minpack.py 33.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
from __future__ import division, print_function, absolute_import

import threading
import warnings
from . import _minpack

import numpy as np
from numpy import (atleast_1d, dot, take, triu, shape, eye,
                   transpose, zeros, prod, greater, array,
                   all, where, isscalar, asarray, inf, abs,
                   finfo, inexact, issubdtype, dtype)
from scipy.linalg import svd, cholesky, solve_triangular, LinAlgError
from scipy._lib._util import _asarray_validated, _lazywhere
from .optimize import OptimizeResult, _check_unknown_options, OptimizeWarning
from ._lsq import least_squares
from ._lsq.common import make_strictly_feasible
from ._lsq.least_squares import prepare_bounds

error = _minpack.error

__all__ = ['fsolve', 'leastsq', 'fixed_point', 'curve_fit']


def _check_func(checker, argname, thefunc, x0, args, numinputs,
                output_shape=None):
    res = atleast_1d(thefunc(*((x0[:numinputs],) + args)))
    if (output_shape is not None) and (shape(res) != output_shape):
        if (output_shape[0] != 1):
            if len(output_shape) > 1:
                if output_shape[1] == 1:
                    return shape(res)
            msg = "%s: there is a mismatch between the input and output " \
                  "shape of the '%s' argument" % (checker, argname)
            func_name = getattr(thefunc, '__name__', None)
            if func_name:
                msg += " '%s'." % func_name
            else:
                msg += "."
            msg += 'Shape should be %s but it is %s.' % (output_shape, shape(res))
            raise TypeError(msg)
    if issubdtype(res.dtype, inexact):
        dt = res.dtype
    else:
        dt = dtype(float)
    return shape(res), dt


def fsolve(func, x0, args=(), fprime=None, full_output=0,
           col_deriv=0, xtol=1.49012e-8, maxfev=0, band=None,
           epsfcn=None, factor=100, diag=None):
    """
    Find the roots of a function.

    Return the roots of the (non-linear) equations defined by
    ``func(x) = 0`` given a starting estimate.

    Parameters
    ----------
    func : callable ``f(x, *args)``
        A function that takes at least one (possibly vector) argument,
        and returns a value of the same length.
    x0 : ndarray
        The starting estimate for the roots of ``func(x) = 0``.
    args : tuple, optional
        Any extra arguments to `func`.
    fprime : callable ``f(x, *args)``, optional
        A function to compute the Jacobian of `func` with derivatives
        across the rows. By default, the Jacobian will be estimated.
    full_output : bool, optional
        If True, return optional outputs.
    col_deriv : bool, optional
        Specify whether the Jacobian function computes derivatives down
        the columns (faster, because there is no transpose operation).
    xtol : float, optional
        The calculation will terminate if the relative error between two
        consecutive iterates is at most `xtol`.
    maxfev : int, optional
        The maximum number of calls to the function. If zero, then
        ``100*(N+1)`` is the maximum where N is the number of elements
        in `x0`.
    band : tuple, optional
        If set to a two-sequence containing the number of sub- and
        super-diagonals within the band of the Jacobi matrix, the
        Jacobi matrix is considered banded (only for ``fprime=None``).
    epsfcn : float, optional
        A suitable step length for the forward-difference
        approximation of the Jacobian (for ``fprime=None``). If
        `epsfcn` is less than the machine precision, it is assumed
        that the relative errors in the functions are of the order of
        the machine precision.
    factor : float, optional
        A parameter determining the initial step bound
        (``factor * || diag * x||``).  Should be in the interval
        ``(0.1, 100)``.
    diag : sequence, optional
        N positive entries that serve as a scale factors for the
        variables.

    Returns
    -------
    x : ndarray
        The solution (or the result of the last iteration for
        an unsuccessful call).
    infodict : dict
        A dictionary of optional outputs with the keys:

        ``nfev``
            number of function calls
        ``njev``
            number of Jacobian calls
        ``fvec``
            function evaluated at the output
        ``fjac``
            the orthogonal matrix, q, produced by the QR
            factorization of the final approximate Jacobian
            matrix, stored column wise
        ``r``
            upper triangular matrix produced by QR factorization
            of the same matrix
        ``qtf``
            the vector ``(transpose(q) * fvec)``

    ier : int
        An integer flag.  Set to 1 if a solution was found, otherwise refer
        to `mesg` for more information.
    mesg : str
        If no solution is found, `mesg` details the cause of failure.

    See Also
    --------
    root : Interface to root finding algorithms for multivariate
           functions. See the ``method=='hybr'`` in particular.

    Notes
    -----
    ``fsolve`` is a wrapper around MINPACK's hybrd and hybrj algorithms.

    """
    options = {'col_deriv': col_deriv,
               'xtol': xtol,
               'maxfev': maxfev,
               'band': band,
               'eps': epsfcn,
               'factor': factor,
               'diag': diag}

    res = _root_hybr(func, x0, args, jac=fprime, **options)
    if full_output:
        x = res['x']
        info = dict((k, res.get(k))
                    for k in ('nfev', 'njev', 'fjac', 'r', 'qtf') if k in res)
        info['fvec'] = res['fun']
        return x, info, res['status'], res['message']
    else:
        status = res['status']
        msg = res['message']
        if status == 0:
            raise TypeError(msg)
        elif status == 1:
            pass
        elif status in [2, 3, 4, 5]:
            warnings.warn(msg, RuntimeWarning)
        else:
            raise TypeError(msg)
        return res['x']


def _root_hybr(func, x0, args=(), jac=None,
               col_deriv=0, xtol=1.49012e-08, maxfev=0, band=None, eps=None,
               factor=100, diag=None, **unknown_options):
    """
    Find the roots of a multivariate function using MINPACK's hybrd and
    hybrj routines (modified Powell method).

    Options
    -------
    col_deriv : bool
        Specify whether the Jacobian function computes derivatives down
        the columns (faster, because there is no transpose operation).
    xtol : float
        The calculation will terminate if the relative error between two
        consecutive iterates is at most `xtol`.
    maxfev : int
        The maximum number of calls to the function. If zero, then
        ``100*(N+1)`` is the maximum where N is the number of elements
        in `x0`.
    band : tuple
        If set to a two-sequence containing the number of sub- and
        super-diagonals within the band of the Jacobi matrix, the
        Jacobi matrix is considered banded (only for ``fprime=None``).
    eps : float
        A suitable step length for the forward-difference
        approximation of the Jacobian (for ``fprime=None``). If
        `eps` is less than the machine precision, it is assumed
        that the relative errors in the functions are of the order of
        the machine precision.
    factor : float
        A parameter determining the initial step bound
        (``factor * || diag * x||``).  Should be in the interval
        ``(0.1, 100)``.
    diag : sequence
        N positive entries that serve as a scale factors for the
        variables.

    """
    _check_unknown_options(unknown_options)
    epsfcn = eps

    x0 = asarray(x0).flatten()
    n = len(x0)
    if not isinstance(args, tuple):
        args = (args,)
    shape, dtype = _check_func('fsolve', 'func', func, x0, args, n, (n,))
    if epsfcn is None:
        epsfcn = finfo(dtype).eps
    Dfun = jac
    if Dfun is None:
        if band is None:
            ml, mu = -10, -10
        else:
            ml, mu = band[:2]
        if maxfev == 0:
            maxfev = 200 * (n + 1)
        retval = _minpack._hybrd(func, x0, args, 1, xtol, maxfev,
                                 ml, mu, epsfcn, factor, diag)
    else:
        _check_func('fsolve', 'fprime', Dfun, x0, args, n, (n, n))
        if (maxfev == 0):
            maxfev = 100 * (n + 1)
        retval = _minpack._hybrj(func, Dfun, x0, args, 1,
                                 col_deriv, xtol, maxfev, factor, diag)

    x, status = retval[0], retval[-1]

    errors = {0: "Improper input parameters were entered.",
              1: "The solution converged.",
              2: "The number of calls to function has "
                  "reached maxfev = %d." % maxfev,
              3: "xtol=%f is too small, no further improvement "
                  "in the approximate\n  solution "
                  "is possible." % xtol,
              4: "The iteration is not making good progress, as measured "
                  "by the \n  improvement from the last five "
                  "Jacobian evaluations.",
              5: "The iteration is not making good progress, "
                  "as measured by the \n  improvement from the last "
                  "ten iterations.",
              'unknown': "An error occurred."}

    info = retval[1]
    info['fun'] = info.pop('fvec')
    sol = OptimizeResult(x=x, success=(status == 1), status=status)
    sol.update(info)
    try:
        sol['message'] = errors[status]
    except KeyError:
        sol['message'] = errors['unknown']

    return sol


LEASTSQ_SUCCESS = [1, 2, 3, 4]
LEASTSQ_FAILURE = [5, 6, 7, 8]


def leastsq(func, x0, args=(), Dfun=None, full_output=0,
            col_deriv=0, ftol=1.49012e-8, xtol=1.49012e-8,
            gtol=0.0, maxfev=0, epsfcn=None, factor=100, diag=None):
    """
    Minimize the sum of squares of a set of equations.

    ::

        x = arg min(sum(func(y)**2,axis=0))
                 y

    Parameters
    ----------
    func : callable
        should take at least one (possibly length N vector) argument and
        returns M floating point numbers. It must not return NaNs or
        fitting might fail.
    x0 : ndarray
        The starting estimate for the minimization.
    args : tuple, optional
        Any extra arguments to func are placed in this tuple.
    Dfun : callable, optional
        A function or method to compute the Jacobian of func with derivatives
        across the rows. If this is None, the Jacobian will be estimated.
    full_output : bool, optional
        non-zero to return all optional outputs.
    col_deriv : bool, optional
        non-zero to specify that the Jacobian function computes derivatives
        down the columns (faster, because there is no transpose operation).
    ftol : float, optional
        Relative error desired in the sum of squares.
    xtol : float, optional
        Relative error desired in the approximate solution.
    gtol : float, optional
        Orthogonality desired between the function vector and the columns of
        the Jacobian.
    maxfev : int, optional
        The maximum number of calls to the function. If `Dfun` is provided
        then the default `maxfev` is 100*(N+1) where N is the number of elements
        in x0, otherwise the default `maxfev` is 200*(N+1).
    epsfcn : float, optional
        A variable used in determining a suitable step length for the forward-
        difference approximation of the Jacobian (for Dfun=None).
        Normally the actual step length will be sqrt(epsfcn)*x
        If epsfcn is less than the machine precision, it is assumed that the
        relative errors are of the order of the machine precision.
    factor : float, optional
        A parameter determining the initial step bound
        (``factor * || diag * x||``). Should be in interval ``(0.1, 100)``.
    diag : sequence, optional
        N positive entries that serve as a scale factors for the variables.

    Returns
    -------
    x : ndarray
        The solution (or the result of the last iteration for an unsuccessful
        call).
    cov_x : ndarray
        The inverse of the Hessian. `fjac` and `ipvt` are used to construct an
        estimate of the Hessian. A value of None indicates a singular matrix,
        which means the curvature in parameters `x` is numerically flat. To
        obtain the covariance matrix of the parameters `x`, `cov_x` must be
        multiplied by the variance of the residuals -- see curve_fit.
    infodict : dict
        a dictionary of optional outputs with the keys:

        ``nfev``
            The number of function calls
        ``fvec``
            The function evaluated at the output
        ``fjac``
            A permutation of the R matrix of a QR
            factorization of the final approximate
            Jacobian matrix, stored column wise.
            Together with ipvt, the covariance of the
            estimate can be approximated.
        ``ipvt``
            An integer array of length N which defines
            a permutation matrix, p, such that
            fjac*p = q*r, where r is upper triangular
            with diagonal elements of nonincreasing
            magnitude. Column j of p is column ipvt(j)
            of the identity matrix.
        ``qtf``
            The vector (transpose(q) * fvec).

    mesg : str
        A string message giving information about the cause of failure.
    ier : int
        An integer flag.  If it is equal to 1, 2, 3 or 4, the solution was
        found.  Otherwise, the solution was not found. In either case, the
        optional output variable 'mesg' gives more information.

    See Also
    --------
    least_squares : Newer interface to solve nonlinear least-squares problems
        with bounds on the variables. See ``method=='lm'`` in particular.

    Notes
    -----
    "leastsq" is a wrapper around MINPACK's lmdif and lmder algorithms.

    cov_x is a Jacobian approximation to the Hessian of the least squares
    objective function.
    This approximation assumes that the objective function is based on the
    difference between some observed target data (ydata) and a (non-linear)
    function of the parameters `f(xdata, params)` ::

           func(params) = ydata - f(xdata, params)

    so that the objective function is ::

           min   sum((ydata - f(xdata, params))**2, axis=0)
         params

    The solution, `x`, is always a 1D array, regardless of the shape of `x0`,
    or whether `x0` is a scalar.
    """
    x0 = asarray(x0).flatten()
    n = len(x0)
    if not isinstance(args, tuple):
        args = (args,)
    shape, dtype = _check_func('leastsq', 'func', func, x0, args, n)
    m = shape[0]

    if n > m:
        raise TypeError('Improper input: N=%s must not exceed M=%s' % (n, m))

    if epsfcn is None:
        epsfcn = finfo(dtype).eps

    if Dfun is None:
        if maxfev == 0:
            maxfev = 200*(n + 1)
        retval = _minpack._lmdif(func, x0, args, full_output, ftol, xtol,
                                 gtol, maxfev, epsfcn, factor, diag)
    else:
        if col_deriv:
            _check_func('leastsq', 'Dfun', Dfun, x0, args, n, (n, m))
        else:
            _check_func('leastsq', 'Dfun', Dfun, x0, args, n, (m, n))
        if maxfev == 0:
            maxfev = 100 * (n + 1)
        retval = _minpack._lmder(func, Dfun, x0, args, full_output,
                                 col_deriv, ftol, xtol, gtol, maxfev,
                                 factor, diag)

    errors = {0: ["Improper input parameters.", TypeError],
              1: ["Both actual and predicted relative reductions "
                  "in the sum of squares\n  are at most %f" % ftol, None],
              2: ["The relative error between two consecutive "
                  "iterates is at most %f" % xtol, None],
              3: ["Both actual and predicted relative reductions in "
                  "the sum of squares\n  are at most %f and the "
                  "relative error between two consecutive "
                  "iterates is at \n  most %f" % (ftol, xtol), None],
              4: ["The cosine of the angle between func(x) and any "
                  "column of the\n  Jacobian is at most %f in "
                  "absolute value" % gtol, None],
              5: ["Number of calls to function has reached "
                  "maxfev = %d." % maxfev, ValueError],
              6: ["ftol=%f is too small, no further reduction "
                  "in the sum of squares\n  is possible." % ftol,
                  ValueError],
              7: ["xtol=%f is too small, no further improvement in "
                  "the approximate\n  solution is possible." % xtol,
                  ValueError],
              8: ["gtol=%f is too small, func(x) is orthogonal to the "
                  "columns of\n  the Jacobian to machine "
                  "precision." % gtol, ValueError]}

    # The FORTRAN return value (possible return values are >= 0 and <= 8)
    info = retval[-1]

    if full_output:
        cov_x = None
        if info in LEASTSQ_SUCCESS:
            from numpy.dual import inv
            perm = take(eye(n), retval[1]['ipvt'] - 1, 0)
            r = triu(transpose(retval[1]['fjac'])[:n, :])
            R = dot(r, perm)
            try:
                cov_x = inv(dot(transpose(R), R))
            except (LinAlgError, ValueError):
                pass
        return (retval[0], cov_x) + retval[1:-1] + (errors[info][0], info)
    else:
        if info in LEASTSQ_FAILURE:
            warnings.warn(errors[info][0], RuntimeWarning)
        elif info == 0:
            raise errors[info][1](errors[info][0])
        return retval[0], info


def _wrap_func(func, xdata, ydata, transform):
    if transform is None:
        def func_wrapped(params):
            return func(xdata, *params) - ydata
    elif transform.ndim == 1:
        def func_wrapped(params):
            return transform * (func(xdata, *params) - ydata)
    else:
        # Chisq = (y - yd)^T C^{-1} (y-yd)
        # transform = L such that C = L L^T
        # C^{-1} = L^{-T} L^{-1}
        # Chisq = (y - yd)^T L^{-T} L^{-1} (y-yd)
        # Define (y-yd)' = L^{-1} (y-yd)
        # by solving
        # L (y-yd)' = (y-yd)
        # and minimize (y-yd)'^T (y-yd)'
        def func_wrapped(params):
            return solve_triangular(transform, func(xdata, *params) - ydata, lower=True)
    return func_wrapped


def _wrap_jac(jac, xdata, transform):
    if transform is None:
        def jac_wrapped(params):
            return jac(xdata, *params)
    elif transform.ndim == 1:
        def jac_wrapped(params):
            return transform[:, np.newaxis] * np.asarray(jac(xdata, *params))
    else:
        def jac_wrapped(params):
            return solve_triangular(transform, np.asarray(jac(xdata, *params)), lower=True)
    return jac_wrapped


def _initialize_feasible(lb, ub):
    p0 = np.ones_like(lb)
    lb_finite = np.isfinite(lb)
    ub_finite = np.isfinite(ub)

    mask = lb_finite & ub_finite
    p0[mask] = 0.5 * (lb[mask] + ub[mask])

    mask = lb_finite & ~ub_finite
    p0[mask] = lb[mask] + 1

    mask = ~lb_finite & ub_finite
    p0[mask] = ub[mask] - 1

    return p0


def curve_fit(f, xdata, ydata, p0=None, sigma=None, absolute_sigma=False,
              check_finite=True, bounds=(-np.inf, np.inf), method=None,
              jac=None, **kwargs):
    """
    Use non-linear least squares to fit a function, f, to data.

    Assumes ``ydata = f(xdata, *params) + eps``

    Parameters
    ----------
    f : callable
        The model function, f(x, ...).  It must take the independent
        variable as the first argument and the parameters to fit as
        separate remaining arguments.
    xdata : array_like or object
        The independent variable where the data is measured.
        Should usually be an M-length sequence or an (k,M)-shaped array for
        functions with k predictors, but can actually be any object.
    ydata : array_like
        The dependent data, a length M array - nominally ``f(xdata, ...)``.
    p0 : array_like, optional
        Initial guess for the parameters (length N).  If None, then the
        initial values will all be 1 (if the number of parameters for the
        function can be determined using introspection, otherwise a
        ValueError is raised).
    sigma : None or M-length sequence or MxM array, optional
        Determines the uncertainty in `ydata`. If we define residuals as
        ``r = ydata - f(xdata, *popt)``, then the interpretation of `sigma`
        depends on its number of dimensions:

            - A 1-d `sigma` should contain values of standard deviations of
              errors in `ydata`. In this case, the optimized function is
              ``chisq = sum((r / sigma) ** 2)``.

            - A 2-d `sigma` should contain the covariance matrix of
              errors in `ydata`. In this case, the optimized function is
              ``chisq = r.T @ inv(sigma) @ r``.

              .. versionadded:: 0.19

        None (default) is equivalent of 1-d `sigma` filled with ones.
    absolute_sigma : bool, optional
        If True, `sigma` is used in an absolute sense and the estimated parameter
        covariance `pcov` reflects these absolute values.

        If False, only the relative magnitudes of the `sigma` values matter.
        The returned parameter covariance matrix `pcov` is based on scaling
        `sigma` by a constant factor. This constant is set by demanding that the
        reduced `chisq` for the optimal parameters `popt` when using the
        *scaled* `sigma` equals unity. In other words, `sigma` is scaled to
        match the sample variance of the residuals after the fit.
        Mathematically,
        ``pcov(absolute_sigma=False) = pcov(absolute_sigma=True) * chisq(popt)/(M-N)``
    check_finite : bool, optional
        If True, check that the input arrays do not contain nans of infs,
        and raise a ValueError if they do. Setting this parameter to
        False may silently produce nonsensical results if the input arrays
        do contain nans. Default is True.
    bounds : 2-tuple of array_like, optional
        Lower and upper bounds on parameters. Defaults to no bounds.
        Each element of the tuple must be either an array with the length equal
        to the number of parameters, or a scalar (in which case the bound is
        taken to be the same for all parameters.) Use ``np.inf`` with an
        appropriate sign to disable bounds on all or some parameters.

        .. versionadded:: 0.17
    method : {'lm', 'trf', 'dogbox'}, optional
        Method to use for optimization.  See `least_squares` for more details.
        Default is 'lm' for unconstrained problems and 'trf' if `bounds` are
        provided. The method 'lm' won't work when the number of observations
        is less than the number of variables, use 'trf' or 'dogbox' in this
        case.

        .. versionadded:: 0.17
    jac : callable, string or None, optional
        Function with signature ``jac(x, ...)`` which computes the Jacobian
        matrix of the model function with respect to parameters as a dense
        array_like structure. It will be scaled according to provided `sigma`.
        If None (default), the Jacobian will be estimated numerically.
        String keywords for 'trf' and 'dogbox' methods can be used to select
        a finite difference scheme, see `least_squares`.

        .. versionadded:: 0.18
    kwargs
        Keyword arguments passed to `leastsq` for ``method='lm'`` or
        `least_squares` otherwise.

    Returns
    -------
    popt : array
        Optimal values for the parameters so that the sum of the squared
        residuals of ``f(xdata, *popt) - ydata`` is minimized
    pcov : 2d array
        The estimated covariance of popt. The diagonals provide the variance
        of the parameter estimate. To compute one standard deviation errors
        on the parameters use ``perr = np.sqrt(np.diag(pcov))``.

        How the `sigma` parameter affects the estimated covariance
        depends on `absolute_sigma` argument, as described above.

        If the Jacobian matrix at the solution doesn't have a full rank, then
        'lm' method returns a matrix filled with ``np.inf``, on the other hand
        'trf'  and 'dogbox' methods use Moore-Penrose pseudoinverse to compute
        the covariance matrix.

    Raises
    ------
    ValueError
        if either `ydata` or `xdata` contain NaNs, or if incompatible options
        are used.

    RuntimeError
        if the least-squares minimization fails.

    OptimizeWarning
        if covariance of the parameters can not be estimated.

    See Also
    --------
    least_squares : Minimize the sum of squares of nonlinear functions.
    scipy.stats.linregress : Calculate a linear least squares regression for
                             two sets of measurements.

    Notes
    -----
    With ``method='lm'``, the algorithm uses the Levenberg-Marquardt algorithm
    through `leastsq`. Note that this algorithm can only deal with
    unconstrained problems.

    Box constraints can be handled by methods 'trf' and 'dogbox'. Refer to
    the docstring of `least_squares` for more information.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> from scipy.optimize import curve_fit

    >>> def func(x, a, b, c):
    ...     return a * np.exp(-b * x) + c

    Define the data to be fit with some noise:

    >>> xdata = np.linspace(0, 4, 50)
    >>> y = func(xdata, 2.5, 1.3, 0.5)
    >>> np.random.seed(1729)
    >>> y_noise = 0.2 * np.random.normal(size=xdata.size)
    >>> ydata = y + y_noise
    >>> plt.plot(xdata, ydata, 'b-', label='data')

    Fit for the parameters a, b, c of the function `func`:

    >>> popt, pcov = curve_fit(func, xdata, ydata)
    >>> popt
    array([ 2.55423706,  1.35190947,  0.47450618])
    >>> plt.plot(xdata, func(xdata, *popt), 'r-',
    ...          label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))

    Constrain the optimization to the region of ``0 <= a <= 3``,
    ``0 <= b <= 1`` and ``0 <= c <= 0.5``:

    >>> popt, pcov = curve_fit(func, xdata, ydata, bounds=(0, [3., 1., 0.5]))
    >>> popt
    array([ 2.43708906,  1.        ,  0.35015434])
    >>> plt.plot(xdata, func(xdata, *popt), 'g--',
    ...          label='fit: a=%5.3f, b=%5.3f, c=%5.3f' % tuple(popt))

    >>> plt.xlabel('x')
    >>> plt.ylabel('y')
    >>> plt.legend()
    >>> plt.show()

    """
    if p0 is None:
        # determine number of parameters by inspecting the function
        from scipy._lib._util import getargspec_no_self as _getargspec
        args, varargs, varkw, defaults = _getargspec(f)
        if len(args) < 2:
            raise ValueError("Unable to determine number of fit parameters.")
        n = len(args) - 1
    else:
        p0 = np.atleast_1d(p0)
        n = p0.size

    lb, ub = prepare_bounds(bounds, n)
    if p0 is None:
        p0 = _initialize_feasible(lb, ub)

    bounded_problem = np.any((lb > -np.inf) | (ub < np.inf))
    if method is None:
        if bounded_problem:
            method = 'trf'
        else:
            method = 'lm'

    if method == 'lm' and bounded_problem:
        raise ValueError("Method 'lm' only works for unconstrained problems. "
                         "Use 'trf' or 'dogbox' instead.")

    # optimization may produce garbage for float32 inputs, cast them to float64

    # NaNs can not be handled
    if check_finite:
        ydata = np.asarray_chkfinite(ydata, float)
    else:
        ydata = np.asarray(ydata, float)

    if isinstance(xdata, (list, tuple, np.ndarray)):
        # `xdata` is passed straight to the user-defined `f`, so allow
        # non-array_like `xdata`.
        if check_finite:
            xdata = np.asarray_chkfinite(xdata, float)
        else:
            xdata = np.asarray(xdata, float)

    if ydata.size == 0:
        raise ValueError("`ydata` must not be empty!")

    # Determine type of sigma
    if sigma is not None:
        sigma = np.asarray(sigma)

        # if 1-d, sigma are errors, define transform = 1/sigma
        if sigma.shape == (ydata.size, ):
            transform = 1.0 / sigma
        # if 2-d, sigma is the covariance matrix,
        # define transform = L such that L L^T = C
        elif sigma.shape == (ydata.size, ydata.size):
            try:
                # scipy.linalg.cholesky requires lower=True to return L L^T = A
                transform = cholesky(sigma, lower=True)
            except LinAlgError:
                raise ValueError("`sigma` must be positive definite.")
        else:
            raise ValueError("`sigma` has incorrect shape.")
    else:
        transform = None

    func = _wrap_func(f, xdata, ydata, transform)
    if callable(jac):
        jac = _wrap_jac(jac, xdata, transform)
    elif jac is None and method != 'lm':
        jac = '2-point'

    if 'args' in kwargs:
        # The specification for the model function `f` does not support
        # additional arguments. Refer to the `curve_fit` docstring for
        # acceptable call signatures of `f`.
        raise ValueError("'args' is not a supported keyword argument.")

    if method == 'lm':
        # Remove full_output from kwargs, otherwise we're passing it in twice.
        return_full = kwargs.pop('full_output', False)
        res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs)
        popt, pcov, infodict, errmsg, ier = res
        ysize = len(infodict['fvec'])
        cost = np.sum(infodict['fvec'] ** 2)
        if ier not in [1, 2, 3, 4]:
            raise RuntimeError("Optimal parameters not found: " + errmsg)
    else:
        # Rename maxfev (leastsq) to max_nfev (least_squares), if specified.
        if 'max_nfev' not in kwargs:
            kwargs['max_nfev'] = kwargs.pop('maxfev', None)

        res = least_squares(func, p0, jac=jac, bounds=bounds, method=method,
                            **kwargs)

        if not res.success:
            raise RuntimeError("Optimal parameters not found: " + res.message)

        ysize = len(res.fun)
        cost = 2 * res.cost  # res.cost is half sum of squares!
        popt = res.x

        # Do Moore-Penrose inverse discarding zero singular values.
        _, s, VT = svd(res.jac, full_matrices=False)
        threshold = np.finfo(float).eps * max(res.jac.shape) * s[0]
        s = s[s > threshold]
        VT = VT[:s.size]
        pcov = np.dot(VT.T / s**2, VT)
        return_full = False

    warn_cov = False
    if pcov is None:
        # indeterminate covariance
        pcov = zeros((len(popt), len(popt)), dtype=float)
        pcov.fill(inf)
        warn_cov = True
    elif not absolute_sigma:
        if ysize > p0.size:
            s_sq = cost / (ysize - p0.size)
            pcov = pcov * s_sq
        else:
            pcov.fill(inf)
            warn_cov = True

    if warn_cov:
        warnings.warn('Covariance of the parameters could not be estimated',
                      category=OptimizeWarning)

    if return_full:
        return popt, pcov, infodict, errmsg, ier
    else:
        return popt, pcov


def check_gradient(fcn, Dfcn, x0, args=(), col_deriv=0):
    """Perform a simple check on the gradient for correctness.

    """

    x = atleast_1d(x0)
    n = len(x)
    x = x.reshape((n,))
    fvec = atleast_1d(fcn(x, *args))
    m = len(fvec)
    fvec = fvec.reshape((m,))
    ldfjac = m
    fjac = atleast_1d(Dfcn(x, *args))
    fjac = fjac.reshape((m, n))
    if col_deriv == 0:
        fjac = transpose(fjac)

    xp = zeros((n,), float)
    err = zeros((m,), float)
    fvecp = None
    _minpack._chkder(m, n, x, fvec, fjac, ldfjac, xp, fvecp, 1, err)

    fvecp = atleast_1d(fcn(xp, *args))
    fvecp = fvecp.reshape((m,))
    _minpack._chkder(m, n, x, fvec, fjac, ldfjac, xp, fvecp, 2, err)

    good = (prod(greater(err, 0.5), axis=0))

    return (good, err)


def _del2(p0, p1, d):
    return p0 - np.square(p1 - p0) / d


def _relerr(actual, desired):
    return (actual - desired) / desired


def _fixed_point_helper(func, x0, args, xtol, maxiter, use_accel):
    p0 = x0
    for i in range(maxiter):
        p1 = func(p0, *args)
        if use_accel:
            p2 = func(p1, *args)
            d = p2 - 2.0 * p1 + p0
            p = _lazywhere(d != 0, (p0, p1, d), f=_del2, fillvalue=p2)
        else:
            p = p1
        relerr = _lazywhere(p0 != 0, (p, p0), f=_relerr, fillvalue=p)
        if np.all(np.abs(relerr) < xtol):
            return p
        p0 = p
    msg = "Failed to converge after %d iterations, value is %s" % (maxiter, p)
    raise RuntimeError(msg)


def fixed_point(func, x0, args=(), xtol=1e-8, maxiter=500, method='del2'):
    """
    Find a fixed point of the function.

    Given a function of one or more variables and a starting point, find a
    fixed-point of the function: i.e. where ``func(x0) == x0``.

    Parameters
    ----------
    func : function
        Function to evaluate.
    x0 : array_like
        Fixed point of function.
    args : tuple, optional
        Extra arguments to `func`.
    xtol : float, optional
        Convergence tolerance, defaults to 1e-08.
    maxiter : int, optional
        Maximum number of iterations, defaults to 500.
    method : {"del2", "iteration"}, optional
        Method of finding the fixed-point, defaults to "del2"
        which uses Steffensen's Method with Aitken's ``Del^2``
        convergence acceleration [1]_. The "iteration" method simply iterates
        the function until convergence is detected, without attempting to
        accelerate the convergence.

    References
    ----------
    .. [1] Burden, Faires, "Numerical Analysis", 5th edition, pg. 80

    Examples
    --------
    >>> from scipy import optimize
    >>> def func(x, c1, c2):
    ...    return np.sqrt(c1/(x+c2))
    >>> c1 = np.array([10,12.])
    >>> c2 = np.array([3, 5.])
    >>> optimize.fixed_point(func, [1.2, 1.3], args=(c1,c2))
    array([ 1.4920333 ,  1.37228132])

    """
    use_accel = {'del2': True, 'iteration': False}[method]
    x0 = _asarray_validated(x0, as_inexact=True)
    return _fixed_point_helper(func, x0, args, xtol, maxiter, use_accel)