_like, optional
Binary mask defining the region into which `input` is allowed to
propagate.
output : ndarray, optional
Array of the same shape as input, into which the output is placed.
By default, a new array is created.
border_value : int (cast to 0 or 1), optional
Value at the border in the output array.
origin : int or tuple of ints, optional
Placement of the filter, by default 0.
Returns
-------
binary_propagation : ndarray
Binary propagation of `input` inside `mask`.
Notes
-----
This function is functionally equivalent to calling binary_dilation
with the number of iterations less than one: iterative dilation until
the result does not change anymore.
The succession of an erosion and propagation inside the original image
can be used instead of an *opening* for deleting small objects while
keeping the contours of larger objects untouched.
References
----------
.. [1] http://cmm.ensmp.fr/~serra/cours/pdf/en/ch6en.pdf, slide 15.
.. [2] I.T. Young, J.J. Gerbrands, and L.J. van Vliet, "Fundamentals of
image processing", 1998
ftp://qiftp.tudelft.nl/DIPimage/docs/FIP2.3.pdf
Examples
--------
>>> from scipy import ndimage
>>> input = np.zeros((8, 8), dtype=int)
>>> input[2, 2] = 1
>>> mask = np.zeros((8, 8), dtype=int)
>>> mask[1:4, 1:4] = mask[4, 4] = mask[6:8, 6:8] = 1
>>> input
array([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]])
>>> mask
array([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 1],
[0, 0, 0, 0, 0, 0, 1, 1]])
>>> ndimage.binary_propagation(input, mask=mask).astype(int)
array([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_propagation(input, mask=mask,\\
... structure=np.ones((3,3))).astype(int)
array([[0, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]])
>>> # Comparison between opening and erosion+propagation
>>> a = np.zeros((6,6), dtype=int)
>>> a[2:5, 2:5] = 1; a[0, 0] = 1; a[5, 5] = 1
>>> a
array([[1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 1]])
>>> ndimage.binary_opening(a).astype(int)
array([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0]])
>>> b = ndimage.binary_erosion(a)
>>> b.astype(int)
array([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0]])
>>> ndimage.binary_propagation(b, mask=a).astype(int)
array([[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0]])
"""
return binary_dilation(input, structure, -1, mask, output,
border_value, origin)
def binary_fill_holes(input, structure=None, output=None, origin=0):
"""
Fill the holes in binary objects.
Parameters
----------
input : array_like
n-dimensional binary array with holes to be filled
structure : array_like, optional
Structuring element used in the computation; large-size elements
make computations faster but may miss holes separated from the
background by thin regions. The default element (with a square
connectivity equal to one) yields the intuitive result where all
holes in the input have been filled.
output : ndarray, optional
Array of the same shape as input, into which the output is placed.
By default, a new array is created.
origin : int, tuple of ints, optional
Position of the structuring element.
Returns
-------
out : ndarray
Transformation of the initial image `input` where holes have been
filled.
See also
--------
binary_dilation, binary_propagation, label
Notes
-----
The algorithm used in this function consists in invading the complementary
of the shapes in `input` from the outer boundary of the image,
using binary dilations. Holes are not connected to the boundary and are
therefore not invaded. The result is the complementary subset of the
invaded region.
References
----------
.. [1] https://en.wikipedia.org/wiki/Mathematical_morphology
Examples
--------
>>> from scipy import ndimage
>>> a = np.zeros((5, 5), dtype=int)
>>> a[1:4, 1:4] = 1
>>> a[2,2] = 0
>>> a
array([[0, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 1, 0, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])
>>> ndimage.binary_fill_holes(a).astype(int)
array([[0, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])
>>> # Too big structuring element
>>> ndimage.binary_fill_holes(a, structure=np.ones((5,5))).astype(int)
array([[0, 0, 0, 0, 0],
[0, 1, 1, 1, 0],
[0, 1, 0, 1, 0],
[0, 1, 1, 1, 0],
[0, 0, 0, 0, 0]])
"""
mask = numpy.logical_not(input)
tmp = numpy.zeros(mask.shape, bool)
inplace = isinstance(output, numpy.ndarray)
if inplace:
binary_dilation(tmp, structure, -1, mask, output, 1, origin)
numpy.logical_not(output, output)
else:
output = binary_dilation(tmp, structure, -1, mask, None, 1,
origin)
numpy.logical_not(output, output)
return output
def grey_erosion(input, size=None, footprint=None, structure=None,
output=None, mode="reflect", cval=0.0, origin=0):
"""
Calculate a greyscale erosion, using either a structuring element,
or a footprint corresponding to a flat structuring element.
Grayscale erosion is a mathematical morphology operation. For the
simple case of a full and flat structuring element, it can be viewed
as a minimum filter over a sliding window.
Parameters
----------
input : array_like
Array over which the grayscale erosion is to be computed.
size : tuple of ints
Shape of a flat and full structuring element used for the grayscale
erosion. Optional if `footprint` or `structure` is provided.
footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element
used for the grayscale erosion. Non-zero values give the set of
neighbors of the center over which the minimum is chosen.
structure : array of ints, optional
Structuring element used for the grayscale erosion. `structure`
may be a non-flat structuring element.
output : array, optional
An array used for storing the output of the erosion may be provided.
mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional
The `mode` parameter determines how the array borders are
handled, where `cval` is the value when mode is equal to
'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if `mode` is 'constant'. Default
is 0.0.
origin : scalar, optional
The `origin` parameter controls the placement of the filter.
Default 0
Returns
-------
output : ndarray
Grayscale erosion of `input`.
See also
--------
binary_erosion, grey_dilation, grey_opening, grey_closing
generate_binary_structure, minimum_filter
Notes
-----
The grayscale erosion of an image input by a structuring element s defined
over a domain E is given by:
(input+s)(x) = min {input(y) - s(x-y), for y in E}
In particular, for structuring elements defined as
s(y) = 0 for y in E, the grayscale erosion computes the minimum of the
input image inside a sliding window defined by E.
Grayscale erosion [1]_ is a *mathematical morphology* operation [2]_.
References
----------
.. [1] https://en.wikipedia.org/wiki/Erosion_%28morphology%29
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
Examples
--------
>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[1:6, 1:6] = 3
>>> a[4,4] = 2; a[2,3] = 1
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
[0, 3, 3, 3, 3, 3, 0],
[0, 3, 3, 1, 3, 3, 0],
[0, 3, 3, 3, 3, 3, 0],
[0, 3, 3, 3, 2, 3, 0],
[0, 3, 3, 3, 3, 3, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.grey_erosion(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 3, 2, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> footprint = ndimage.generate_binary_structure(2, 1)
>>> footprint
array([[False, True, False],
[ True, True, True],
[False, True, False]], dtype=bool)
>>> # Diagonally-connected elements are not considered neighbors
>>> ndimage.grey_erosion(a, size=(3,3), footprint=footprint)
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 3, 1, 2, 0, 0],
[0, 0, 3, 2, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
"""
if size is None and footprint is None and structure is None:
raise ValueError("size, footprint or structure must be specified")
return filters._min_or_max_filter(input, size, footprint, structure,
output, mode, cval, origin, 1)
def grey_dilation(input, size=None, footprint=None, structure=None,
output=None, mode="reflect", cval=0.0, origin=0):
"""
Calculate a greyscale dilation, using either a structuring element,
or a footprint corresponding to a flat structuring element.
Grayscale dilation is a mathematical morphology operation. For the
simple case of a full and flat structuring element, it can be viewed
as a maximum filter over a sliding window.
Parameters
----------
input : array_like
Array over which the grayscale dilation is to be computed.
size : tuple of ints
Shape of a flat and full structuring element used for the grayscale
dilation. Optional if `footprint` or `structure` is provided.
footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element
used for the grayscale dilation. Non-zero values give the set of
neighbors of the center over which the maximum is chosen.
structure : array of ints, optional
Structuring element used for the grayscale dilation. `structure`
may be a non-flat structuring element.
output : array, optional
An array used for storing the output of the dilation may be provided.
mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional
The `mode` parameter determines how the array borders are
handled, where `cval` is the value when mode is equal to
'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if `mode` is 'constant'. Default
is 0.0.
origin : scalar, optional
The `origin` parameter controls the placement of the filter.
Default 0
Returns
-------
grey_dilation : ndarray
Grayscale dilation of `input`.
See also
--------
binary_dilation, grey_erosion, grey_closing, grey_opening
generate_binary_structure, maximum_filter
Notes
-----
The grayscale dilation of an image input by a structuring element s defined
over a domain E is given by:
(input+s)(x) = max {input(y) + s(x-y), for y in E}
In particular, for structuring elements defined as
s(y) = 0 for y in E, the grayscale dilation computes the maximum of the
input image inside a sliding window defined by E.
Grayscale dilation [1]_ is a *mathematical morphology* operation [2]_.
References
----------
.. [1] https://en.wikipedia.org/wiki/Dilation_%28morphology%29
.. [2] https://en.wikipedia.org/wiki/Mathematical_morphology
Examples
--------
>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[2:5, 2:5] = 1
>>> a[4,4] = 2; a[2,3] = 3
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 3, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.grey_dilation(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 3, 3, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.grey_dilation(a, footprint=np.ones((3,3)))
array([[0, 0, 0, 0, 0, 0, 0],
[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 3, 3, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> s = ndimage.generate_binary_structure(2,1)
>>> s
array([[False, True, False],
[ True, True, True],
[False, True, False]], dtype=bool)
>>> ndimage.grey_dilation(a, footprint=s)
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 3, 1, 0, 0],
[0, 1, 3, 3, 3, 1, 0],
[0, 1, 1, 3, 2, 1, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 0, 1, 1, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.grey_dilation(a, size=(3,3), structure=np.ones((3,3)))
array([[1, 1, 1, 1, 1, 1, 1],
[1, 2, 4, 4, 4, 2, 1],
[1, 2, 4, 4, 4, 2, 1],
[1, 2, 4, 4, 4, 3, 1],
[1, 2, 2, 3, 3, 3, 1],
[1, 2, 2, 3, 3, 3, 1],
[1, 1, 1, 1, 1, 1, 1]])
"""
if size is None and footprint is None and structure is None:
raise ValueError("size, footprint or structure must be specified")
if structure is not None:
structure = numpy.asarray(structure)
structure = structure[tuple([slice(None, None, -1)] *
structure.ndim)]
if footprint is not None:
footprint = numpy.asarray(footprint)
footprint = footprint[tuple([slice(None, None, -1)] *
footprint.ndim)]
input = numpy.asarray(input)
origin = _ni_support._normalize_sequence(origin, input.ndim)
for ii in range(len(origin)):
origin[ii] = -origin[ii]
if footprint is not None:
sz = footprint.shape[ii]
elif structure is not None:
sz = structure.shape[ii]
elif numpy.isscalar(size):
sz = size
else:
sz = size[ii]
if not sz & 1:
origin[ii] -= 1
return filters._min_or_max_filter(input, size, footprint, structure,
output, mode, cval, origin, 0)
def grey_opening(input, size=None, footprint=None, structure=None,
output=None, mode="reflect", cval=0.0, origin=0):
"""
Multi-dimensional greyscale opening.
A greyscale opening consists in the succession of a greyscale erosion,
and a greyscale dilation.
Parameters
----------
input : array_like
Array over which the grayscale opening is to be computed.
size : tuple of ints
Shape of a flat and full structuring element used for the grayscale
opening. Optional if `footprint` or `structure` is provided.
footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element
used for the grayscale opening.
structure : array of ints, optional
Structuring element used for the grayscale opening. `structure`
may be a non-flat structuring element.
output : array, optional
An array used for storing the output of the opening may be provided.
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
The `mode` parameter determines how the array borders are
handled, where `cval` is the value when mode is equal to
'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if `mode` is 'constant'. Default
is 0.0.
origin : scalar, optional
The `origin` parameter controls the placement of the filter.
Default 0
Returns
-------
grey_opening : ndarray
Result of the grayscale opening of `input` with `structure`.
See also
--------
binary_opening, grey_dilation, grey_erosion, grey_closing
generate_binary_structure
Notes
-----
The action of a grayscale opening with a flat structuring element amounts
to smoothen high local maxima, whereas binary opening erases small objects.
References
----------
.. [1] https://en.wikipedia.org/wiki/Mathematical_morphology
Examples
--------
>>> from scipy import ndimage
>>> a = np.arange(36).reshape((6,6))
>>> a[3, 3] = 50
>>> a
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 50, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]])
>>> ndimage.grey_opening(a, size=(3,3))
array([[ 0, 1, 2, 3, 4, 4],
[ 6, 7, 8, 9, 10, 10],
[12, 13, 14, 15, 16, 16],
[18, 19, 20, 22, 22, 22],
[24, 25, 26, 27, 28, 28],
[24, 25, 26, 27, 28, 28]])
>>> # Note that the local maximum a[3,3] has disappeared
"""
if (size is not None) and (footprint is not None):
warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
tmp = grey_erosion(input, size, footprint, structure, None, mode,
cval, origin)
return grey_dilation(tmp, size, footprint, structure, output, mode,
cval, origin)
def grey_closing(input, size=None, footprint=None, structure=None,
output=None, mode="reflect", cval=0.0, origin=0):
"""
Multi-dimensional greyscale closing.
A greyscale closing consists in the succession of a greyscale dilation,
and a greyscale erosion.
Parameters
----------
input : array_like
Array over which the grayscale closing is to be computed.
size : tuple of ints
Shape of a flat and full structuring element used for the grayscale
closing. Optional if `footprint` or `structure` is provided.
footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element
used for the grayscale closing.
structure : array of ints, optional
Structuring element used for the grayscale closing. `structure`
may be a non-flat structuring element.
output : array, optional
An array used for storing the output of the closing may be provided.
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
The `mode` parameter determines how the array borders are
handled, where `cval` is the value when mode is equal to
'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if `mode` is 'constant'. Default
is 0.0.
origin : scalar, optional
The `origin` parameter controls the placement of the filter.
Default 0
Returns
-------
grey_closing : ndarray
Result of the grayscale closing of `input` with `structure`.
See also
--------
binary_closing, grey_dilation, grey_erosion, grey_opening,
generate_binary_structure
Notes
-----
The action of a grayscale closing with a flat structuring element amounts
to smoothen deep local minima, whereas binary closing fills small holes.
References
----------
.. [1] https://en.wikipedia.org/wiki/Mathematical_morphology
Examples
--------
>>> from scipy import ndimage
>>> a = np.arange(36).reshape((6,6))
>>> a[3,3] = 0
>>> a
array([[ 0, 1, 2, 3, 4, 5],
[ 6, 7, 8, 9, 10, 11],
[12, 13, 14, 15, 16, 17],
[18, 19, 20, 0, 22, 23],
[24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35]])
>>> ndimage.grey_closing(a, size=(3,3))
array([[ 7, 7, 8, 9, 10, 11],
[ 7, 7, 8, 9, 10, 11],
[13, 13, 14, 15, 16, 17],
[19, 19, 20, 20, 22, 23],
[25, 25, 26, 27, 28, 29],
[31, 31, 32, 33, 34, 35]])
>>> # Note that the local minimum a[3,3] has disappeared
"""
if (size is not None) and (footprint is not None):
warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
tmp = grey_dilation(input, size, footprint, structure, None, mode,
cval, origin)
return grey_erosion(tmp, size, footprint, structure, output, mode,
cval, origin)
def morphological_gradient(input, size=None, footprint=None, structure=None,
output=None, mode="reflect", cval=0.0, origin=0):
"""
Multi-dimensional morphological gradient.
The morphological gradient is calculated as the difference between a
dilation and an erosion of the input with a given structuring element.
Parameters
----------
input : array_like
Array over which to compute the morphlogical gradient.
size : tuple of ints
Shape of a flat and full structuring element used for the mathematical
morphology operations. Optional if `footprint` or `structure` is
provided. A larger `size` yields a more blurred gradient.
footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element
used for the morphology operations. Larger footprints
give a more blurred morphological gradient.
structure : array of ints, optional
Structuring element used for the morphology operations.
`structure` may be a non-flat structuring element.
output : array, optional
An array used for storing the output of the morphological gradient
may be provided.
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
The `mode` parameter determines how the array borders are
handled, where `cval` is the value when mode is equal to
'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if `mode` is 'constant'. Default
is 0.0.
origin : scalar, optional
The `origin` parameter controls the placement of the filter.
Default 0
Returns
-------
morphological_gradient : ndarray
Morphological gradient of `input`.
See also
--------
grey_dilation, grey_erosion, gaussian_gradient_magnitude
Notes
-----
For a flat structuring element, the morphological gradient
computed at a given point corresponds to the maximal difference
between elements of the input among the elements covered by the
structuring element centered on the point.
References
----------
.. [1] https://en.wikipedia.org/wiki/Mathematical_morphology
Examples
--------
>>> from scipy import ndimage
>>> a = np.zeros((7,7), dtype=int)
>>> a[2:5, 2:5] = 1
>>> ndimage.morphological_gradient(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> # The morphological gradient is computed as the difference
>>> # between a dilation and an erosion
>>> ndimage.grey_dilation(a, size=(3,3)) -\\
... ndimage.grey_erosion(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 0, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 1, 1, 1, 1, 1, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> a = np.zeros((7,7), dtype=int)
>>> a[2:5, 2:5] = 1
>>> a[4,4] = 2; a[2,3] = 3
>>> a
array([[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 3, 1, 0, 0],
[0, 0, 1, 1, 1, 0, 0],
[0, 0, 1, 1, 2, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0]])
>>> ndimage.morphological_gradient(a, size=(3,3))
array([[0, 0, 0, 0, 0, 0, 0],
[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 3, 3, 1, 0],
[0, 1, 3, 2, 3, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 1, 1, 2, 2, 2, 0],
[0, 0, 0, 0, 0, 0, 0]])
"""
tmp = grey_dilation(input, size, footprint, structure, None, mode,
cval, origin)
if isinstance(output, numpy.ndarray):
grey_erosion(input, size, footprint, structure, output, mode,
cval, origin)
return numpy.subtract(tmp, output, output)
else:
return (tmp - grey_erosion(input, size, footprint, structure,
None, mode, cval, origin))
def morphological_laplace(input, size=None, footprint=None,
structure=None, output=None,
mode="reflect", cval=0.0, origin=0):
"""
Multi-dimensional morphological laplace.
Parameters
----------
input : array_like
Input.
size : int or sequence of ints, optional
See `structure`.
footprint : bool or ndarray, optional
See `structure`.
structure : structure, optional
Either `size`, `footprint`, or the `structure` must be provided.
output : ndarray, optional
An output array can optionally be provided.
mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional
The mode parameter determines how the array borders are handled.
For 'constant' mode, values beyond borders are set to be `cval`.
Default is 'reflect'.
cval : scalar, optional
Value to fill past edges of input if mode is 'constant'.
Default is 0.0
origin : origin, optional
The origin parameter controls the placement of the filter.
Returns
-------
morphological_laplace : ndarray
Output
"""
tmp1 = grey_dilation(input, size, footprint, structure, None, mode,
cval, origin)
if isinstance(output, numpy.ndarray):
grey_erosion(input, size, footprint, structure, output, mode,
cval, origin)
numpy.add(tmp1, output, output)
numpy.subtract(output, input, output)
return numpy.subtract(output, input, output)
else:
tmp2 = grey_erosion(input, size, footprint, structure, None, mode,
cval, origin)
numpy.add(tmp1, tmp2, tmp2)
numpy.subtract(tmp2, input, tmp2)
numpy.subtract(tmp2, input, tmp2)
return tmp2
def white_tophat(input, size=None, footprint=None, structure=None,
output=None, mode="reflect", cval=0.0, origin=0):
"""
Multi-dimensional white tophat filter.
Parameters
----------
input : array_like
Input.
size : tuple of ints
Shape of a flat and full structuring element used for the filter.
Optional if `footprint` or `structure` is provided.
footprint : array of ints, optional
Positions of elements of a flat structuring element
used for the white tophat filter.
structure : array of ints, optional
Structuring element used for the filter. `structure`
may be a non-flat structuring element.
output : array, optional
An array used for storing the output of the filter may be provided.
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
The `mode` parameter determines how the array borders are
handled, where `cval` is the value when mode is equal to
'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if `mode` is 'constant'.
Default is 0.0.
origin : scalar, optional
The `origin` parameter controls the placement of the filter.
Default is 0.
Returns
-------
output : ndarray
Result of the filter of `input` with `structure`.
See also
--------
black_tophat
"""
if (size is not None) and (footprint is not None):
warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
tmp = grey_erosion(input, size, footprint, structure, None, mode,
cval, origin)
tmp = grey_dilation(tmp, size, footprint, structure, output, mode,
cval, origin)
if tmp is None:
tmp = output
if input.dtype == numpy.bool_ and tmp.dtype == numpy.bool_:
numpy.bitwise_xor(input, tmp, out=tmp)
else:
numpy.subtract(input, tmp, out=tmp)
return tmp
def black_tophat(input, size=None, footprint=None,
structure=None, output=None, mode="reflect",
cval=0.0, origin=0):
"""
Multi-dimensional black tophat filter.
Parameters
----------
input : array_like
Input.
size : tuple of ints, optional
Shape of a flat and full structuring element used for the filter.
Optional if `footprint` or `structure` is provided.
footprint : array of ints, optional
Positions of non-infinite elements of a flat structuring element
used for the black tophat filter.
structure : array of ints, optional
Structuring element used for the filter. `structure`
may be a non-flat structuring element.
output : array, optional
An array used for storing the output of the filter may be provided.
mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
The `mode` parameter determines how the array borders are
handled, where `cval` is the value when mode is equal to
'constant'. Default is 'reflect'
cval : scalar, optional
Value to fill past edges of input if `mode` is 'constant'. Default
is 0.0.
origin : scalar, optional
The `origin` parameter controls the placement of the filter.
Default 0
Returns
-------
black_tophat : ndarray
Result of the filter of `input` with `structure`.
See also
--------
white_tophat, grey_opening, grey_closing
"""
if (size is not None) and (footprint is not None):
warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
tmp = grey_dilation(input, size, footprint, structure, None, mode,
cval, origin)
tmp = grey_erosion(tmp, size, footprint, structure, output, mode,
cval, origin)
if tmp is None:
tmp = output
if input.dtype == numpy.bool_ and tmp.dtype == numpy.bool_:
numpy.bitwise_xor(tmp, input, out=tmp)
else:
numpy.subtract(tmp, input, out=tmp)
return tmp
def distance_transform_bf(input, metric="euclidean", sampling=None,
return_distances=True, return_indices=False,
distances=None, indices=None):
"""
Distance transform function by a brute force algorithm.
This function calculates the distance transform of the `input`, by
replacing each foreground (non-zero) element, with its
shortest distance to the background (any zero-valued element).
In addition to the distance transform, the feature transform can
be calculated. In this case the index of the closest background
element is returned along the first axis of the result.
Parameters
----------
input : array_like
Input
metric : str, optional
Three types of distance metric are supported: 'euclidean', 'taxicab'
and 'chessboard'.
sampling : {int, sequence of ints}, optional
This parameter is only used in the case of the euclidean `metric`
distance transform.
The sampling along each axis can be given by the `sampling` parameter
which should be a sequence of length equal to the input rank, or a
single number in which the `sampling` is assumed to be equal along all
axes.
return_distances : bool, optional
The `return_distances` flag can be used to indicate if the distance
transform is returned.
The default is True.
return_indices : bool, optional
The `return_indices` flags can be used to indicate if the feature
transform is returned.
The default is False.
distances : float64 ndarray, optional
Optional output array to hold distances (if `return_distances` is
True).
indices : int64 ndarray, optional
Optional output array to hold indices (if `return_indices` is True).
Returns
-------
distances : ndarray
Distance array if `return_distances` is True.
indices : ndarray
Indices array if `return_indices` is True.
Notes
-----
This function employs a slow brute force algorithm, see also the
function distance_transform_cdt for more efficient taxicab and
chessboard algorithms.
"""
if (not return_distances) and (not return_indices):
msg = 'at least one of distances/indices must be specified'
raise RuntimeError(msg)
tmp1 = numpy.asarray(input) != 0
struct = generate_binary_structure(tmp1.ndim, tmp1.ndim)
tmp2 = binary_dilation(tmp1, struct)
tmp2 = numpy.logical_xor(tmp1, tmp2)
tmp1 = tmp1.astype(numpy.int8) - tmp2.astype(numpy.int8)
metric = metric.lower()
if metric == 'euclidean':
metric = 1
elif metric in ['taxicab', 'cityblock', 'manhattan']:
metric = 2
elif metric == 'chessboard':
metric = 3
else:
raise RuntimeError('distance metric not supported')
if sampling is not None:
sampling = _ni_support._normalize_sequence(sampling, tmp1.ndim)
sampling = numpy.asarray(sampling, dtype=numpy.float64)
if not sampling.flags.contiguous:
sampling = sampling.copy()
if return_indices:
ft = numpy.zeros(tmp1.shape, dtype=numpy.int32)
else:
ft = None
if return_distances:
if distances is None:
if metric == 1:
dt = numpy.zeros(tmp1.shape, dtype=numpy.float64)
else:
dt = numpy.zeros(tmp1.shape, dtype=numpy.uint32)
else:
if distances.shape != tmp1.shape:
raise RuntimeError('distances array has wrong shape')
if metric == 1:
if distances.dtype.type != numpy.float64:
raise RuntimeError('distances array must be float64')
else:
if distances.dtype.type != numpy.uint32:
raise RuntimeError('distances array must be uint32')
dt = distances
else:
dt = None
_nd_image.distance_transform_bf(tmp1, metric, sampling, dt, ft)
if return_indices:
if isinstance(indices, numpy.ndarray):
if indices.dtype.type != numpy.int32:
raise RuntimeError('indices must of int32 type')
if indices.shape != (tmp1.ndim,) + tmp1.shape:
raise RuntimeError('indices has wrong shape')
tmp2 = indices
else:
tmp2 = numpy.indices(tmp1.shape, dtype=numpy.int32)
ft = numpy.ravel(ft)
for ii in range(tmp2.shape[0]):
rtmp = numpy.ravel(tmp2[ii, ...])[ft]
rtmp.shape = tmp1.shape
tmp2[ii, ...] = rtmp
ft = tmp2
# construct and return the result
result = []
if return_distances and not isinstance(distances, numpy.ndarray):
result.append(dt)
if return_indices and not isinstance(indices, numpy.ndarray):
result.append(ft)
if len(result) == 2:
return tuple(result)
elif len(result) == 1:
return result[0]
else:
return None
def distance_transform_cdt(input, metric='chessboard', return_distances=True,
return_indices=False, distances=None, indices=None):
"""
Distance transform for chamfer type of transforms.
Parameters
----------
input : array_like
Input
metric : {'chessboard', 'taxicab'}, optional
The `metric` determines the type of chamfering that is done. If the
`metric` is equal to 'taxicab' a structure is generated using
generate_binary_structure with a squared distance equal to 1. If
the `metric` is equal to 'chessboard', a `metric` is generated
using generate_binary_structure with a squared distance equal to
the dimensionality of the array. These choices correspond to the
common interpretations of the 'taxicab' and the 'chessboard'
distance metrics in two dimensions.
The default for `metric` is 'chessboard'.
return_distances, return_indices : bool, optional
The `return_distances`, and `return_indices` flags can be used to
indicate if the distance transform, the feature transform, or both
must be returned.
If the feature transform is returned (``return_indices=True``),
the index of the closest background element is returned along
the first axis of the result.
The `return_distances` default is True, and the
`return_indices` default is False.
distances, indices : ndarrays of int32, optional
The `distances` and `indices` arguments can be used to give optional
output arrays that must be the same shape as `input`.
"""
if (not return_distances) and (not return_indices):
msg = 'at least one of distances/indices must be specified'
raise RuntimeError(msg)
ft_inplace = isinstance(indices, numpy.ndarray)
dt_inplace = isinstance(distances, numpy.ndarray)
input = numpy.asarray(input)
if metric in ['taxicab', 'cityblock', 'manhattan']:
rank = input.ndim
metric = generate_binary_structure(rank, 1)
elif metric == 'chessboard':
rank = input.ndim
metric = generate_binary_structure(rank, rank)
else:
try:
metric = numpy.asarray(metric)
except Exception:
raise RuntimeError('invalid metric provided')
for s in metric.shape:
if s != 3:
raise RuntimeError('metric sizes must be equal to 3')
if not metric.flags.contiguous:
metric = metric.copy()
if dt_inplace:
if distances.dtype.type != numpy.int32:
raise RuntimeError('distances must be of int32 type')
if distances.shape != input.shape:
raise RuntimeError('distances has wrong shape')
dt = distances
dt[...] = numpy.where(input, -1, 0).astype(numpy.int32)
else:
dt = numpy.where(input, -1, 0).astype(numpy.int32)
rank = dt.ndim
if return_indices:
sz = numpy.prod(dt.shape, axis=0)
ft = numpy.arange(sz, dtype=numpy.int32)
ft.shape = dt.shape
else:
ft = None
_nd_image.distance_transform_op(metric, dt, ft)
dt = dt[tuple([slice(None, None, -1)] * rank)]
if return_indices:
ft = ft[tuple([slice(None, None, -1)] * rank)]
_nd_image.distance_transform_op(metric, dt, ft)
dt = dt[tuple([slice(None, None, -1)] * rank)]
if return_indices:
ft = ft[tuple([slice(None, None, -1)] * rank)]
ft = numpy.ravel(ft)
if ft_inplace:
if indices.dtype.type != numpy.int32:
raise RuntimeError('indices must of int32 type')
if indices.shape != (dt.ndim,) + dt.shape:
raise RuntimeError('indices has wrong shape')
tmp = indices
else:
tmp = numpy.indices(dt.shape, dtype=numpy.int32)
for ii in range(tmp.shape[0]):
rtmp = numpy.ravel(tmp[ii, ...])[ft]
rtmp.shape = dt.shape
tmp[ii, ...] = rtmp
ft = tmp
# construct and return the result
result = []
if return_distances and not dt_inplace:
result.append(dt)
if return_indices and not ft_inplace:
result.append(ft)
if len(result) == 2:
return tuple(result)
elif len(result) == 1:
return result[0]
else:
return None
def distance_transform_edt(input, sampling=None, return_distances=True,
return_indices=False, distances=None, indices=None):
"""
Exact euclidean distance transform.
In addition to the distance transform, the feature transform can
be calculated. In this case the index of the closest background
element is returned along the first axis of the result.
Parameters
----------
input : array_like
Input data to transform. Can be any type but will be converted
into binary: 1 wherever input equates to True, 0 elsewhere.
sampling : float or int, or sequence of same, optional
Spacing of elements along each dimension. If a sequence, must be of
length equal to the input rank; if a single number, this is used for
all axes. If not specified, a grid spacing of unity is implied.
return_distances : bool, optional
Whether to return distance matrix. At least one of
return_distances/return_indices must be True. Default is True.
return_indices : bool, optional
Whether to return indices matrix. Default is False.
distances : ndarray, optional
Used for output of distance array, must be of type float64.
indices : ndarray, optional
Used for output of indices, must be of type int32.
Returns
-------
distance_transform_edt : ndarray or list of ndarrays
Either distance matrix, index matrix, or a list of the two,
depending on `return_x` flags and `distance` and `indices`
input parameters.
Notes
-----
The euclidean distance transform gives values of the euclidean
distance::
n
y_i = sqrt(sum (x[i]-b[i])**2)
i
where b[i] is the background point (value 0) with the smallest
Euclidean distance to input points x[i], and n is the
number of dimensions.
Examples
--------
>>> from scipy import ndimage
>>> a = np.array(([0,1,1,1,1],
... [0,0,1,1,1],
... [0,1,1,1,1],
... [0,1,1,1,0],
... [0,1,1,0,0]))
>>> ndimage.distance_transform_edt(a)
array([[ 0. , 1. , 1.4142, 2.2361, 3. ],
[ 0. , 0. , 1. , 2. , 2. ],
[ 0. , 1. , 1.4142, 1.4142, 1. ],
[ 0. , 1. , 1.4142, 1. , 0. ],
[ 0. , 1. , 1. , 0. , 0. ]])
With a sampling of 2 units along x, 1 along y:
>>> ndimage.distance_transform_edt(a, sampling=[2,1])
array([[ 0. , 1. , 2. , 2.8284, 3.6056],
[ 0. , 0. , 1. , 2. , 3. ],
[ 0. , 1. , 2. , 2.2361, 2. ],
[ 0. , 1. , 2. , 1. , 0. ],
[ 0. , 1. , 1. , 0. , 0. ]])
Asking for indices as well:
>>> edt, inds = ndimage.distance_transform_edt(a, return_indices=True)
>>> inds
array([[[0, 0, 1, 1, 3],
[1, 1, 1, 1, 3],
[2, 2, 1, 3, 3],
[3, 3, 4, 4, 3],
[4, 4, 4, 4, 4]],
[[0, 0, 1, 1, 4],
[0, 1, 1, 1, 4],
[0, 0, 1, 4, 4],
[0, 0, 3, 3, 4],
[0, 0, 3, 3, 4]]])
With arrays provided for inplace outputs:
>>> indices = np.zeros(((np.ndim(a),) + a.shape), dtype=np.int32)
>>> ndimage.distance_transform_edt(a, return_indices=True, indices=indices)
array([[ 0. , 1. , 1.4142, 2.2361, 3. ],
[ 0. , 0. , 1. , 2. , 2. ],
[ 0. , 1. , 1.4142, 1.4142, 1. ],
[ 0. , 1. , 1.4142, 1. , 0. ],
[ 0. , 1. , 1. , 0. , 0. ]])
>>> indices
array([[[0, 0, 1, 1, 3],
[1, 1, 1, 1, 3],
[2, 2, 1, 3, 3],
[3, 3, 4, 4, 3],
[4, 4, 4, 4, 4]],
[[0, 0, 1, 1, 4],
[0, 1, 1, 1, 4],
[0, 0, 1, 4, 4],
[0, 0, 3, 3, 4],
[0, 0, 3, 3, 4]]])
"""
if (not return_distances) and (not return_indices):
msg = 'at least one of distances/indices must be specified'
raise RuntimeError(msg)
ft_inplace = isinstance(indices, numpy.ndarray)
dt_inplace = isinstance(distances, numpy.ndarray)
# calculate the feature transform
input = numpy.atleast_1d(numpy.where(input, 1, 0).astype(numpy.int8))
if sampling is not None:
sampling = _ni_support._normalize_sequence(sampling, input.ndim)
sampling = numpy.asarray(sampling, dtype=numpy.float64)
if not sampling.flags.contiguous:
sampling = sampling.copy()
if ft_inplace:
ft = indices
if ft.shape != (input.ndim,) + input.shape:
raise RuntimeError('indices has wrong shape')
if ft.dtype.type != numpy.int32:
raise RuntimeError('indices must be of int32 type')
else:
ft = numpy.zeros((input.ndim,) + input.shape, dtype=numpy.int32)
_nd_image.euclidean_feature_transform(input, sampling, ft)
# if requested, calculate the distance transform
if return_distances:
dt = ft - numpy.indices(input.shape, dtype=ft.dtype)
dt = dt.astype(numpy.float64)
if sampling is not None:
for ii in range(len(sampling)):
dt[ii, ...] *= sampling[ii]
numpy.multiply(dt, dt, dt)
if dt_inplace:
dt = numpy.add.reduce(dt, axis=0)
if distances.shape != dt.shape:
raise RuntimeError('indices has wrong shape')
if distances.dtype.type != numpy.float64:
raise RuntimeError('indices must be of float64 type')
numpy.sqrt(dt, distances)
else:
dt = numpy.add.reduce(dt, axis=0)
dt = numpy.sqrt(dt)
# construct and return the result
result = []
if return_distances and not dt_inplace:
result.append(dt)
if return_indices and not ft_inplace:
result.append(ft)
if len(result) == 2:
return tuple(result)
elif len(result) == 1:
return result[0]
else:
return None