_root.py
25.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
"""
Unified interfaces to root finding algorithms.
Functions
---------
- root : find a root of a vector function.
"""
from __future__ import division, print_function, absolute_import
__all__ = ['root']
import numpy as np
from scipy._lib.six import callable
from warnings import warn
from .optimize import MemoizeJac, OptimizeResult, _check_unknown_options
from .minpack import _root_hybr, leastsq
from ._spectral import _root_df_sane
from . import nonlin
def root(fun, x0, args=(), method='hybr', jac=None, tol=None, callback=None,
options=None):
"""
Find a root of a vector function.
Parameters
----------
fun : callable
A vector function to find a root of.
x0 : ndarray
Initial guess.
args : tuple, optional
Extra arguments passed to the objective function and its Jacobian.
method : str, optional
Type of solver. Should be one of
- 'hybr' :ref:`(see here) <optimize.root-hybr>`
- 'lm' :ref:`(see here) <optimize.root-lm>`
- 'broyden1' :ref:`(see here) <optimize.root-broyden1>`
- 'broyden2' :ref:`(see here) <optimize.root-broyden2>`
- 'anderson' :ref:`(see here) <optimize.root-anderson>`
- 'linearmixing' :ref:`(see here) <optimize.root-linearmixing>`
- 'diagbroyden' :ref:`(see here) <optimize.root-diagbroyden>`
- 'excitingmixing' :ref:`(see here) <optimize.root-excitingmixing>`
- 'krylov' :ref:`(see here) <optimize.root-krylov>`
- 'df-sane' :ref:`(see here) <optimize.root-dfsane>`
jac : bool or callable, optional
If `jac` is a Boolean and is True, `fun` is assumed to return the
value of Jacobian along with the objective function. If False, the
Jacobian will be estimated numerically.
`jac` can also be a callable returning the Jacobian of `fun`. In
this case, it must accept the same arguments as `fun`.
tol : float, optional
Tolerance for termination. For detailed control, use solver-specific
options.
callback : function, optional
Optional callback function. It is called on every iteration as
``callback(x, f)`` where `x` is the current solution and `f`
the corresponding residual. For all methods but 'hybr' and 'lm'.
options : dict, optional
A dictionary of solver options. E.g. `xtol` or `maxiter`, see
:obj:`show_options()` for details.
Returns
-------
sol : OptimizeResult
The solution represented as a ``OptimizeResult`` object.
Important attributes are: ``x`` the solution array, ``success`` a
Boolean flag indicating if the algorithm exited successfully and
``message`` which describes the cause of the termination. See
`OptimizeResult` for a description of other attributes.
See also
--------
show_options : Additional options accepted by the solvers
Notes
-----
This section describes the available solvers that can be selected by the
'method' parameter. The default method is *hybr*.
Method *hybr* uses a modification of the Powell hybrid method as
implemented in MINPACK [1]_.
Method *lm* solves the system of nonlinear equations in a least squares
sense using a modification of the Levenberg-Marquardt algorithm as
implemented in MINPACK [1]_.
Method *df-sane* is a derivative-free spectral method. [3]_
Methods *broyden1*, *broyden2*, *anderson*, *linearmixing*,
*diagbroyden*, *excitingmixing*, *krylov* are inexact Newton methods,
with backtracking or full line searches [2]_. Each method corresponds
to a particular Jacobian approximations. See `nonlin` for details.
- Method *broyden1* uses Broyden's first Jacobian approximation, it is
known as Broyden's good method.
- Method *broyden2* uses Broyden's second Jacobian approximation, it
is known as Broyden's bad method.
- Method *anderson* uses (extended) Anderson mixing.
- Method *Krylov* uses Krylov approximation for inverse Jacobian. It
is suitable for large-scale problem.
- Method *diagbroyden* uses diagonal Broyden Jacobian approximation.
- Method *linearmixing* uses a scalar Jacobian approximation.
- Method *excitingmixing* uses a tuned diagonal Jacobian
approximation.
.. warning::
The algorithms implemented for methods *diagbroyden*,
*linearmixing* and *excitingmixing* may be useful for specific
problems, but whether they will work may depend strongly on the
problem.
.. versionadded:: 0.11.0
References
----------
.. [1] More, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom.
1980. User Guide for MINPACK-1.
.. [2] C. T. Kelley. 1995. Iterative Methods for Linear and Nonlinear
Equations. Society for Industrial and Applied Mathematics.
<https://archive.siam.org/books/kelley/fr16/>
.. [3] W. La Cruz, J.M. Martinez, M. Raydan. Math. Comp. 75, 1429 (2006).
Examples
--------
The following functions define a system of nonlinear equations and its
jacobian.
>>> def fun(x):
... return [x[0] + 0.5 * (x[0] - x[1])**3 - 1.0,
... 0.5 * (x[1] - x[0])**3 + x[1]]
>>> def jac(x):
... return np.array([[1 + 1.5 * (x[0] - x[1])**2,
... -1.5 * (x[0] - x[1])**2],
... [-1.5 * (x[1] - x[0])**2,
... 1 + 1.5 * (x[1] - x[0])**2]])
A solution can be obtained as follows.
>>> from scipy import optimize
>>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr')
>>> sol.x
array([ 0.8411639, 0.1588361])
"""
if not isinstance(args, tuple):
args = (args,)
meth = method.lower()
if options is None:
options = {}
if callback is not None and meth in ('hybr', 'lm'):
warn('Method %s does not accept callback.' % method,
RuntimeWarning)
# fun also returns the jacobian
if not callable(jac) and meth in ('hybr', 'lm'):
if bool(jac):
fun = MemoizeJac(fun)
jac = fun.derivative
else:
jac = None
# set default tolerances
if tol is not None:
options = dict(options)
if meth in ('hybr', 'lm'):
options.setdefault('xtol', tol)
elif meth in ('df-sane',):
options.setdefault('ftol', tol)
elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing',
'diagbroyden', 'excitingmixing', 'krylov'):
options.setdefault('xtol', tol)
options.setdefault('xatol', np.inf)
options.setdefault('ftol', np.inf)
options.setdefault('fatol', np.inf)
if meth == 'hybr':
sol = _root_hybr(fun, x0, args=args, jac=jac, **options)
elif meth == 'lm':
sol = _root_leastsq(fun, x0, args=args, jac=jac, **options)
elif meth == 'df-sane':
_warn_jac_unused(jac, method)
sol = _root_df_sane(fun, x0, args=args, callback=callback,
**options)
elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing',
'diagbroyden', 'excitingmixing', 'krylov'):
_warn_jac_unused(jac, method)
sol = _root_nonlin_solve(fun, x0, args=args, jac=jac,
_method=meth, _callback=callback,
**options)
else:
raise ValueError('Unknown solver %s' % method)
return sol
def _warn_jac_unused(jac, method):
if jac is not None:
warn('Method %s does not use the jacobian (jac).' % (method,),
RuntimeWarning)
def _root_leastsq(func, x0, args=(), jac=None,
col_deriv=0, xtol=1.49012e-08, ftol=1.49012e-08,
gtol=0.0, maxiter=0, eps=0.0, factor=100, diag=None,
**unknown_options):
"""
Solve for least squares with Levenberg-Marquardt
Options
-------
col_deriv : bool
non-zero to specify that the Jacobian function computes derivatives
down the columns (faster, because there is no transpose operation).
ftol : float
Relative error desired in the sum of squares.
xtol : float
Relative error desired in the approximate solution.
gtol : float
Orthogonality desired between the function vector and the columns
of the Jacobian.
maxiter : int
The maximum number of calls to the function. If zero, then
100*(N+1) is the maximum where N is the number of elements in x0.
epsfcn : float
A suitable step length for the forward-difference approximation of
the Jacobian (for Dfun=None). If epsfcn is less than the machine
precision, it is assumed that the relative errors in the functions
are of the order of the machine precision.
factor : float
A parameter determining the initial step bound
(``factor * || diag * x||``). Should be in interval ``(0.1, 100)``.
diag : sequence
N positive entries that serve as a scale factors for the variables.
"""
_check_unknown_options(unknown_options)
x, cov_x, info, msg, ier = leastsq(func, x0, args=args, Dfun=jac,
full_output=True,
col_deriv=col_deriv, xtol=xtol,
ftol=ftol, gtol=gtol,
maxfev=maxiter, epsfcn=eps,
factor=factor, diag=diag)
sol = OptimizeResult(x=x, message=msg, status=ier,
success=ier in (1, 2, 3, 4), cov_x=cov_x,
fun=info.pop('fvec'))
sol.update(info)
return sol
def _root_nonlin_solve(func, x0, args=(), jac=None,
_callback=None, _method=None,
nit=None, disp=False, maxiter=None,
ftol=None, fatol=None, xtol=None, xatol=None,
tol_norm=None, line_search='armijo', jac_options=None,
**unknown_options):
_check_unknown_options(unknown_options)
f_tol = fatol
f_rtol = ftol
x_tol = xatol
x_rtol = xtol
verbose = disp
if jac_options is None:
jac_options = dict()
jacobian = {'broyden1': nonlin.BroydenFirst,
'broyden2': nonlin.BroydenSecond,
'anderson': nonlin.Anderson,
'linearmixing': nonlin.LinearMixing,
'diagbroyden': nonlin.DiagBroyden,
'excitingmixing': nonlin.ExcitingMixing,
'krylov': nonlin.KrylovJacobian
}[_method]
if args:
if jac:
def f(x):
return func(x, *args)[0]
else:
def f(x):
return func(x, *args)
else:
f = func
x, info = nonlin.nonlin_solve(f, x0, jacobian=jacobian(**jac_options),
iter=nit, verbose=verbose,
maxiter=maxiter, f_tol=f_tol,
f_rtol=f_rtol, x_tol=x_tol,
x_rtol=x_rtol, tol_norm=tol_norm,
line_search=line_search,
callback=_callback, full_output=True,
raise_exception=False)
sol = OptimizeResult(x=x)
sol.update(info)
return sol
def _root_broyden1_doc():
"""
Options
-------
nit : int, optional
Number of iterations to make. If omitted (default), make as many
as required to meet tolerances.
disp : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to
meet convergence, `NoConvergence` is raised.
ftol : float, optional
Relative tolerance for the residual. If omitted, not used.
fatol : float, optional
Absolute tolerance (in max-norm) for the residual.
If omitted, default is 6e-6.
xtol : float, optional
Relative minimum step size. If omitted, not used.
xatol : float, optional
Absolute minimum step size, as determined from the Jacobian
approximation. If the step size is smaller than this, optimization
is terminated as successful. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : {None, 'armijo' (default), 'wolfe'}, optional
Which type of a line search to use to determine the step size in
the direction given by the Jacobian approximation. Defaults to
'armijo'.
jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha : float, optional
Initial guess for the Jacobian is (-1/alpha).
reduction_method : str or tuple, optional
Method used in ensuring that the rank of the Broyden
matrix stays low. Can either be a string giving the
name of the method, or a tuple of the form ``(method,
param1, param2, ...)`` that gives the name of the
method and values for additional parameters.
Methods available:
- ``restart``
Drop all matrix columns. Has no
extra parameters.
- ``simple``
Drop oldest matrix column. Has no
extra parameters.
- ``svd``
Keep only the most significant SVD
components.
Extra parameters:
- ``to_retain``
Number of SVD components to
retain when rank reduction is done.
Default is ``max_rank - 2``.
max_rank : int, optional
Maximum rank for the Broyden matrix.
Default is infinity (ie., no rank reduction).
"""
pass
def _root_broyden2_doc():
"""
Options
-------
nit : int, optional
Number of iterations to make. If omitted (default), make as many
as required to meet tolerances.
disp : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to
meet convergence, `NoConvergence` is raised.
ftol : float, optional
Relative tolerance for the residual. If omitted, not used.
fatol : float, optional
Absolute tolerance (in max-norm) for the residual.
If omitted, default is 6e-6.
xtol : float, optional
Relative minimum step size. If omitted, not used.
xatol : float, optional
Absolute minimum step size, as determined from the Jacobian
approximation. If the step size is smaller than this, optimization
is terminated as successful. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : {None, 'armijo' (default), 'wolfe'}, optional
Which type of a line search to use to determine the step size in
the direction given by the Jacobian approximation. Defaults to
'armijo'.
jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha : float, optional
Initial guess for the Jacobian is (-1/alpha).
reduction_method : str or tuple, optional
Method used in ensuring that the rank of the Broyden
matrix stays low. Can either be a string giving the
name of the method, or a tuple of the form ``(method,
param1, param2, ...)`` that gives the name of the
method and values for additional parameters.
Methods available:
- ``restart``
Drop all matrix columns. Has no
extra parameters.
- ``simple``
Drop oldest matrix column. Has no
extra parameters.
- ``svd``
Keep only the most significant SVD
components.
Extra parameters:
- ``to_retain``
Number of SVD components to
retain when rank reduction is done.
Default is ``max_rank - 2``.
max_rank : int, optional
Maximum rank for the Broyden matrix.
Default is infinity (ie., no rank reduction).
"""
pass
def _root_anderson_doc():
"""
Options
-------
nit : int, optional
Number of iterations to make. If omitted (default), make as many
as required to meet tolerances.
disp : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to
meet convergence, `NoConvergence` is raised.
ftol : float, optional
Relative tolerance for the residual. If omitted, not used.
fatol : float, optional
Absolute tolerance (in max-norm) for the residual.
If omitted, default is 6e-6.
xtol : float, optional
Relative minimum step size. If omitted, not used.
xatol : float, optional
Absolute minimum step size, as determined from the Jacobian
approximation. If the step size is smaller than this, optimization
is terminated as successful. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : {None, 'armijo' (default), 'wolfe'}, optional
Which type of a line search to use to determine the step size in
the direction given by the Jacobian approximation. Defaults to
'armijo'.
jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha : float, optional
Initial guess for the Jacobian is (-1/alpha).
M : float, optional
Number of previous vectors to retain. Defaults to 5.
w0 : float, optional
Regularization parameter for numerical stability.
Compared to unity, good values of the order of 0.01.
"""
pass
def _root_linearmixing_doc():
"""
Options
-------
nit : int, optional
Number of iterations to make. If omitted (default), make as many
as required to meet tolerances.
disp : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to
meet convergence, ``NoConvergence`` is raised.
ftol : float, optional
Relative tolerance for the residual. If omitted, not used.
fatol : float, optional
Absolute tolerance (in max-norm) for the residual.
If omitted, default is 6e-6.
xtol : float, optional
Relative minimum step size. If omitted, not used.
xatol : float, optional
Absolute minimum step size, as determined from the Jacobian
approximation. If the step size is smaller than this, optimization
is terminated as successful. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : {None, 'armijo' (default), 'wolfe'}, optional
Which type of a line search to use to determine the step size in
the direction given by the Jacobian approximation. Defaults to
'armijo'.
jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha : float, optional
initial guess for the jacobian is (-1/alpha).
"""
pass
def _root_diagbroyden_doc():
"""
Options
-------
nit : int, optional
Number of iterations to make. If omitted (default), make as many
as required to meet tolerances.
disp : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to
meet convergence, `NoConvergence` is raised.
ftol : float, optional
Relative tolerance for the residual. If omitted, not used.
fatol : float, optional
Absolute tolerance (in max-norm) for the residual.
If omitted, default is 6e-6.
xtol : float, optional
Relative minimum step size. If omitted, not used.
xatol : float, optional
Absolute minimum step size, as determined from the Jacobian
approximation. If the step size is smaller than this, optimization
is terminated as successful. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : {None, 'armijo' (default), 'wolfe'}, optional
Which type of a line search to use to determine the step size in
the direction given by the Jacobian approximation. Defaults to
'armijo'.
jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha : float, optional
initial guess for the jacobian is (-1/alpha).
"""
pass
def _root_excitingmixing_doc():
"""
Options
-------
nit : int, optional
Number of iterations to make. If omitted (default), make as many
as required to meet tolerances.
disp : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to
meet convergence, `NoConvergence` is raised.
ftol : float, optional
Relative tolerance for the residual. If omitted, not used.
fatol : float, optional
Absolute tolerance (in max-norm) for the residual.
If omitted, default is 6e-6.
xtol : float, optional
Relative minimum step size. If omitted, not used.
xatol : float, optional
Absolute minimum step size, as determined from the Jacobian
approximation. If the step size is smaller than this, optimization
is terminated as successful. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : {None, 'armijo' (default), 'wolfe'}, optional
Which type of a line search to use to determine the step size in
the direction given by the Jacobian approximation. Defaults to
'armijo'.
jac_options : dict, optional
Options for the respective Jacobian approximation.
alpha : float, optional
Initial Jacobian approximation is (-1/alpha).
alphamax : float, optional
The entries of the diagonal Jacobian are kept in the range
``[alpha, alphamax]``.
"""
pass
def _root_krylov_doc():
"""
Options
-------
nit : int, optional
Number of iterations to make. If omitted (default), make as many
as required to meet tolerances.
disp : bool, optional
Print status to stdout on every iteration.
maxiter : int, optional
Maximum number of iterations to make. If more are needed to
meet convergence, `NoConvergence` is raised.
ftol : float, optional
Relative tolerance for the residual. If omitted, not used.
fatol : float, optional
Absolute tolerance (in max-norm) for the residual.
If omitted, default is 6e-6.
xtol : float, optional
Relative minimum step size. If omitted, not used.
xatol : float, optional
Absolute minimum step size, as determined from the Jacobian
approximation. If the step size is smaller than this, optimization
is terminated as successful. If omitted, not used.
tol_norm : function(vector) -> scalar, optional
Norm to use in convergence check. Default is the maximum norm.
line_search : {None, 'armijo' (default), 'wolfe'}, optional
Which type of a line search to use to determine the step size in
the direction given by the Jacobian approximation. Defaults to
'armijo'.
jac_options : dict, optional
Options for the respective Jacobian approximation.
rdiff : float, optional
Relative step size to use in numerical differentiation.
method : {'lgmres', 'gmres', 'bicgstab', 'cgs', 'minres'} or function
Krylov method to use to approximate the Jacobian.
Can be a string, or a function implementing the same
interface as the iterative solvers in
`scipy.sparse.linalg`.
The default is `scipy.sparse.linalg.lgmres`.
inner_M : LinearOperator or InverseJacobian
Preconditioner for the inner Krylov iteration.
Note that you can use also inverse Jacobians as (adaptive)
preconditioners. For example,
>>> jac = BroydenFirst()
>>> kjac = KrylovJacobian(inner_M=jac.inverse).
If the preconditioner has a method named 'update', it will
be called as ``update(x, f)`` after each nonlinear step,
with ``x`` giving the current point, and ``f`` the current
function value.
inner_tol, inner_maxiter, ...
Parameters to pass on to the "inner" Krylov solver.
See `scipy.sparse.linalg.gmres` for details.
outer_k : int, optional
Size of the subspace kept across LGMRES nonlinear
iterations.
See `scipy.sparse.linalg.lgmres` for details.
"""
pass