construct.py 25.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
"""Functions to construct sparse matrices
"""
from __future__ import division, print_function, absolute_import

__docformat__ = "restructuredtext en"

__all__ = ['spdiags', 'eye', 'identity', 'kron', 'kronsum',
           'hstack', 'vstack', 'bmat', 'rand', 'random', 'diags', 'block_diag']


import numpy as np
from scipy._lib._numpy_compat import get_randint

from scipy._lib.six import xrange

from .sputils import upcast, get_index_dtype, isscalarlike

from .csr import csr_matrix
from .csc import csc_matrix
from .bsr import bsr_matrix
from .coo import coo_matrix
from .dia import dia_matrix

from .base import issparse


def spdiags(data, diags, m, n, format=None):
    """
    Return a sparse matrix from diagonals.

    Parameters
    ----------
    data : array_like
        matrix diagonals stored row-wise
    diags : diagonals to set
        - k = 0  the main diagonal
        - k > 0  the k-th upper diagonal
        - k < 0  the k-th lower diagonal
    m, n : int
        shape of the result
    format : str, optional
        Format of the result. By default (format=None) an appropriate sparse
        matrix format is returned.  This choice is subject to change.

    See Also
    --------
    diags : more convenient form of this function
    dia_matrix : the sparse DIAgonal format.

    Examples
    --------
    >>> from scipy.sparse import spdiags
    >>> data = np.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]])
    >>> diags = np.array([0, -1, 2])
    >>> spdiags(data, diags, 4, 4).toarray()
    array([[1, 0, 3, 0],
           [1, 2, 0, 4],
           [0, 2, 3, 0],
           [0, 0, 3, 4]])

    """
    return dia_matrix((data, diags), shape=(m,n)).asformat(format)


def diags(diagonals, offsets=0, shape=None, format=None, dtype=None):
    """
    Construct a sparse matrix from diagonals.

    Parameters
    ----------
    diagonals : sequence of array_like
        Sequence of arrays containing the matrix diagonals,
        corresponding to `offsets`.
    offsets : sequence of int or an int, optional
        Diagonals to set:
          - k = 0  the main diagonal (default)
          - k > 0  the k-th upper diagonal
          - k < 0  the k-th lower diagonal
    shape : tuple of int, optional
        Shape of the result. If omitted, a square matrix large enough
        to contain the diagonals is returned.
    format : {"dia", "csr", "csc", "lil", ...}, optional
        Matrix format of the result.  By default (format=None) an
        appropriate sparse matrix format is returned.  This choice is
        subject to change.
    dtype : dtype, optional
        Data type of the matrix.

    See Also
    --------
    spdiags : construct matrix from diagonals

    Notes
    -----
    This function differs from `spdiags` in the way it handles
    off-diagonals.

    The result from `diags` is the sparse equivalent of::

        np.diag(diagonals[0], offsets[0])
        + ...
        + np.diag(diagonals[k], offsets[k])

    Repeated diagonal offsets are disallowed.

    .. versionadded:: 0.11

    Examples
    --------
    >>> from scipy.sparse import diags
    >>> diagonals = [[1, 2, 3, 4], [1, 2, 3], [1, 2]]
    >>> diags(diagonals, [0, -1, 2]).toarray()
    array([[1, 0, 1, 0],
           [1, 2, 0, 2],
           [0, 2, 3, 0],
           [0, 0, 3, 4]])

    Broadcasting of scalars is supported (but shape needs to be
    specified):

    >>> diags([1, -2, 1], [-1, 0, 1], shape=(4, 4)).toarray()
    array([[-2.,  1.,  0.,  0.],
           [ 1., -2.,  1.,  0.],
           [ 0.,  1., -2.,  1.],
           [ 0.,  0.,  1., -2.]])


    If only one diagonal is wanted (as in `numpy.diag`), the following
    works as well:

    >>> diags([1, 2, 3], 1).toarray()
    array([[ 0.,  1.,  0.,  0.],
           [ 0.,  0.,  2.,  0.],
           [ 0.,  0.,  0.,  3.],
           [ 0.,  0.,  0.,  0.]])
    """
    # if offsets is not a sequence, assume that there's only one diagonal
    if isscalarlike(offsets):
        # now check that there's actually only one diagonal
        if len(diagonals) == 0 or isscalarlike(diagonals[0]):
            diagonals = [np.atleast_1d(diagonals)]
        else:
            raise ValueError("Different number of diagonals and offsets.")
    else:
        diagonals = list(map(np.atleast_1d, diagonals))

    offsets = np.atleast_1d(offsets)

    # Basic check
    if len(diagonals) != len(offsets):
        raise ValueError("Different number of diagonals and offsets.")

    # Determine shape, if omitted
    if shape is None:
        m = len(diagonals[0]) + abs(int(offsets[0]))
        shape = (m, m)

    # Determine data type, if omitted
    if dtype is None:
        dtype = np.common_type(*diagonals)

    # Construct data array
    m, n = shape

    M = max([min(m + offset, n - offset) + max(0, offset)
             for offset in offsets])
    M = max(0, M)
    data_arr = np.zeros((len(offsets), M), dtype=dtype)

    K = min(m, n)

    for j, diagonal in enumerate(diagonals):
        offset = offsets[j]
        k = max(0, offset)
        length = min(m + offset, n - offset, K)
        if length < 0:
            raise ValueError("Offset %d (index %d) out of bounds" % (offset, j))
        try:
            data_arr[j, k:k+length] = diagonal[...,:length]
        except ValueError:
            if len(diagonal) != length and len(diagonal) != 1:
                raise ValueError(
                    "Diagonal length (index %d: %d at offset %d) does not "
                    "agree with matrix size (%d, %d)." % (
                    j, len(diagonal), offset, m, n))
            raise

    return dia_matrix((data_arr, offsets), shape=(m, n)).asformat(format)


def identity(n, dtype='d', format=None):
    """Identity matrix in sparse format

    Returns an identity matrix with shape (n,n) using a given
    sparse format and dtype.

    Parameters
    ----------
    n : int
        Shape of the identity matrix.
    dtype : dtype, optional
        Data type of the matrix
    format : str, optional
        Sparse format of the result, e.g. format="csr", etc.

    Examples
    --------
    >>> from scipy.sparse import identity
    >>> identity(3).toarray()
    array([[ 1.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  1.]])
    >>> identity(3, dtype='int8', format='dia')
    <3x3 sparse matrix of type '<class 'numpy.int8'>'
            with 3 stored elements (1 diagonals) in DIAgonal format>

    """
    return eye(n, n, dtype=dtype, format=format)


def eye(m, n=None, k=0, dtype=float, format=None):
    """Sparse matrix with ones on diagonal

    Returns a sparse (m x n) matrix where the k-th diagonal
    is all ones and everything else is zeros.

    Parameters
    ----------
    m : int
        Number of rows in the matrix.
    n : int, optional
        Number of columns. Default: `m`.
    k : int, optional
        Diagonal to place ones on. Default: 0 (main diagonal).
    dtype : dtype, optional
        Data type of the matrix.
    format : str, optional
        Sparse format of the result, e.g. format="csr", etc.

    Examples
    --------
    >>> from scipy import sparse
    >>> sparse.eye(3).toarray()
    array([[ 1.,  0.,  0.],
           [ 0.,  1.,  0.],
           [ 0.,  0.,  1.]])
    >>> sparse.eye(3, dtype=np.int8)
    <3x3 sparse matrix of type '<class 'numpy.int8'>'
        with 3 stored elements (1 diagonals) in DIAgonal format>

    """
    if n is None:
        n = m
    m,n = int(m),int(n)

    if m == n and k == 0:
        # fast branch for special formats
        if format in ['csr', 'csc']:
            idx_dtype = get_index_dtype(maxval=n)
            indptr = np.arange(n+1, dtype=idx_dtype)
            indices = np.arange(n, dtype=idx_dtype)
            data = np.ones(n, dtype=dtype)
            cls = {'csr': csr_matrix, 'csc': csc_matrix}[format]
            return cls((data,indices,indptr),(n,n))
        elif format == 'coo':
            idx_dtype = get_index_dtype(maxval=n)
            row = np.arange(n, dtype=idx_dtype)
            col = np.arange(n, dtype=idx_dtype)
            data = np.ones(n, dtype=dtype)
            return coo_matrix((data,(row,col)),(n,n))

    diags = np.ones((1, max(0, min(m + k, n))), dtype=dtype)
    return spdiags(diags, k, m, n).asformat(format)


def kron(A, B, format=None):
    """kronecker product of sparse matrices A and B

    Parameters
    ----------
    A : sparse or dense matrix
        first matrix of the product
    B : sparse or dense matrix
        second matrix of the product
    format : str, optional
        format of the result (e.g. "csr")

    Returns
    -------
    kronecker product in a sparse matrix format


    Examples
    --------
    >>> from scipy import sparse
    >>> A = sparse.csr_matrix(np.array([[0, 2], [5, 0]]))
    >>> B = sparse.csr_matrix(np.array([[1, 2], [3, 4]]))
    >>> sparse.kron(A, B).toarray()
    array([[ 0,  0,  2,  4],
           [ 0,  0,  6,  8],
           [ 5, 10,  0,  0],
           [15, 20,  0,  0]])

    >>> sparse.kron(A, [[1, 2], [3, 4]]).toarray()
    array([[ 0,  0,  2,  4],
           [ 0,  0,  6,  8],
           [ 5, 10,  0,  0],
           [15, 20,  0,  0]])

    """
    B = coo_matrix(B)

    if (format is None or format == "bsr") and 2*B.nnz >= B.shape[0] * B.shape[1]:
        # B is fairly dense, use BSR
        A = csr_matrix(A,copy=True)

        output_shape = (A.shape[0]*B.shape[0], A.shape[1]*B.shape[1])

        if A.nnz == 0 or B.nnz == 0:
            # kronecker product is the zero matrix
            return coo_matrix(output_shape)

        B = B.toarray()
        data = A.data.repeat(B.size).reshape(-1,B.shape[0],B.shape[1])
        data = data * B

        return bsr_matrix((data,A.indices,A.indptr), shape=output_shape)
    else:
        # use COO
        A = coo_matrix(A)
        output_shape = (A.shape[0]*B.shape[0], A.shape[1]*B.shape[1])

        if A.nnz == 0 or B.nnz == 0:
            # kronecker product is the zero matrix
            return coo_matrix(output_shape)

        # expand entries of a into blocks
        row = A.row.repeat(B.nnz)
        col = A.col.repeat(B.nnz)
        data = A.data.repeat(B.nnz)

        row *= B.shape[0]
        col *= B.shape[1]

        # increment block indices
        row,col = row.reshape(-1,B.nnz),col.reshape(-1,B.nnz)
        row += B.row
        col += B.col
        row,col = row.reshape(-1),col.reshape(-1)

        # compute block entries
        data = data.reshape(-1,B.nnz) * B.data
        data = data.reshape(-1)

        return coo_matrix((data,(row,col)), shape=output_shape).asformat(format)


def kronsum(A, B, format=None):
    """kronecker sum of sparse matrices A and B

    Kronecker sum of two sparse matrices is a sum of two Kronecker
    products kron(I_n,A) + kron(B,I_m) where A has shape (m,m)
    and B has shape (n,n) and I_m and I_n are identity matrices
    of shape (m,m) and (n,n) respectively.

    Parameters
    ----------
    A
        square matrix
    B
        square matrix
    format : str
        format of the result (e.g. "csr")

    Returns
    -------
    kronecker sum in a sparse matrix format

    Examples
    --------


    """
    A = coo_matrix(A)
    B = coo_matrix(B)

    if A.shape[0] != A.shape[1]:
        raise ValueError('A is not square')

    if B.shape[0] != B.shape[1]:
        raise ValueError('B is not square')

    dtype = upcast(A.dtype, B.dtype)

    L = kron(eye(B.shape[0],dtype=dtype), A, format=format)
    R = kron(B, eye(A.shape[0],dtype=dtype), format=format)

    return (L+R).asformat(format)  # since L + R is not always same format


def _compressed_sparse_stack(blocks, axis):
    """
    Stacking fast path for CSR/CSC matrices
    (i) vstack for CSR, (ii) hstack for CSC.
    """
    other_axis = 1 if axis == 0 else 0
    data = np.concatenate([b.data for b in blocks])
    constant_dim = blocks[0].shape[other_axis]
    idx_dtype = get_index_dtype(arrays=[b.indptr for b in blocks],
                                maxval=max(data.size, constant_dim))
    indices = np.empty(data.size, dtype=idx_dtype)
    indptr = np.empty(sum(b.shape[axis] for b in blocks) + 1, dtype=idx_dtype)
    last_indptr = idx_dtype(0)
    sum_dim = 0
    sum_indices = 0
    for b in blocks:
        if b.shape[other_axis] != constant_dim:
            raise ValueError('incompatible dimensions for axis %d' % other_axis)
        indices[sum_indices:sum_indices+b.indices.size] = b.indices
        sum_indices += b.indices.size
        idxs = slice(sum_dim, sum_dim + b.shape[axis])
        indptr[idxs] = b.indptr[:-1]
        indptr[idxs] += last_indptr
        sum_dim += b.shape[axis]
        last_indptr += b.indptr[-1]
    indptr[-1] = last_indptr
    if axis == 0:
        return csr_matrix((data, indices, indptr),
                          shape=(sum_dim, constant_dim))
    else:
        return csc_matrix((data, indices, indptr),
                          shape=(constant_dim, sum_dim))


def hstack(blocks, format=None, dtype=None):
    """
    Stack sparse matrices horizontally (column wise)

    Parameters
    ----------
    blocks
        sequence of sparse matrices with compatible shapes
    format : str
        sparse format of the result (e.g. "csr")
        by default an appropriate sparse matrix format is returned.
        This choice is subject to change.
    dtype : dtype, optional
        The data-type of the output matrix.  If not given, the dtype is
        determined from that of `blocks`.

    See Also
    --------
    vstack : stack sparse matrices vertically (row wise)

    Examples
    --------
    >>> from scipy.sparse import coo_matrix, hstack
    >>> A = coo_matrix([[1, 2], [3, 4]])
    >>> B = coo_matrix([[5], [6]])
    >>> hstack([A,B]).toarray()
    array([[1, 2, 5],
           [3, 4, 6]])

    """
    return bmat([blocks], format=format, dtype=dtype)


def vstack(blocks, format=None, dtype=None):
    """
    Stack sparse matrices vertically (row wise)

    Parameters
    ----------
    blocks
        sequence of sparse matrices with compatible shapes
    format : str, optional
        sparse format of the result (e.g. "csr")
        by default an appropriate sparse matrix format is returned.
        This choice is subject to change.
    dtype : dtype, optional
        The data-type of the output matrix.  If not given, the dtype is
        determined from that of `blocks`.

    See Also
    --------
    hstack : stack sparse matrices horizontally (column wise)

    Examples
    --------
    >>> from scipy.sparse import coo_matrix, vstack
    >>> A = coo_matrix([[1, 2], [3, 4]])
    >>> B = coo_matrix([[5, 6]])
    >>> vstack([A, B]).toarray()
    array([[1, 2],
           [3, 4],
           [5, 6]])

    """
    return bmat([[b] for b in blocks], format=format, dtype=dtype)


def bmat(blocks, format=None, dtype=None):
    """
    Build a sparse matrix from sparse sub-blocks

    Parameters
    ----------
    blocks : array_like
        Grid of sparse matrices with compatible shapes.
        An entry of None implies an all-zero matrix.
    format : {'bsr', 'coo', 'csc', 'csr', 'dia', 'dok', 'lil'}, optional
        The sparse format of the result (e.g. "csr").  By default an
        appropriate sparse matrix format is returned.
        This choice is subject to change.
    dtype : dtype, optional
        The data-type of the output matrix.  If not given, the dtype is
        determined from that of `blocks`.

    Returns
    -------
    bmat : sparse matrix

    See Also
    --------
    block_diag, diags

    Examples
    --------
    >>> from scipy.sparse import coo_matrix, bmat
    >>> A = coo_matrix([[1, 2], [3, 4]])
    >>> B = coo_matrix([[5], [6]])
    >>> C = coo_matrix([[7]])
    >>> bmat([[A, B], [None, C]]).toarray()
    array([[1, 2, 5],
           [3, 4, 6],
           [0, 0, 7]])

    >>> bmat([[A, None], [None, C]]).toarray()
    array([[1, 2, 0],
           [3, 4, 0],
           [0, 0, 7]])

    """

    blocks = np.asarray(blocks, dtype='object')

    if blocks.ndim != 2:
        raise ValueError('blocks must be 2-D')

    M,N = blocks.shape

    # check for fast path cases
    if (N == 1 and format in (None, 'csr') and all(isinstance(b, csr_matrix)
                                                   for b in blocks.flat)):
        A = _compressed_sparse_stack(blocks[:,0], 0)
        if dtype is not None:
            A = A.astype(dtype)
        return A
    elif (M == 1 and format in (None, 'csc')
          and all(isinstance(b, csc_matrix) for b in blocks.flat)):
        A = _compressed_sparse_stack(blocks[0,:], 1)
        if dtype is not None:
            A = A.astype(dtype)
        return A

    block_mask = np.zeros(blocks.shape, dtype=bool)
    brow_lengths = np.zeros(M, dtype=np.int64)
    bcol_lengths = np.zeros(N, dtype=np.int64)

    # convert everything to COO format
    for i in range(M):
        for j in range(N):
            if blocks[i,j] is not None:
                A = coo_matrix(blocks[i,j])
                blocks[i,j] = A
                block_mask[i,j] = True

                if brow_lengths[i] == 0:
                    brow_lengths[i] = A.shape[0]
                elif brow_lengths[i] != A.shape[0]:
                    msg = ('blocks[{i},:] has incompatible row dimensions. '
                           'Got blocks[{i},{j}].shape[0] == {got}, '
                           'expected {exp}.'.format(i=i, j=j,
                                                    exp=brow_lengths[i],
                                                    got=A.shape[0]))
                    raise ValueError(msg)

                if bcol_lengths[j] == 0:
                    bcol_lengths[j] = A.shape[1]
                elif bcol_lengths[j] != A.shape[1]:
                    msg = ('blocks[:,{j}] has incompatible row dimensions. '
                           'Got blocks[{i},{j}].shape[1] == {got}, '
                           'expected {exp}.'.format(i=i, j=j,
                                                    exp=bcol_lengths[j],
                                                    got=A.shape[1]))
                    raise ValueError(msg)

    nnz = sum(block.nnz for block in blocks[block_mask])
    if dtype is None:
        all_dtypes = [blk.dtype for blk in blocks[block_mask]]
        dtype = upcast(*all_dtypes) if all_dtypes else None

    row_offsets = np.append(0, np.cumsum(brow_lengths))
    col_offsets = np.append(0, np.cumsum(bcol_lengths))

    shape = (row_offsets[-1], col_offsets[-1])

    data = np.empty(nnz, dtype=dtype)
    idx_dtype = get_index_dtype(maxval=max(shape))
    row = np.empty(nnz, dtype=idx_dtype)
    col = np.empty(nnz, dtype=idx_dtype)

    nnz = 0
    ii, jj = np.nonzero(block_mask)
    for i, j in zip(ii, jj):
        B = blocks[i, j]
        idx = slice(nnz, nnz + B.nnz)
        data[idx] = B.data
        row[idx] = B.row + row_offsets[i]
        col[idx] = B.col + col_offsets[j]
        nnz += B.nnz

    return coo_matrix((data, (row, col)), shape=shape).asformat(format)


def block_diag(mats, format=None, dtype=None):
    """
    Build a block diagonal sparse matrix from provided matrices.

    Parameters
    ----------
    mats : sequence of matrices
        Input matrices.
    format : str, optional
        The sparse format of the result (e.g. "csr").  If not given, the matrix
        is returned in "coo" format.
    dtype : dtype specifier, optional
        The data-type of the output matrix.  If not given, the dtype is
        determined from that of `blocks`.

    Returns
    -------
    res : sparse matrix

    Notes
    -----

    .. versionadded:: 0.11.0

    See Also
    --------
    bmat, diags

    Examples
    --------
    >>> from scipy.sparse import coo_matrix, block_diag
    >>> A = coo_matrix([[1, 2], [3, 4]])
    >>> B = coo_matrix([[5], [6]])
    >>> C = coo_matrix([[7]])
    >>> block_diag((A, B, C)).toarray()
    array([[1, 2, 0, 0],
           [3, 4, 0, 0],
           [0, 0, 5, 0],
           [0, 0, 6, 0],
           [0, 0, 0, 7]])

    """
    nmat = len(mats)
    rows = []
    for ia, a in enumerate(mats):
        row = [None]*nmat
        if issparse(a):
            row[ia] = a
        else:
            row[ia] = coo_matrix(a)
        rows.append(row)
    return bmat(rows, format=format, dtype=dtype)


def random(m, n, density=0.01, format='coo', dtype=None,
           random_state=None, data_rvs=None):
    """Generate a sparse matrix of the given shape and density with randomly
    distributed values.

    Parameters
    ----------
    m, n : int
        shape of the matrix
    density : real, optional
        density of the generated matrix: density equal to one means a full
        matrix, density of 0 means a matrix with no non-zero items.
    format : str, optional
        sparse matrix format.
    dtype : dtype, optional
        type of the returned matrix values.
    random_state : {numpy.random.RandomState, int}, optional
        Random number generator or random seed. If not given, the singleton
        numpy.random will be used.  This random state will be used
        for sampling the sparsity structure, but not necessarily for sampling
        the values of the structurally nonzero entries of the matrix.
    data_rvs : callable, optional
        Samples a requested number of random values.
        This function should take a single argument specifying the length
        of the ndarray that it will return.  The structurally nonzero entries
        of the sparse random matrix will be taken from the array sampled
        by this function.  By default, uniform [0, 1) random values will be
        sampled using the same random state as is used for sampling
        the sparsity structure.

    Returns
    -------
    res : sparse matrix

    Notes
    -----
    Only float types are supported for now.

    Examples
    --------
    >>> from scipy.sparse import random
    >>> from scipy import stats

    >>> class CustomRandomState(np.random.RandomState):
    ...     def randint(self, k):
    ...         i = np.random.randint(k)
    ...         return i - i % 2
    >>> np.random.seed(12345)
    >>> rs = CustomRandomState()
    >>> rvs = stats.poisson(25, loc=10).rvs
    >>> S = random(3, 4, density=0.25, random_state=rs, data_rvs=rvs)
    >>> S.A
    array([[ 36.,   0.,  33.,   0.],   # random
           [  0.,   0.,   0.,   0.],
           [  0.,   0.,  36.,   0.]])

    >>> from scipy.sparse import random
    >>> from scipy.stats import rv_continuous
    >>> class CustomDistribution(rv_continuous):
    ...     def _rvs(self, *args, **kwargs):
    ...         return self._random_state.randn(*self._size)
    >>> X = CustomDistribution(seed=2906)
    >>> Y = X()  # get a frozen version of the distribution
    >>> S = random(3, 4, density=0.25, random_state=2906, data_rvs=Y.rvs)
    >>> S.A
    array([[ 0.        ,  0.        ,  0.        ,  0.        ],
           [ 0.13569738,  1.9467163 , -0.81205367,  0.        ],
           [ 0.        ,  0.        ,  0.        ,  0.        ]])

    """
    if density < 0 or density > 1:
        raise ValueError("density expected to be 0 <= density <= 1")
    dtype = np.dtype(dtype)

    mn = m * n

    tp = np.intc
    if mn > np.iinfo(tp).max:
        tp = np.int64

    if mn > np.iinfo(tp).max:
        msg = """\
Trying to generate a random sparse matrix such as the product of dimensions is
greater than %d - this is not supported on this machine
"""
        raise ValueError(msg % np.iinfo(tp).max)

    # Number of non zero values
    k = int(density * m * n)

    if random_state is None:
        random_state = np.random
    elif isinstance(random_state, (int, np.integer)):
        random_state = np.random.RandomState(random_state)

    if data_rvs is None:
        if np.issubdtype(dtype, np.integer):
            randint = get_randint(random_state)

            def data_rvs(n):
                return randint(np.iinfo(dtype).min, np.iinfo(dtype).max,
                               n, dtype=dtype)
        elif np.issubdtype(dtype, np.complexfloating):
            def data_rvs(n):
                return random_state.rand(n) + random_state.rand(n) * 1j
        else:
            data_rvs = random_state.rand

    ind = random_state.choice(mn, size=k, replace=False)

    j = np.floor(ind * 1. / m).astype(tp, copy=False)
    i = (ind - j * m).astype(tp, copy=False)
    vals = data_rvs(k).astype(dtype, copy=False)
    return coo_matrix((vals, (i, j)), shape=(m, n)).asformat(format,
                                                             copy=False)


def rand(m, n, density=0.01, format="coo", dtype=None, random_state=None):
    """Generate a sparse matrix of the given shape and density with uniformly
    distributed values.

    Parameters
    ----------
    m, n : int
        shape of the matrix
    density : real, optional
        density of the generated matrix: density equal to one means a full
        matrix, density of 0 means a matrix with no non-zero items.
    format : str, optional
        sparse matrix format.
    dtype : dtype, optional
        type of the returned matrix values.
    random_state : {numpy.random.RandomState, int}, optional
        Random number generator or random seed. If not given, the singleton
        numpy.random will be used.

    Returns
    -------
    res : sparse matrix

    Notes
    -----
    Only float types are supported for now.

    See Also
    --------
    scipy.sparse.random : Similar function that allows a user-specified random
        data source.

    Examples
    --------
    >>> from scipy.sparse import rand
    >>> matrix = rand(3, 4, density=0.25, format="csr", random_state=42)
    >>> matrix
    <3x4 sparse matrix of type '<class 'numpy.float64'>'
       with 3 stored elements in Compressed Sparse Row format>
    >>> matrix.todense()
    matrix([[0.05641158, 0.        , 0.        , 0.65088847],
            [0.        , 0.        , 0.        , 0.14286682],
            [0.        , 0.        , 0.        , 0.        ]])

    """
    return random(m, n, density, format, dtype, random_state)