stats.py 252 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407
# Copyright 2002 Gary Strangman.  All rights reserved
# Copyright 2002-2016 The SciPy Developers
#
# The original code from Gary Strangman was heavily adapted for
# use in SciPy by Travis Oliphant.  The original code came with the
# following disclaimer:
#
# This software is provided "as-is".  There are no expressed or implied
# warranties of any kind, including, but not limited to, the warranties
# of merchantability and fitness for a given application.  In no event
# shall Gary Strangman be liable for any direct, indirect, incidental,
# special, exemplary or consequential damages (including, but not limited
# to, loss of use, data or profits, or business interruption) however
# caused and on any theory of liability, whether in contract, strict
# liability or tort (including negligence or otherwise) arising in any way
# out of the use of this software, even if advised of the possibility of
# such damage.

"""
A collection of basic statistical functions for Python.  The function
names appear below.

 Some scalar functions defined here are also available in the scipy.special
 package where they work on arbitrary sized arrays.

Disclaimers:  The function list is obviously incomplete and, worse, the
functions are not optimized.  All functions have been tested (some more
so than others), but they are far from bulletproof.  Thus, as with any
free software, no warranty or guarantee is expressed or implied. :-)  A
few extra functions that don't appear in the list below can be found by
interested treasure-hunters.  These functions don't necessarily have
both list and array versions but were deemed useful.

Central Tendency
----------------
.. autosummary::
   :toctree: generated/

    gmean
    hmean
    mode

Moments
-------
.. autosummary::
   :toctree: generated/

    moment
    variation
    skew
    kurtosis
    normaltest

Altered Versions
----------------
.. autosummary::
   :toctree: generated/

    tmean
    tvar
    tstd
    tsem
    describe

Frequency Stats
---------------
.. autosummary::
   :toctree: generated/

    itemfreq
    scoreatpercentile
    percentileofscore
    cumfreq
    relfreq

Variability
-----------
.. autosummary::
   :toctree: generated/

    obrientransform
    sem
    zmap
    zscore
    gstd
    iqr
    median_absolute_deviation

Trimming Functions
------------------
.. autosummary::
   :toctree: generated/

   trimboth
   trim1

Correlation Functions
---------------------
.. autosummary::
   :toctree: generated/

   pearsonr
   fisher_exact
   spearmanr
   pointbiserialr
   kendalltau
   weightedtau
   linregress
   theilslopes
   multiscale_graphcorr

Inferential Stats
-----------------
.. autosummary::
   :toctree: generated/

   ttest_1samp
   ttest_ind
   ttest_ind_from_stats
   ttest_rel
   chisquare
   power_divergence
   ks_2samp
   epps_singleton_2samp
   mannwhitneyu
   ranksums
   wilcoxon
   kruskal
   friedmanchisquare
   brunnermunzel
   combine_pvalues

Statistical Distances
---------------------
.. autosummary::
   :toctree: generated/

   wasserstein_distance
   energy_distance

ANOVA Functions
---------------
.. autosummary::
   :toctree: generated/

   f_oneway

Support Functions
-----------------
.. autosummary::
   :toctree: generated/

   rankdata
   rvs_ratio_uniforms

References
----------
.. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
   Probability and Statistics Tables and Formulae. Chapman & Hall: New
   York. 2000.

"""

from __future__ import division, print_function, absolute_import

import warnings
import sys
import math
if sys.version_info >= (3, 5):
    from math import gcd
else:
    from fractions import gcd
from collections import namedtuple

import numpy as np
from numpy import array, asarray, ma

from scipy._lib.six import callable, string_types
from scipy.spatial.distance import cdist
from scipy.ndimage import measurements
from scipy._lib._version import NumpyVersion
from scipy._lib._util import _lazywhere, check_random_state, MapWrapper
import scipy.special as special
from scipy import linalg
from . import distributions
from . import mstats_basic
from ._stats_mstats_common import (_find_repeats, linregress, theilslopes,
                                   siegelslopes)
from ._stats import (_kendall_dis, _toint64, _weightedrankedtau,
                     _local_correlations)
from ._rvs_sampling import rvs_ratio_uniforms
from ._hypotests import epps_singleton_2samp


__all__ = ['find_repeats', 'gmean', 'hmean', 'mode', 'tmean', 'tvar',
           'tmin', 'tmax', 'tstd', 'tsem', 'moment', 'variation',
           'skew', 'kurtosis', 'describe', 'skewtest', 'kurtosistest',
           'normaltest', 'jarque_bera', 'itemfreq',
           'scoreatpercentile', 'percentileofscore',
           'cumfreq', 'relfreq', 'obrientransform',
           'sem', 'zmap', 'zscore', 'iqr', 'gstd', 'median_absolute_deviation',
           'sigmaclip', 'trimboth', 'trim1', 'trim_mean', 'f_oneway',
           'PearsonRConstantInputWarning', 'PearsonRNearConstantInputWarning',
           'pearsonr', 'fisher_exact', 'spearmanr', 'pointbiserialr',
           'kendalltau', 'weightedtau',
           'multiscale_graphcorr',
           'linregress', 'siegelslopes', 'theilslopes', 'ttest_1samp',
           'ttest_ind', 'ttest_ind_from_stats', 'ttest_rel', 'kstest',
           'chisquare', 'power_divergence', 'ks_2samp', 'mannwhitneyu',
           'tiecorrect', 'ranksums', 'kruskal', 'friedmanchisquare',
           'rankdata', 'rvs_ratio_uniforms',
           'combine_pvalues', 'wasserstein_distance', 'energy_distance',
           'brunnermunzel', 'epps_singleton_2samp']


def _chk_asarray(a, axis):
    if axis is None:
        a = np.ravel(a)
        outaxis = 0
    else:
        a = np.asarray(a)
        outaxis = axis

    if a.ndim == 0:
        a = np.atleast_1d(a)

    return a, outaxis


def _chk2_asarray(a, b, axis):
    if axis is None:
        a = np.ravel(a)
        b = np.ravel(b)
        outaxis = 0
    else:
        a = np.asarray(a)
        b = np.asarray(b)
        outaxis = axis

    if a.ndim == 0:
        a = np.atleast_1d(a)
    if b.ndim == 0:
        b = np.atleast_1d(b)

    return a, b, outaxis


def _contains_nan(a, nan_policy='propagate'):
    policies = ['propagate', 'raise', 'omit']
    if nan_policy not in policies:
        raise ValueError("nan_policy must be one of {%s}" %
                         ', '.join("'%s'" % s for s in policies))
    try:
        # Calling np.sum to avoid creating a huge array into memory
        # e.g. np.isnan(a).any()
        with np.errstate(invalid='ignore'):
            contains_nan = np.isnan(np.sum(a))
    except TypeError:
        # This can happen when attempting to sum things which are not
        # numbers (e.g. as in the function `mode`). Try an alternative method:
        try:
            contains_nan = np.nan in set(a.ravel())
        except TypeError:
            # Don't know what to do. Fall back to omitting nan values and
            # issue a warning.
            contains_nan = False
            nan_policy = 'omit'
            warnings.warn("The input array could not be properly checked for nan "
                          "values. nan values will be ignored.", RuntimeWarning)

    if contains_nan and nan_policy == 'raise':
        raise ValueError("The input contains nan values")

    return (contains_nan, nan_policy)


def gmean(a, axis=0, dtype=None):
    """
    Compute the geometric mean along the specified axis.

    Return the geometric average of the array elements.
    That is:  n-th root of (x1 * x2 * ... * xn)

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    axis : int or None, optional
        Axis along which the geometric mean is computed. Default is 0.
        If None, compute over the whole array `a`.
    dtype : dtype, optional
        Type of the returned array and of the accumulator in which the
        elements are summed. If dtype is not specified, it defaults to the
        dtype of a, unless a has an integer dtype with a precision less than
        that of the default platform integer. In that case, the default
        platform integer is used.

    Returns
    -------
    gmean : ndarray
        See `dtype` parameter above.

    See Also
    --------
    numpy.mean : Arithmetic average
    numpy.average : Weighted average
    hmean : Harmonic mean

    Notes
    -----
    The geometric average is computed over a single dimension of the input
    array, axis=0 by default, or all values in the array if axis=None.
    float64 intermediate and return values are used for integer inputs.

    Use masked arrays to ignore any non-finite values in the input or that
    arise in the calculations such as Not a Number and infinity because masked
    arrays automatically mask any non-finite values.

    Examples
    --------
    >>> from scipy.stats import gmean
    >>> gmean([1, 4])
    2.0
    >>> gmean([1, 2, 3, 4, 5, 6, 7])
    3.3800151591412964

    """
    if not isinstance(a, np.ndarray):
        # if not an ndarray object attempt to convert it
        log_a = np.log(np.array(a, dtype=dtype))
    elif dtype:
        # Must change the default dtype allowing array type
        if isinstance(a, np.ma.MaskedArray):
            log_a = np.log(np.ma.asarray(a, dtype=dtype))
        else:
            log_a = np.log(np.asarray(a, dtype=dtype))
    else:
        log_a = np.log(a)
    return np.exp(log_a.mean(axis=axis))


def hmean(a, axis=0, dtype=None):
    """
    Calculate the harmonic mean along the specified axis.

    That is:  n / (1/x1 + 1/x2 + ... + 1/xn)

    Parameters
    ----------
    a : array_like
        Input array, masked array or object that can be converted to an array.
    axis : int or None, optional
        Axis along which the harmonic mean is computed. Default is 0.
        If None, compute over the whole array `a`.
    dtype : dtype, optional
        Type of the returned array and of the accumulator in which the
        elements are summed. If `dtype` is not specified, it defaults to the
        dtype of `a`, unless `a` has an integer `dtype` with a precision less
        than that of the default platform integer. In that case, the default
        platform integer is used.

    Returns
    -------
    hmean : ndarray
        See `dtype` parameter above.

    See Also
    --------
    numpy.mean : Arithmetic average
    numpy.average : Weighted average
    gmean : Geometric mean

    Notes
    -----
    The harmonic mean is computed over a single dimension of the input
    array, axis=0 by default, or all values in the array if axis=None.
    float64 intermediate and return values are used for integer inputs.

    Use masked arrays to ignore any non-finite values in the input or that
    arise in the calculations such as Not a Number and infinity.

    Examples
    --------
    >>> from scipy.stats import hmean
    >>> hmean([1, 4])
    1.6000000000000001
    >>> hmean([1, 2, 3, 4, 5, 6, 7])
    2.6997245179063363

    """
    if not isinstance(a, np.ndarray):
        a = np.array(a, dtype=dtype)
    if np.all(a >= 0):
        # Harmonic mean only defined if greater than or equal to to zero.
        if isinstance(a, np.ma.MaskedArray):
            size = a.count(axis)
        else:
            if axis is None:
                a = a.ravel()
                size = a.shape[0]
            else:
                size = a.shape[axis]
        with np.errstate(divide='ignore'):
            return size / np.sum(1.0 / a, axis=axis, dtype=dtype)
    else:
        raise ValueError("Harmonic mean only defined if all elements greater "
                         "than or equal to zero")


ModeResult = namedtuple('ModeResult', ('mode', 'count'))


def mode(a, axis=0, nan_policy='propagate'):
    """
    Return an array of the modal (most common) value in the passed array.

    If there is more than one such value, only the smallest is returned.
    The bin-count for the modal bins is also returned.

    Parameters
    ----------
    a : array_like
        n-dimensional array of which to find mode(s).
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over
        the whole array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    mode : ndarray
        Array of modal values.
    count : ndarray
        Array of counts for each mode.

    Examples
    --------
    >>> a = np.array([[6, 8, 3, 0],
    ...               [3, 2, 1, 7],
    ...               [8, 1, 8, 4],
    ...               [5, 3, 0, 5],
    ...               [4, 7, 5, 9]])
    >>> from scipy import stats
    >>> stats.mode(a)
    (array([[3, 1, 0, 0]]), array([[1, 1, 1, 1]]))

    To get mode of whole array, specify ``axis=None``:

    >>> stats.mode(a, axis=None)
    (array([3]), array([3]))

    """
    a, axis = _chk_asarray(a, axis)
    if a.size == 0:
        return ModeResult(np.array([]), np.array([]))

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.mode(a, axis)

    if a.dtype == object and np.nan in set(a.ravel()):
        # Fall back to a slower method since np.unique does not work with NaN
        scores = set(np.ravel(a))  # get ALL unique values
        testshape = list(a.shape)
        testshape[axis] = 1
        oldmostfreq = np.zeros(testshape, dtype=a.dtype)
        oldcounts = np.zeros(testshape, dtype=int)

        for score in scores:
            template = (a == score)
            counts = np.expand_dims(np.sum(template, axis), axis)
            mostfrequent = np.where(counts > oldcounts, score, oldmostfreq)
            oldcounts = np.maximum(counts, oldcounts)
            oldmostfreq = mostfrequent

        return ModeResult(mostfrequent, oldcounts)

    def _mode1D(a):
        vals, cnts = np.unique(a, return_counts=True)
        return vals[cnts.argmax()], cnts.max()

    # np.apply_along_axis will convert the _mode1D tuples to a numpy array, casting types in the process
    # This recreates the results without that issue
    # View of a, rotated so the requested axis is last
    in_dims = list(range(a.ndim))
    a_view = np.transpose(a, in_dims[:axis] + in_dims[axis+1:] + [axis])

    inds = np.ndindex(a_view.shape[:-1])
    modes = np.empty(a_view.shape[:-1], dtype=a.dtype)
    counts = np.zeros(a_view.shape[:-1], dtype=np.int)
    for ind in inds:
        modes[ind], counts[ind] = _mode1D(a_view[ind])
    newshape = list(a.shape)
    newshape[axis] = 1
    return ModeResult(modes.reshape(newshape), counts.reshape(newshape))


def _mask_to_limits(a, limits, inclusive):
    """Mask an array for values outside of given limits.

    This is primarily a utility function.

    Parameters
    ----------
    a : array
    limits : (float or None, float or None)
        A tuple consisting of the (lower limit, upper limit).  Values in the
        input array less than the lower limit or greater than the upper limit
        will be masked out. None implies no limit.
    inclusive : (bool, bool)
        A tuple consisting of the (lower flag, upper flag).  These flags
        determine whether values exactly equal to lower or upper are allowed.

    Returns
    -------
    A MaskedArray.

    Raises
    ------
    A ValueError if there are no values within the given limits.

    """
    lower_limit, upper_limit = limits
    lower_include, upper_include = inclusive
    am = ma.MaskedArray(a)
    if lower_limit is not None:
        if lower_include:
            am = ma.masked_less(am, lower_limit)
        else:
            am = ma.masked_less_equal(am, lower_limit)

    if upper_limit is not None:
        if upper_include:
            am = ma.masked_greater(am, upper_limit)
        else:
            am = ma.masked_greater_equal(am, upper_limit)

    if am.count() == 0:
        raise ValueError("No array values within given limits")

    return am


def tmean(a, limits=None, inclusive=(True, True), axis=None):
    """
    Compute the trimmed mean.

    This function finds the arithmetic mean of given values, ignoring values
    outside the given `limits`.

    Parameters
    ----------
    a : array_like
        Array of values.
    limits : None or (lower limit, upper limit), optional
        Values in the input array less than the lower limit or greater than the
        upper limit will be ignored.  When limits is None (default), then all
        values are used.  Either of the limit values in the tuple can also be
        None representing a half-open interval.
    inclusive : (bool, bool), optional
        A tuple consisting of the (lower flag, upper flag).  These flags
        determine whether values exactly equal to the lower or upper limits
        are included.  The default value is (True, True).
    axis : int or None, optional
        Axis along which to compute test. Default is None.

    Returns
    -------
    tmean : float
        Trimmed mean.

    See Also
    --------
    trim_mean : Returns mean after trimming a proportion from both tails.

    Examples
    --------
    >>> from scipy import stats
    >>> x = np.arange(20)
    >>> stats.tmean(x)
    9.5
    >>> stats.tmean(x, (3,17))
    10.0

    """
    a = asarray(a)
    if limits is None:
        return np.mean(a, None)

    am = _mask_to_limits(a.ravel(), limits, inclusive)
    return am.mean(axis=axis)


def tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
    """
    Compute the trimmed variance.

    This function computes the sample variance of an array of values,
    while ignoring values which are outside of given `limits`.

    Parameters
    ----------
    a : array_like
        Array of values.
    limits : None or (lower limit, upper limit), optional
        Values in the input array less than the lower limit or greater than the
        upper limit will be ignored. When limits is None, then all values are
        used. Either of the limit values in the tuple can also be None
        representing a half-open interval.  The default value is None.
    inclusive : (bool, bool), optional
        A tuple consisting of the (lower flag, upper flag).  These flags
        determine whether values exactly equal to the lower or upper limits
        are included.  The default value is (True, True).
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over the
        whole array `a`.
    ddof : int, optional
        Delta degrees of freedom.  Default is 1.

    Returns
    -------
    tvar : float
        Trimmed variance.

    Notes
    -----
    `tvar` computes the unbiased sample variance, i.e. it uses a correction
    factor ``n / (n - 1)``.

    Examples
    --------
    >>> from scipy import stats
    >>> x = np.arange(20)
    >>> stats.tvar(x)
    35.0
    >>> stats.tvar(x, (3,17))
    20.0

    """
    a = asarray(a)
    a = a.astype(float)
    if limits is None:
        return a.var(ddof=ddof, axis=axis)
    am = _mask_to_limits(a, limits, inclusive)
    amnan = am.filled(fill_value=np.nan)
    return np.nanvar(amnan, ddof=ddof, axis=axis)


def tmin(a, lowerlimit=None, axis=0, inclusive=True, nan_policy='propagate'):
    """
    Compute the trimmed minimum.

    This function finds the miminum value of an array `a` along the
    specified axis, but only considering values greater than a specified
    lower limit.

    Parameters
    ----------
    a : array_like
        Array of values.
    lowerlimit : None or float, optional
        Values in the input array less than the given limit will be ignored.
        When lowerlimit is None, then all values are used. The default value
        is None.
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over the
        whole array `a`.
    inclusive : {True, False}, optional
        This flag determines whether values exactly equal to the lower limit
        are included.  The default value is True.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    tmin : float, int or ndarray
        Trimmed minimum.

    Examples
    --------
    >>> from scipy import stats
    >>> x = np.arange(20)
    >>> stats.tmin(x)
    0

    >>> stats.tmin(x, 13)
    13

    >>> stats.tmin(x, 13, inclusive=False)
    14

    """
    a, axis = _chk_asarray(a, axis)
    am = _mask_to_limits(a, (lowerlimit, None), (inclusive, False))

    contains_nan, nan_policy = _contains_nan(am, nan_policy)

    if contains_nan and nan_policy == 'omit':
        am = ma.masked_invalid(am)

    res = ma.minimum.reduce(am, axis).data
    if res.ndim == 0:
        return res[()]
    return res


def tmax(a, upperlimit=None, axis=0, inclusive=True, nan_policy='propagate'):
    """
    Compute the trimmed maximum.

    This function computes the maximum value of an array along a given axis,
    while ignoring values larger than a specified upper limit.

    Parameters
    ----------
    a : array_like
        Array of values.
    upperlimit : None or float, optional
        Values in the input array greater than the given limit will be ignored.
        When upperlimit is None, then all values are used. The default value
        is None.
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over the
        whole array `a`.
    inclusive : {True, False}, optional
        This flag determines whether values exactly equal to the upper limit
        are included.  The default value is True.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    tmax : float, int or ndarray
        Trimmed maximum.

    Examples
    --------
    >>> from scipy import stats
    >>> x = np.arange(20)
    >>> stats.tmax(x)
    19

    >>> stats.tmax(x, 13)
    13

    >>> stats.tmax(x, 13, inclusive=False)
    12

    """
    a, axis = _chk_asarray(a, axis)
    am = _mask_to_limits(a, (None, upperlimit), (False, inclusive))

    contains_nan, nan_policy = _contains_nan(am, nan_policy)

    if contains_nan and nan_policy == 'omit':
        am = ma.masked_invalid(am)

    res = ma.maximum.reduce(am, axis).data
    if res.ndim == 0:
        return res[()]
    return res


def tstd(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
    """
    Compute the trimmed sample standard deviation.

    This function finds the sample standard deviation of given values,
    ignoring values outside the given `limits`.

    Parameters
    ----------
    a : array_like
        Array of values.
    limits : None or (lower limit, upper limit), optional
        Values in the input array less than the lower limit or greater than the
        upper limit will be ignored. When limits is None, then all values are
        used. Either of the limit values in the tuple can also be None
        representing a half-open interval.  The default value is None.
    inclusive : (bool, bool), optional
        A tuple consisting of the (lower flag, upper flag).  These flags
        determine whether values exactly equal to the lower or upper limits
        are included.  The default value is (True, True).
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over the
        whole array `a`.
    ddof : int, optional
        Delta degrees of freedom.  Default is 1.

    Returns
    -------
    tstd : float
        Trimmed sample standard deviation.

    Notes
    -----
    `tstd` computes the unbiased sample standard deviation, i.e. it uses a
    correction factor ``n / (n - 1)``.

    Examples
    --------
    >>> from scipy import stats
    >>> x = np.arange(20)
    >>> stats.tstd(x)
    5.9160797830996161
    >>> stats.tstd(x, (3,17))
    4.4721359549995796

    """
    return np.sqrt(tvar(a, limits, inclusive, axis, ddof))


def tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
    """
    Compute the trimmed standard error of the mean.

    This function finds the standard error of the mean for given
    values, ignoring values outside the given `limits`.

    Parameters
    ----------
    a : array_like
        Array of values.
    limits : None or (lower limit, upper limit), optional
        Values in the input array less than the lower limit or greater than the
        upper limit will be ignored. When limits is None, then all values are
        used. Either of the limit values in the tuple can also be None
        representing a half-open interval.  The default value is None.
    inclusive : (bool, bool), optional
        A tuple consisting of the (lower flag, upper flag).  These flags
        determine whether values exactly equal to the lower or upper limits
        are included.  The default value is (True, True).
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over the
        whole array `a`.
    ddof : int, optional
        Delta degrees of freedom.  Default is 1.

    Returns
    -------
    tsem : float
        Trimmed standard error of the mean.

    Notes
    -----
    `tsem` uses unbiased sample standard deviation, i.e. it uses a
    correction factor ``n / (n - 1)``.

    Examples
    --------
    >>> from scipy import stats
    >>> x = np.arange(20)
    >>> stats.tsem(x)
    1.3228756555322954
    >>> stats.tsem(x, (3,17))
    1.1547005383792515

    """
    a = np.asarray(a).ravel()
    if limits is None:
        return a.std(ddof=ddof) / np.sqrt(a.size)

    am = _mask_to_limits(a, limits, inclusive)
    sd = np.sqrt(np.ma.var(am, ddof=ddof, axis=axis))
    return sd / np.sqrt(am.count())


#####################################
#              MOMENTS              #
#####################################

def moment(a, moment=1, axis=0, nan_policy='propagate'):
    r"""
    Calculate the nth moment about the mean for a sample.

    A moment is a specific quantitative measure of the shape of a set of
    points. It is often used to calculate coefficients of skewness and kurtosis
    due to its close relationship with them.

    Parameters
    ----------
    a : array_like
       Input array.
    moment : int or array_like of ints, optional
       Order of central moment that is returned. Default is 1.
    axis : int or None, optional
       Axis along which the central moment is computed. Default is 0.
       If None, compute over the whole array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    n-th central moment : ndarray or float
       The appropriate moment along the given axis or over all values if axis
       is None. The denominator for the moment calculation is the number of
       observations, no degrees of freedom correction is done.

    See Also
    --------
    kurtosis, skew, describe

    Notes
    -----
    The k-th central moment of a data sample is:

    .. math::

        m_k = \frac{1}{n} \sum_{i = 1}^n (x_i - \bar{x})^k

    Where n is the number of samples and x-bar is the mean. This function uses
    exponentiation by squares [1]_ for efficiency.

    References
    ----------
    .. [1] https://eli.thegreenplace.net/2009/03/21/efficient-integer-exponentiation-algorithms

    Examples
    --------
    >>> from scipy.stats import moment
    >>> moment([1, 2, 3, 4, 5], moment=1)
    0.0
    >>> moment([1, 2, 3, 4, 5], moment=2)
    2.0

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.moment(a, moment, axis)

    if a.size == 0:
        # empty array, return nan(s) with shape matching `moment`
        if np.isscalar(moment):
            return np.nan
        else:
            return np.full(np.asarray(moment).shape, np.nan, dtype=np.float64)

    # for array_like moment input, return a value for each.
    if not np.isscalar(moment):
        mmnt = [_moment(a, i, axis) for i in moment]
        return np.array(mmnt)
    else:
        return _moment(a, moment, axis)


def _moment(a, moment, axis):
    if np.abs(moment - np.round(moment)) > 0:
        raise ValueError("All moment parameters must be integers")

    if moment == 0:
        # When moment equals 0, the result is 1, by definition.
        shape = list(a.shape)
        del shape[axis]
        if shape:
            # return an actual array of the appropriate shape
            return np.ones(shape, dtype=float)
        else:
            # the input was 1D, so return a scalar instead of a rank-0 array
            return 1.0

    elif moment == 1:
        # By definition the first moment about the mean is 0.
        shape = list(a.shape)
        del shape[axis]
        if shape:
            # return an actual array of the appropriate shape
            return np.zeros(shape, dtype=float)
        else:
            # the input was 1D, so return a scalar instead of a rank-0 array
            return np.float64(0.0)
    else:
        # Exponentiation by squares: form exponent sequence
        n_list = [moment]
        current_n = moment
        while current_n > 2:
            if current_n % 2:
                current_n = (current_n - 1) / 2
            else:
                current_n /= 2
            n_list.append(current_n)

        # Starting point for exponentiation by squares
        a_zero_mean = a - np.expand_dims(np.mean(a, axis), axis)
        if n_list[-1] == 1:
            s = a_zero_mean.copy()
        else:
            s = a_zero_mean**2

        # Perform multiplications
        for n in n_list[-2::-1]:
            s = s**2
            if n % 2:
                s *= a_zero_mean
        return np.mean(s, axis)


def variation(a, axis=0, nan_policy='propagate'):
    """
    Compute the coefficient of variation.
    
    The coefficient of variation is the ratio of the biased standard
    deviation to the mean.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int or None, optional
        Axis along which to calculate the coefficient of variation. Default
        is 0. If None, compute over the whole array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    variation : ndarray
        The calculated variation along the requested axis.

    References
    ----------
    .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
       Probability and Statistics Tables and Formulae. Chapman & Hall: New
       York. 2000.

    Examples
    --------
    >>> from scipy.stats import variation
    >>> variation([1, 2, 3, 4, 5])
    0.47140452079103173

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.variation(a, axis)

    return a.std(axis) / a.mean(axis)


def skew(a, axis=0, bias=True, nan_policy='propagate'):
    r"""
    Compute the sample skewness of a data set.

    For normally distributed data, the skewness should be about zero. For
    unimodal continuous distributions, a skewness value greater than zero means
    that there is more weight in the right tail of the distribution. The
    function `skewtest` can be used to determine if the skewness value
    is close enough to zero, statistically speaking.

    Parameters
    ----------
    a : ndarray
        Input array.
    axis : int or None, optional
        Axis along which skewness is calculated. Default is 0.
        If None, compute over the whole array `a`.
    bias : bool, optional
        If False, then the calculations are corrected for statistical bias.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    skewness : ndarray
        The skewness of values along an axis, returning 0 where all values are
        equal.

    Notes
    -----
    The sample skewness is computed as the Fisher-Pearson coefficient
    of skewness, i.e.

    .. math:: 

        g_1=\frac{m_3}{m_2^{3/2}}

    where

    .. math:: 

        m_i=\frac{1}{N}\sum_{n=1}^N(x[n]-\bar{x})^i

    is the biased sample :math:`i\texttt{th}` central moment, and :math:`\bar{x}` is
    the sample mean.  If ``bias`` is False, the calculations are
    corrected for bias and the value computed is the adjusted
    Fisher-Pearson standardized moment coefficient, i.e.

    .. math:: 

        G_1=\frac{k_3}{k_2^{3/2}}=
            \frac{\sqrt{N(N-1)}}{N-2}\frac{m_3}{m_2^{3/2}}.

    References
    ----------
    .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
       Probability and Statistics Tables and Formulae. Chapman & Hall: New
       York. 2000.
       Section 2.2.24.1

    Examples
    --------
    >>> from scipy.stats import skew
    >>> skew([1, 2, 3, 4, 5])
    0.0
    >>> skew([2, 8, 0, 4, 1, 9, 9, 0])
    0.2650554122698573

    """
    a, axis = _chk_asarray(a, axis)
    n = a.shape[axis]

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.skew(a, axis, bias)

    m2 = moment(a, 2, axis)
    m3 = moment(a, 3, axis)
    zero = (m2 == 0)
    vals = _lazywhere(~zero, (m2, m3),
                      lambda m2, m3: m3 / m2**1.5,
                      0.)
    if not bias:
        can_correct = (n > 2) & (m2 > 0)
        if can_correct.any():
            m2 = np.extract(can_correct, m2)
            m3 = np.extract(can_correct, m3)
            nval = np.sqrt((n - 1.0) * n) / (n - 2.0) * m3 / m2**1.5
            np.place(vals, can_correct, nval)

    if vals.ndim == 0:
        return vals.item()

    return vals


def kurtosis(a, axis=0, fisher=True, bias=True, nan_policy='propagate'):
    """
    Compute the kurtosis (Fisher or Pearson) of a dataset.

    Kurtosis is the fourth central moment divided by the square of the
    variance. If Fisher's definition is used, then 3.0 is subtracted from
    the result to give 0.0 for a normal distribution.

    If bias is False then the kurtosis is calculated using k statistics to
    eliminate bias coming from biased moment estimators

    Use `kurtosistest` to see if result is close enough to normal.

    Parameters
    ----------
    a : array
        Data for which the kurtosis is calculated.
    axis : int or None, optional
        Axis along which the kurtosis is calculated. Default is 0.
        If None, compute over the whole array `a`.
    fisher : bool, optional
        If True, Fisher's definition is used (normal ==> 0.0). If False,
        Pearson's definition is used (normal ==> 3.0).
    bias : bool, optional
        If False, then the calculations are corrected for statistical bias.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    kurtosis : array
        The kurtosis of values along an axis. If all values are equal,
        return -3 for Fisher's definition and 0 for Pearson's definition.

    References
    ----------
    .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
       Probability and Statistics Tables and Formulae. Chapman & Hall: New
       York. 2000.

    Examples
    --------
    In Fisher's definiton, the kurtosis of the normal distribution is zero.
    In the following example, the kurtosis is close to zero, because it was
    calculated from the dataset, not from the continuous distribution.

    >>> from scipy.stats import norm, kurtosis
    >>> data = norm.rvs(size=1000, random_state=3)
    >>> kurtosis(data)
    -0.06928694200380558

    The distribution with a higher kurtosis has a heavier tail.
    The zero valued kurtosis of the normal distribution in Fisher's definition
    can serve as a reference point.

    >>> import matplotlib.pyplot as plt
    >>> import scipy.stats as stats
    >>> from scipy.stats import kurtosis

    >>> x = np.linspace(-5, 5, 100)
    >>> ax = plt.subplot()
    >>> distnames = ['laplace', 'norm', 'uniform']

    >>> for distname in distnames:
    ...     if distname == 'uniform':
    ...         dist = getattr(stats, distname)(loc=-2, scale=4)
    ...     else:
    ...         dist = getattr(stats, distname)
    ...     data = dist.rvs(size=1000)
    ...     kur = kurtosis(data, fisher=True)
    ...     y = dist.pdf(x)
    ...     ax.plot(x, y, label="{}, {}".format(distname, round(kur, 3)))
    ...     ax.legend()

    The Laplace distribution has a heavier tail than the normal distribution.
    The uniform distribution (which has negative kurtosis) has the thinnest
    tail.

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.kurtosis(a, axis, fisher, bias)

    n = a.shape[axis]
    m2 = moment(a, 2, axis)
    m4 = moment(a, 4, axis)
    zero = (m2 == 0)
    olderr = np.seterr(all='ignore')
    try:
        vals = np.where(zero, 0, m4 / m2**2.0)
    finally:
        np.seterr(**olderr)

    if not bias:
        can_correct = (n > 3) & (m2 > 0)
        if can_correct.any():
            m2 = np.extract(can_correct, m2)
            m4 = np.extract(can_correct, m4)
            nval = 1.0/(n-2)/(n-3) * ((n**2-1.0)*m4/m2**2.0 - 3*(n-1)**2.0)
            np.place(vals, can_correct, nval + 3.0)

    if vals.ndim == 0:
        vals = vals.item()  # array scalar

    return vals - 3 if fisher else vals


DescribeResult = namedtuple('DescribeResult',
                            ('nobs', 'minmax', 'mean', 'variance', 'skewness',
                             'kurtosis'))


def describe(a, axis=0, ddof=1, bias=True, nan_policy='propagate'):
    """
    Compute several descriptive statistics of the passed array.

    Parameters
    ----------
    a : array_like
       Input data.
    axis : int or None, optional
       Axis along which statistics are calculated. Default is 0.
       If None, compute over the whole array `a`.
    ddof : int, optional
        Delta degrees of freedom (only for variance).  Default is 1.
    bias : bool, optional
        If False, then the skewness and kurtosis calculations are corrected for
        statistical bias.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    nobs : int or ndarray of ints
       Number of observations (length of data along `axis`).
       When 'omit' is chosen as nan_policy, each column is counted separately.
    minmax: tuple of ndarrays or floats
       Minimum and maximum value of data array.
    mean : ndarray or float
       Arithmetic mean of data along axis.
    variance : ndarray or float
       Unbiased variance of the data along axis, denominator is number of
       observations minus one.
    skewness : ndarray or float
       Skewness, based on moment calculations with denominator equal to
       the number of observations, i.e. no degrees of freedom correction.
    kurtosis : ndarray or float
       Kurtosis (Fisher).  The kurtosis is normalized so that it is
       zero for the normal distribution.  No degrees of freedom are used.

    See Also
    --------
    skew, kurtosis

    Examples
    --------
    >>> from scipy import stats
    >>> a = np.arange(10)
    >>> stats.describe(a)
    DescribeResult(nobs=10, minmax=(0, 9), mean=4.5, variance=9.166666666666666,
                   skewness=0.0, kurtosis=-1.2242424242424244)
    >>> b = [[1, 2], [3, 4]]
    >>> stats.describe(b)
    DescribeResult(nobs=2, minmax=(array([1, 2]), array([3, 4])),
                   mean=array([2., 3.]), variance=array([2., 2.]),
                   skewness=array([0., 0.]), kurtosis=array([-2., -2.]))

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.describe(a, axis, ddof, bias)

    if a.size == 0:
        raise ValueError("The input must not be empty.")
    n = a.shape[axis]
    mm = (np.min(a, axis=axis), np.max(a, axis=axis))
    m = np.mean(a, axis=axis)
    v = np.var(a, axis=axis, ddof=ddof)
    sk = skew(a, axis, bias=bias)
    kurt = kurtosis(a, axis, bias=bias)

    return DescribeResult(n, mm, m, v, sk, kurt)

#####################################
#         NORMALITY TESTS           #
#####################################


SkewtestResult = namedtuple('SkewtestResult', ('statistic', 'pvalue'))


def skewtest(a, axis=0, nan_policy='propagate'):
    """
    Test whether the skew is different from the normal distribution.

    This function tests the null hypothesis that the skewness of
    the population that the sample was drawn from is the same
    as that of a corresponding normal distribution.

    Parameters
    ----------
    a : array
        The data to be tested.
    axis : int or None, optional
       Axis along which statistics are calculated. Default is 0.
       If None, compute over the whole array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    statistic : float
        The computed z-score for this test.
    pvalue : float
        Two-sided p-value for the hypothesis test.

    Notes
    -----
    The sample size must be at least 8.

    References
    ----------
    .. [1] R. B. D'Agostino, A. J. Belanger and R. B. D'Agostino Jr.,
            "A suggestion for using powerful and informative tests of
            normality", American Statistician 44, pp. 316-321, 1990.

    Examples
    --------
    >>> from scipy.stats import skewtest
    >>> skewtest([1, 2, 3, 4, 5, 6, 7, 8])
    SkewtestResult(statistic=1.0108048609177787, pvalue=0.3121098361421897)
    >>> skewtest([2, 8, 0, 4, 1, 9, 9, 0])
    SkewtestResult(statistic=0.44626385374196975, pvalue=0.6554066631275459)
    >>> skewtest([1, 2, 3, 4, 5, 6, 7, 8000])
    SkewtestResult(statistic=3.571773510360407, pvalue=0.0003545719905823133)
    >>> skewtest([100, 100, 100, 100, 100, 100, 100, 101])
    SkewtestResult(statistic=3.5717766638478072, pvalue=0.000354567720281634)

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.skewtest(a, axis)

    if axis is None:
        a = np.ravel(a)
        axis = 0
    b2 = skew(a, axis)
    n = a.shape[axis]
    if n < 8:
        raise ValueError(
            "skewtest is not valid with less than 8 samples; %i samples"
            " were given." % int(n))
    y = b2 * math.sqrt(((n + 1) * (n + 3)) / (6.0 * (n - 2)))
    beta2 = (3.0 * (n**2 + 27*n - 70) * (n+1) * (n+3) /
             ((n-2.0) * (n+5) * (n+7) * (n+9)))
    W2 = -1 + math.sqrt(2 * (beta2 - 1))
    delta = 1 / math.sqrt(0.5 * math.log(W2))
    alpha = math.sqrt(2.0 / (W2 - 1))
    y = np.where(y == 0, 1, y)
    Z = delta * np.log(y / alpha + np.sqrt((y / alpha)**2 + 1))

    return SkewtestResult(Z, 2 * distributions.norm.sf(np.abs(Z)))


KurtosistestResult = namedtuple('KurtosistestResult', ('statistic', 'pvalue'))


def kurtosistest(a, axis=0, nan_policy='propagate'):
    """
    Test whether a dataset has normal kurtosis.

    This function tests the null hypothesis that the kurtosis
    of the population from which the sample was drawn is that
    of the normal distribution: ``kurtosis = 3(n-1)/(n+1)``.

    Parameters
    ----------
    a : array
        Array of the sample data.
    axis : int or None, optional
       Axis along which to compute test. Default is 0. If None,
       compute over the whole array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    statistic : float
        The computed z-score for this test.
    pvalue : float
        The two-sided p-value for the hypothesis test.

    Notes
    -----
    Valid only for n>20. This function uses the method described in [1]_.

    References
    ----------
    .. [1] see e.g. F. J. Anscombe, W. J. Glynn, "Distribution of the kurtosis
       statistic b2 for normal samples", Biometrika, vol. 70, pp. 227-234, 1983.

    Examples
    --------
    >>> from scipy.stats import kurtosistest
    >>> kurtosistest(list(range(20)))
    KurtosistestResult(statistic=-1.7058104152122062, pvalue=0.08804338332528348)

    >>> np.random.seed(28041990)
    >>> s = np.random.normal(0, 1, 1000)
    >>> kurtosistest(s)
    KurtosistestResult(statistic=1.2317590987707365, pvalue=0.21803908613450895)

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.kurtosistest(a, axis)

    n = a.shape[axis]
    if n < 5:
        raise ValueError(
            "kurtosistest requires at least 5 observations; %i observations"
            " were given." % int(n))
    if n < 20:
        warnings.warn("kurtosistest only valid for n>=20 ... continuing "
                      "anyway, n=%i" % int(n))
    b2 = kurtosis(a, axis, fisher=False)

    E = 3.0*(n-1) / (n+1)
    varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5))  # [1]_ Eq. 1
    x = (b2-E) / np.sqrt(varb2)  # [1]_ Eq. 4
    # [1]_ Eq. 2:
    sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) /
                                                        (n*(n-2)*(n-3)))
    # [1]_ Eq. 3:
    A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
    term1 = 1 - 2/(9.0*A)
    denom = 1 + x*np.sqrt(2/(A-4.0))
    term2 = np.sign(denom) * np.where(denom == 0.0, np.nan,
                                      np.power((1-2.0/A)/np.abs(denom), 1/3.0))
    if np.any(denom == 0):
        msg = "Test statistic not defined in some cases due to division by " \
              "zero. Return nan in that case..."
        warnings.warn(msg, RuntimeWarning)

    Z = (term1 - term2) / np.sqrt(2/(9.0*A))  # [1]_ Eq. 5
    if Z.ndim == 0:
        Z = Z[()]

    # zprob uses upper tail, so Z needs to be positive
    return KurtosistestResult(Z, 2 * distributions.norm.sf(np.abs(Z)))


NormaltestResult = namedtuple('NormaltestResult', ('statistic', 'pvalue'))


def normaltest(a, axis=0, nan_policy='propagate'):
    """
    Test whether a sample differs from a normal distribution.

    This function tests the null hypothesis that a sample comes
    from a normal distribution.  It is based on D'Agostino and
    Pearson's [1]_, [2]_ test that combines skew and kurtosis to
    produce an omnibus test of normality.

    Parameters
    ----------
    a : array_like
        The array containing the sample to be tested.
    axis : int or None, optional
        Axis along which to compute test. Default is 0. If None,
        compute over the whole array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    statistic : float or array
        ``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and
        ``k`` is the z-score returned by `kurtosistest`.
    pvalue : float or array
       A 2-sided chi squared probability for the hypothesis test.

    References
    ----------
    .. [1] D'Agostino, R. B. (1971), "An omnibus test of normality for
           moderate and large sample size", Biometrika, 58, 341-348

    .. [2] D'Agostino, R. and Pearson, E. S. (1973), "Tests for departure from
           normality", Biometrika, 60, 613-622

    Examples
    --------
    >>> from scipy import stats
    >>> pts = 1000
    >>> np.random.seed(28041990)
    >>> a = np.random.normal(0, 1, size=pts)
    >>> b = np.random.normal(2, 1, size=pts)
    >>> x = np.concatenate((a, b))
    >>> k2, p = stats.normaltest(x)
    >>> alpha = 1e-3
    >>> print("p = {:g}".format(p))
    p = 3.27207e-11
    >>> if p < alpha:  # null hypothesis: x comes from a normal distribution
    ...     print("The null hypothesis can be rejected")
    ... else:
    ...     print("The null hypothesis cannot be rejected")
    The null hypothesis can be rejected

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.normaltest(a, axis)

    s, _ = skewtest(a, axis)
    k, _ = kurtosistest(a, axis)
    k2 = s*s + k*k

    return NormaltestResult(k2, distributions.chi2.sf(k2, 2))


def jarque_bera(x):
    """
    Perform the Jarque-Bera goodness of fit test on sample data.

    The Jarque-Bera test tests whether the sample data has the skewness and
    kurtosis matching a normal distribution.

    Note that this test only works for a large enough number of data samples
    (>2000) as the test statistic asymptotically has a Chi-squared distribution
    with 2 degrees of freedom.

    Parameters
    ----------
    x : array_like
        Observations of a random variable.

    Returns
    -------
    jb_value : float
        The test statistic.
    p : float
        The p-value for the hypothesis test.

    References
    ----------
    .. [1] Jarque, C. and Bera, A. (1980) "Efficient tests for normality,
           homoscedasticity and serial independence of regression residuals",
           6 Econometric Letters 255-259.

    Examples
    --------
    >>> from scipy import stats
    >>> np.random.seed(987654321)
    >>> x = np.random.normal(0, 1, 100000)
    >>> y = np.random.rayleigh(1, 100000)
    >>> stats.jarque_bera(x)
    (4.7165707989581342, 0.09458225503041906)
    >>> stats.jarque_bera(y)
    (6713.7098548143422, 0.0)

    """
    x = np.asarray(x)
    n = x.size
    if n == 0:
        raise ValueError('At least one observation is required.')

    mu = x.mean()
    diffx = x - mu
    skewness = (1 / n * np.sum(diffx**3)) / (1 / n * np.sum(diffx**2))**(3 / 2.)
    kurtosis = (1 / n * np.sum(diffx**4)) / (1 / n * np.sum(diffx**2))**2
    jb_value = n / 6 * (skewness**2 + (kurtosis - 3)**2 / 4)
    p = 1 - distributions.chi2.cdf(jb_value, 2)

    return jb_value, p


#####################################
#        FREQUENCY FUNCTIONS        #
#####################################

@np.deprecate(message="`itemfreq` is deprecated and will be removed in a "
              "future version. Use instead `np.unique(..., return_counts=True)`")
def itemfreq(a):
    """
    Return a 2-D array of item frequencies.

    Parameters
    ----------
    a : (N,) array_like
        Input array.

    Returns
    -------
    itemfreq : (K, 2) ndarray
        A 2-D frequency table.  Column 1 contains sorted, unique values from
        `a`, column 2 contains their respective counts.

    Examples
    --------
    >>> from scipy import stats
    >>> a = np.array([1, 1, 5, 0, 1, 2, 2, 0, 1, 4])
    >>> stats.itemfreq(a)
    array([[ 0.,  2.],
           [ 1.,  4.],
           [ 2.,  2.],
           [ 4.,  1.],
           [ 5.,  1.]])
    >>> np.bincount(a)
    array([2, 4, 2, 0, 1, 1])

    >>> stats.itemfreq(a/10.)
    array([[ 0. ,  2. ],
           [ 0.1,  4. ],
           [ 0.2,  2. ],
           [ 0.4,  1. ],
           [ 0.5,  1. ]])

    """
    items, inv = np.unique(a, return_inverse=True)
    freq = np.bincount(inv)
    return np.array([items, freq]).T


def scoreatpercentile(a, per, limit=(), interpolation_method='fraction',
                      axis=None):
    """
    Calculate the score at a given percentile of the input sequence.

    For example, the score at `per=50` is the median. If the desired quantile
    lies between two data points, we interpolate between them, according to
    the value of `interpolation`. If the parameter `limit` is provided, it
    should be a tuple (lower, upper) of two values.

    Parameters
    ----------
    a : array_like
        A 1-D array of values from which to extract score.
    per : array_like
        Percentile(s) at which to extract score.  Values should be in range
        [0,100].
    limit : tuple, optional
        Tuple of two scalars, the lower and upper limits within which to
        compute the percentile. Values of `a` outside
        this (closed) interval will be ignored.
    interpolation_method : {'fraction', 'lower', 'higher'}, optional
        Specifies the interpolation method to use,
        when the desired quantile lies between two data points `i` and `j`
        The following options are available (default is 'fraction'):

          * 'fraction': ``i + (j - i) * fraction`` where ``fraction`` is the
            fractional part of the index surrounded by ``i`` and ``j``
          * 'lower': ``i``
          * 'higher': ``j``

    axis : int, optional
        Axis along which the percentiles are computed. Default is None. If
        None, compute over the whole array `a`.

    Returns
    -------
    score : float or ndarray
        Score at percentile(s).

    See Also
    --------
    percentileofscore, numpy.percentile

    Notes
    -----
    This function will become obsolete in the future.
    For NumPy 1.9 and higher, `numpy.percentile` provides all the functionality
    that `scoreatpercentile` provides.  And it's significantly faster.
    Therefore it's recommended to use `numpy.percentile` for users that have
    numpy >= 1.9.

    Examples
    --------
    >>> from scipy import stats
    >>> a = np.arange(100)
    >>> stats.scoreatpercentile(a, 50)
    49.5

    """
    # adapted from NumPy's percentile function.  When we require numpy >= 1.8,
    # the implementation of this function can be replaced by np.percentile.
    a = np.asarray(a)
    if a.size == 0:
        # empty array, return nan(s) with shape matching `per`
        if np.isscalar(per):
            return np.nan
        else:
            return np.full(np.asarray(per).shape, np.nan, dtype=np.float64)

    if limit:
        a = a[(limit[0] <= a) & (a <= limit[1])]

    sorted_ = np.sort(a, axis=axis)
    if axis is None:
        axis = 0

    return _compute_qth_percentile(sorted_, per, interpolation_method, axis)


# handle sequence of per's without calling sort multiple times
def _compute_qth_percentile(sorted_, per, interpolation_method, axis):
    if not np.isscalar(per):
        score = [_compute_qth_percentile(sorted_, i,
                                         interpolation_method, axis)
                 for i in per]
        return np.array(score)

    if not (0 <= per <= 100):
        raise ValueError("percentile must be in the range [0, 100]")

    indexer = [slice(None)] * sorted_.ndim
    idx = per / 100. * (sorted_.shape[axis] - 1)

    if int(idx) != idx:
        # round fractional indices according to interpolation method
        if interpolation_method == 'lower':
            idx = int(np.floor(idx))
        elif interpolation_method == 'higher':
            idx = int(np.ceil(idx))
        elif interpolation_method == 'fraction':
            pass  # keep idx as fraction and interpolate
        else:
            raise ValueError("interpolation_method can only be 'fraction', "
                             "'lower' or 'higher'")

    i = int(idx)
    if i == idx:
        indexer[axis] = slice(i, i + 1)
        weights = array(1)
        sumval = 1.0
    else:
        indexer[axis] = slice(i, i + 2)
        j = i + 1
        weights = array([(j - idx), (idx - i)], float)
        wshape = [1] * sorted_.ndim
        wshape[axis] = 2
        weights.shape = wshape
        sumval = weights.sum()

    # Use np.add.reduce (== np.sum but a little faster) to coerce data type
    return np.add.reduce(sorted_[tuple(indexer)] * weights, axis=axis) / sumval


def percentileofscore(a, score, kind='rank'):
    """
    Compute the percentile rank of a score relative to a list of scores.

    A `percentileofscore` of, for example, 80% means that 80% of the
    scores in `a` are below the given score. In the case of gaps or
    ties, the exact definition depends on the optional keyword, `kind`.

    Parameters
    ----------
    a : array_like
        Array of scores to which `score` is compared.
    score : int or float
        Score that is compared to the elements in `a`.
    kind : {'rank', 'weak', 'strict', 'mean'}, optional
        Specifies the interpretation of the resulting score.
        The following options are available (default is 'rank'):

          * 'rank': Average percentage ranking of score.  In case of multiple
            matches, average the percentage rankings of all matching scores.
          * 'weak': This kind corresponds to the definition of a cumulative
            distribution function.  A percentileofscore of 80% means that 80%
            of values are less than or equal to the provided score.
          * 'strict': Similar to "weak", except that only values that are
            strictly less than the given score are counted.
          * 'mean': The average of the "weak" and "strict" scores, often used
            in testing.  See https://en.wikipedia.org/wiki/Percentile_rank

    Returns
    -------
    pcos : float
        Percentile-position of score (0-100) relative to `a`.

    See Also
    --------
    numpy.percentile

    Examples
    --------
    Three-quarters of the given values lie below a given score:

    >>> from scipy import stats
    >>> stats.percentileofscore([1, 2, 3, 4], 3)
    75.0

    With multiple matches, note how the scores of the two matches, 0.6
    and 0.8 respectively, are averaged:

    >>> stats.percentileofscore([1, 2, 3, 3, 4], 3)
    70.0

    Only 2/5 values are strictly less than 3:

    >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='strict')
    40.0

    But 4/5 values are less than or equal to 3:

    >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='weak')
    80.0

    The average between the weak and the strict scores is:

    >>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='mean')
    60.0

    """
    if np.isnan(score):
        return np.nan
    a = np.asarray(a)
    n = len(a)
    if n == 0:
        return 100.0

    if kind == 'rank':
        left = np.count_nonzero(a < score)
        right = np.count_nonzero(a <= score)
        pct = (right + left + (1 if right > left else 0)) * 50.0/n
        return pct
    elif kind == 'strict':
        return np.count_nonzero(a < score) / n * 100
    elif kind == 'weak':
        return np.count_nonzero(a <= score) / n * 100
    elif kind == 'mean':
        pct = (np.count_nonzero(a < score) + np.count_nonzero(a <= score)) / n * 50
        return pct
    else:
        raise ValueError("kind can only be 'rank', 'strict', 'weak' or 'mean'")


HistogramResult = namedtuple('HistogramResult',
                             ('count', 'lowerlimit', 'binsize', 'extrapoints'))


def _histogram(a, numbins=10, defaultlimits=None, weights=None, printextras=False):
    """
    Create a histogram.
    
    Separate the range into several bins and return the number of instances
    in each bin.

    Parameters
    ----------
    a : array_like
        Array of scores which will be put into bins.
    numbins : int, optional
        The number of bins to use for the histogram. Default is 10.
    defaultlimits : tuple (lower, upper), optional
        The lower and upper values for the range of the histogram.
        If no value is given, a range slightly larger than the range of the
        values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
        where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
    weights : array_like, optional
        The weights for each value in `a`. Default is None, which gives each
        value a weight of 1.0
    printextras : bool, optional
        If True, if there are extra points (i.e. the points that fall outside
        the bin limits) a warning is raised saying how many of those points
        there are.  Default is False.

    Returns
    -------
    count : ndarray
        Number of points (or sum of weights) in each bin.
    lowerlimit : float
        Lowest value of histogram, the lower limit of the first bin.
    binsize : float
        The size of the bins (all bins have the same size).
    extrapoints : int
        The number of points outside the range of the histogram.

    See Also
    --------
    numpy.histogram

    Notes
    -----
    This histogram is based on numpy's histogram but has a larger range by
    default if default limits is not set.

    """
    a = np.ravel(a)
    if defaultlimits is None:
        if a.size == 0:
            # handle empty arrays. Undetermined range, so use 0-1.
            defaultlimits = (0, 1)
        else:
            # no range given, so use values in `a`
            data_min = a.min()
            data_max = a.max()
            # Have bins extend past min and max values slightly
            s = (data_max - data_min) / (2. * (numbins - 1.))
            defaultlimits = (data_min - s, data_max + s)

    # use numpy's histogram method to compute bins
    hist, bin_edges = np.histogram(a, bins=numbins, range=defaultlimits,
                                   weights=weights)
    # hist are not always floats, convert to keep with old output
    hist = np.array(hist, dtype=float)
    # fixed width for bins is assumed, as numpy's histogram gives
    # fixed width bins for int values for 'bins'
    binsize = bin_edges[1] - bin_edges[0]
    # calculate number of extra points
    extrapoints = len([v for v in a
                       if defaultlimits[0] > v or v > defaultlimits[1]])
    if extrapoints > 0 and printextras:
        warnings.warn("Points outside given histogram range = %s"
                      % extrapoints)

    return HistogramResult(hist, defaultlimits[0], binsize, extrapoints)


CumfreqResult = namedtuple('CumfreqResult',
                           ('cumcount', 'lowerlimit', 'binsize',
                            'extrapoints'))


def cumfreq(a, numbins=10, defaultreallimits=None, weights=None):
    """
    Return a cumulative frequency histogram, using the histogram function.

    A cumulative histogram is a mapping that counts the cumulative number of
    observations in all of the bins up to the specified bin.

    Parameters
    ----------
    a : array_like
        Input array.
    numbins : int, optional
        The number of bins to use for the histogram. Default is 10.
    defaultreallimits : tuple (lower, upper), optional
        The lower and upper values for the range of the histogram.
        If no value is given, a range slightly larger than the range of the
        values in `a` is used. Specifically ``(a.min() - s, a.max() + s)``,
        where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
    weights : array_like, optional
        The weights for each value in `a`. Default is None, which gives each
        value a weight of 1.0

    Returns
    -------
    cumcount : ndarray
        Binned values of cumulative frequency.
    lowerlimit : float
        Lower real limit
    binsize : float
        Width of each bin.
    extrapoints : int
        Extra points.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> from scipy import stats
    >>> x = [1, 4, 2, 1, 3, 1]
    >>> res = stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5))
    >>> res.cumcount
    array([ 1.,  2.,  3.,  3.])
    >>> res.extrapoints
    3

    Create a normal distribution with 1000 random values

    >>> rng = np.random.RandomState(seed=12345)
    >>> samples = stats.norm.rvs(size=1000, random_state=rng)

    Calculate cumulative frequencies

    >>> res = stats.cumfreq(samples, numbins=25)

    Calculate space of values for x

    >>> x = res.lowerlimit + np.linspace(0, res.binsize*res.cumcount.size,
    ...                                  res.cumcount.size)

    Plot histogram and cumulative histogram

    >>> fig = plt.figure(figsize=(10, 4))
    >>> ax1 = fig.add_subplot(1, 2, 1)
    >>> ax2 = fig.add_subplot(1, 2, 2)
    >>> ax1.hist(samples, bins=25)
    >>> ax1.set_title('Histogram')
    >>> ax2.bar(x, res.cumcount, width=res.binsize)
    >>> ax2.set_title('Cumulative histogram')
    >>> ax2.set_xlim([x.min(), x.max()])

    >>> plt.show()

    """
    h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights)
    cumhist = np.cumsum(h * 1, axis=0)
    return CumfreqResult(cumhist, l, b, e)


RelfreqResult = namedtuple('RelfreqResult',
                           ('frequency', 'lowerlimit', 'binsize',
                            'extrapoints'))


def relfreq(a, numbins=10, defaultreallimits=None, weights=None):
    """
    Return a relative frequency histogram, using the histogram function.

    A relative frequency  histogram is a mapping of the number of
    observations in each of the bins relative to the total of observations.

    Parameters
    ----------
    a : array_like
        Input array.
    numbins : int, optional
        The number of bins to use for the histogram. Default is 10.
    defaultreallimits : tuple (lower, upper), optional
        The lower and upper values for the range of the histogram.
        If no value is given, a range slightly larger than the range of the
        values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
        where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
    weights : array_like, optional
        The weights for each value in `a`. Default is None, which gives each
        value a weight of 1.0

    Returns
    -------
    frequency : ndarray
        Binned values of relative frequency.
    lowerlimit : float
        Lower real limit.
    binsize : float
        Width of each bin.
    extrapoints : int
        Extra points.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> from scipy import stats
    >>> a = np.array([2, 4, 1, 2, 3, 2])
    >>> res = stats.relfreq(a, numbins=4)
    >>> res.frequency
    array([ 0.16666667, 0.5       , 0.16666667,  0.16666667])
    >>> np.sum(res.frequency)  # relative frequencies should add up to 1
    1.0

    Create a normal distribution with 1000 random values

    >>> rng = np.random.RandomState(seed=12345)
    >>> samples = stats.norm.rvs(size=1000, random_state=rng)

    Calculate relative frequencies

    >>> res = stats.relfreq(samples, numbins=25)

    Calculate space of values for x

    >>> x = res.lowerlimit + np.linspace(0, res.binsize*res.frequency.size,
    ...                                  res.frequency.size)

    Plot relative frequency histogram

    >>> fig = plt.figure(figsize=(5, 4))
    >>> ax = fig.add_subplot(1, 1, 1)
    >>> ax.bar(x, res.frequency, width=res.binsize)
    >>> ax.set_title('Relative frequency histogram')
    >>> ax.set_xlim([x.min(), x.max()])

    >>> plt.show()

    """
    a = np.asanyarray(a)
    h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights)
    h = h / a.shape[0]

    return RelfreqResult(h, l, b, e)


#####################################
#        VARIABILITY FUNCTIONS      #
#####################################

def obrientransform(*args):
    """
    Compute the O'Brien transform on input data (any number of arrays).

    Used to test for homogeneity of variance prior to running one-way stats.
    Each array in ``*args`` is one level of a factor.
    If `f_oneway` is run on the transformed data and found significant,
    the variances are unequal.  From Maxwell and Delaney [1]_, p.112.

    Parameters
    ----------
    args : tuple of array_like
        Any number of arrays.

    Returns
    -------
    obrientransform : ndarray
        Transformed data for use in an ANOVA.  The first dimension
        of the result corresponds to the sequence of transformed
        arrays.  If the arrays given are all 1-D of the same length,
        the return value is a 2-D array; otherwise it is a 1-D array
        of type object, with each element being an ndarray.

    References
    ----------
    .. [1] S. E. Maxwell and H. D. Delaney, "Designing Experiments and
           Analyzing Data: A Model Comparison Perspective", Wadsworth, 1990.

    Examples
    --------
    We'll test the following data sets for differences in their variance.

    >>> x = [10, 11, 13, 9, 7, 12, 12, 9, 10]
    >>> y = [13, 21, 5, 10, 8, 14, 10, 12, 7, 15]

    Apply the O'Brien transform to the data.

    >>> from scipy.stats import obrientransform
    >>> tx, ty = obrientransform(x, y)

    Use `scipy.stats.f_oneway` to apply a one-way ANOVA test to the
    transformed data.

    >>> from scipy.stats import f_oneway
    >>> F, p = f_oneway(tx, ty)
    >>> p
    0.1314139477040335

    If we require that ``p < 0.05`` for significance, we cannot conclude
    that the variances are different.
    
    """
    TINY = np.sqrt(np.finfo(float).eps)

    # `arrays` will hold the transformed arguments.
    arrays = []

    for arg in args:
        a = np.asarray(arg)
        n = len(a)
        mu = np.mean(a)
        sq = (a - mu)**2
        sumsq = sq.sum()

        # The O'Brien transform.
        t = ((n - 1.5) * n * sq - 0.5 * sumsq) / ((n - 1) * (n - 2))

        # Check that the mean of the transformed data is equal to the
        # original variance.
        var = sumsq / (n - 1)
        if abs(var - np.mean(t)) > TINY:
            raise ValueError('Lack of convergence in obrientransform.')

        arrays.append(t)

    return np.array(arrays)


def sem(a, axis=0, ddof=1, nan_policy='propagate'):
    """
    Compute standard error of the mean.
    
    Calculate the standard error of the mean (or standard error of
    measurement) of the values in the input array.

    Parameters
    ----------
    a : array_like
        An array containing the values for which the standard error is
        returned.
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over
        the whole array `a`.
    ddof : int, optional
        Delta degrees-of-freedom. How many degrees of freedom to adjust
        for bias in limited samples relative to the population estimate
        of variance. Defaults to 1.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    s : ndarray or float
        The standard error of the mean in the sample(s), along the input axis.

    Notes
    -----
    The default value for `ddof` is different to the default (0) used by other
    ddof containing routines, such as np.std and np.nanstd.

    Examples
    --------
    Find standard error along the first axis:

    >>> from scipy import stats
    >>> a = np.arange(20).reshape(5,4)
    >>> stats.sem(a)
    array([ 2.8284,  2.8284,  2.8284,  2.8284])

    Find standard error across the whole array, using n degrees of freedom:

    >>> stats.sem(a, axis=None, ddof=0)
    1.2893796958227628

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.sem(a, axis, ddof)

    n = a.shape[axis]
    s = np.std(a, axis=axis, ddof=ddof) / np.sqrt(n)
    return s


def zscore(a, axis=0, ddof=0, nan_policy='propagate'):
    """
    Compute the z score.

    Compute the z score of each value in the sample, relative to the
    sample mean and standard deviation.

    Parameters
    ----------
    a : array_like
        An array like object containing the sample data.
    axis : int or None, optional
        Axis along which to operate. Default is 0. If None, compute over
        the whole array `a`.
    ddof : int, optional
        Degrees of freedom correction in the calculation of the
        standard deviation. Default is 0.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan. 'propagate' returns nan,
        'raise' throws an error, 'omit' performs the calculations ignoring nan
        values. Default is 'propagate'.

    Returns
    -------
    zscore : array_like
        The z-scores, standardized by mean and standard deviation of
        input array `a`.

    Notes
    -----
    This function preserves ndarray subclasses, and works also with
    matrices and masked arrays (it uses `asanyarray` instead of
    `asarray` for parameters).

    Examples
    --------
    >>> a = np.array([ 0.7972,  0.0767,  0.4383,  0.7866,  0.8091,
    ...                0.1954,  0.6307,  0.6599,  0.1065,  0.0508])
    >>> from scipy import stats
    >>> stats.zscore(a)
    array([ 1.1273, -1.247 , -0.0552,  1.0923,  1.1664, -0.8559,  0.5786,
            0.6748, -1.1488, -1.3324])

    Computing along a specified axis, using n-1 degrees of freedom
    (``ddof=1``) to calculate the standard deviation:

    >>> b = np.array([[ 0.3148,  0.0478,  0.6243,  0.4608],
    ...               [ 0.7149,  0.0775,  0.6072,  0.9656],
    ...               [ 0.6341,  0.1403,  0.9759,  0.4064],
    ...               [ 0.5918,  0.6948,  0.904 ,  0.3721],
    ...               [ 0.0921,  0.2481,  0.1188,  0.1366]])
    >>> stats.zscore(b, axis=1, ddof=1)
    array([[-0.19264823, -1.28415119,  1.07259584,  0.40420358],
           [ 0.33048416, -1.37380874,  0.04251374,  1.00081084],
           [ 0.26796377, -1.12598418,  1.23283094, -0.37481053],
           [-0.22095197,  0.24468594,  1.19042819, -1.21416216],
           [-0.82780366,  1.4457416 , -0.43867764, -0.1792603 ]])
    
    """
    a = np.asanyarray(a)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        mns = np.nanmean(a=a, axis=axis, keepdims=True)
        sstd = np.nanstd(a=a, axis=axis, ddof=ddof, keepdims=True)
    else:
        mns = a.mean(axis=axis, keepdims=True)
        sstd = a.std(axis=axis, ddof=ddof, keepdims=True)

    return (a - mns) / sstd


def zmap(scores, compare, axis=0, ddof=0):
    """
    Calculate the relative z-scores.

    Return an array of z-scores, i.e., scores that are standardized to
    zero mean and unit variance, where mean and variance are calculated
    from the comparison array.

    Parameters
    ----------
    scores : array_like
        The input for which z-scores are calculated.
    compare : array_like
        The input from which the mean and standard deviation of the
        normalization are taken; assumed to have the same dimension as
        `scores`.
    axis : int or None, optional
        Axis over which mean and variance of `compare` are calculated.
        Default is 0. If None, compute over the whole array `scores`.
    ddof : int, optional
        Degrees of freedom correction in the calculation of the
        standard deviation. Default is 0.

    Returns
    -------
    zscore : array_like
        Z-scores, in the same shape as `scores`.

    Notes
    -----
    This function preserves ndarray subclasses, and works also with
    matrices and masked arrays (it uses `asanyarray` instead of
    `asarray` for parameters).

    Examples
    --------
    >>> from scipy.stats import zmap
    >>> a = [0.5, 2.0, 2.5, 3]
    >>> b = [0, 1, 2, 3, 4]
    >>> zmap(a, b)
    array([-1.06066017,  0.        ,  0.35355339,  0.70710678])
    
    """
    scores, compare = map(np.asanyarray, [scores, compare])
    mns = compare.mean(axis=axis, keepdims=True)
    sstd = compare.std(axis=axis, ddof=ddof, keepdims=True)
    return (scores - mns) / sstd


def gstd(a, axis=0, ddof=1):
    """
    Calculate the geometric standard deviation of an array.

    The geometric standard deviation describes the spread of a set of numbers
    where the geometric mean is preferred. It is a multiplicative factor, and
    so a dimensionless quantity.

    It is defined as the exponent of the standard deviation of ``log(a)``.
    Mathematically the population geometric standard deviation can be
    evaluated as::

        gstd = exp(std(log(a)))

    .. versionadded:: 1.3.0

    Parameters
    ----------
    a : array_like
        An array like object containing the sample data.
    axis : int, tuple or None, optional
        Axis along which to operate. Default is 0. If None, compute over
        the whole array `a`.
    ddof : int, optional
        Degree of freedom correction in the calculation of the
        geometric standard deviation. Default is 1.

    Returns
    -------
    ndarray or float
        An array of the geometric standard deviation. If `axis` is None or `a`
        is a 1d array a float is returned.

    Notes
    -----
    As the calculation requires the use of logarithms the geometric standard
    deviation only supports strictly positive values. Any non-positive or
    infinite values will raise a `ValueError`.
    The geometric standard deviation is sometimes confused with the exponent of
    the standard deviation, ``exp(std(a))``. Instead the geometric standard
    deviation is ``exp(std(log(a)))``.
    The default value for `ddof` is different to the default value (0) used
    by other ddof containing functions, such as ``np.std`` and ``np.nanstd``.

    Examples
    --------
    Find the geometric standard deviation of a log-normally distributed sample.
    Note that the standard deviation of the distribution is one, on a
    log scale this evaluates to approximately ``exp(1)``.

    >>> from scipy.stats import gstd
    >>> np.random.seed(123)
    >>> sample = np.random.lognormal(mean=0, sigma=1, size=1000)
    >>> gstd(sample)
    2.7217860664589946

    Compute the geometric standard deviation of a multidimensional array and
    of a given axis.

    >>> a = np.arange(1, 25).reshape(2, 3, 4)
    >>> gstd(a, axis=None)
    2.2944076136018947
    >>> gstd(a, axis=2)
    array([[1.82424757, 1.22436866, 1.13183117],
           [1.09348306, 1.07244798, 1.05914985]])
    >>> gstd(a, axis=(1,2))
    array([2.12939215, 1.22120169])

    The geometric standard deviation further handles masked arrays.

    >>> a = np.arange(1, 25).reshape(2, 3, 4)
    >>> ma = np.ma.masked_where(a > 16, a)
    >>> ma
    masked_array(
      data=[[[1, 2, 3, 4],
             [5, 6, 7, 8],
             [9, 10, 11, 12]],
            [[13, 14, 15, 16],
             [--, --, --, --],
             [--, --, --, --]]],
      mask=[[[False, False, False, False],
             [False, False, False, False],
             [False, False, False, False]],
            [[False, False, False, False],
             [ True,  True,  True,  True],
             [ True,  True,  True,  True]]],
      fill_value=999999)
    >>> gstd(ma, axis=2)
    masked_array(
      data=[[1.8242475707663655, 1.2243686572447428, 1.1318311657788478],
            [1.0934830582350938, --, --]],
      mask=[[False, False, False],
            [False,  True,  True]],
      fill_value=999999)
    
    """
    a = np.asanyarray(a)
    log = ma.log if isinstance(a, ma.MaskedArray) else np.log

    try:
        with warnings.catch_warnings():
            warnings.simplefilter("error", RuntimeWarning)
            return np.exp(np.std(log(a), axis=axis, ddof=ddof))
    except RuntimeWarning as w:
        if np.isinf(a).any():
            raise ValueError(
                'Infinite value encountered. The geometric standard deviation '
                'is defined for strictly positive values only.')
        a_nan = np.isnan(a)
        a_nan_any = a_nan.any()
        # exclude NaN's from negativity check, but
        # avoid expensive masking for arrays with no NaN
        if ((a_nan_any and np.less_equal(np.nanmin(a), 0)) or
              (not a_nan_any and np.less_equal(a, 0).any())):
            raise ValueError(
                'Non positive value encountered. The geometric standard '
                'deviation is defined for strictly positive values only.')
        elif 'Degrees of freedom <= 0 for slice' == str(w):
            raise ValueError(w)
        else:
            #  Remaining warnings don't need to be exceptions.
            return np.exp(np.std(log(a, where=~a_nan), axis=axis, ddof=ddof))
    except TypeError:
        raise ValueError(
            'Invalid array input. The inputs could not be '
            'safely coerced to any supported types')


# Private dictionary initialized only once at module level
# See https://en.wikipedia.org/wiki/Robust_measures_of_scale
_scale_conversions = {'raw': 1.0,
                      'normal': special.erfinv(0.5) * 2.0 * math.sqrt(2.0)}


def iqr(x, axis=None, rng=(25, 75), scale='raw', nan_policy='propagate',
        interpolation='linear', keepdims=False):
    r"""
    Compute the interquartile range of the data along the specified axis.

    The interquartile range (IQR) is the difference between the 75th and
    25th percentile of the data. It is a measure of the dispersion
    similar to standard deviation or variance, but is much more robust
    against outliers [2]_.

    The ``rng`` parameter allows this function to compute other
    percentile ranges than the actual IQR. For example, setting
    ``rng=(0, 100)`` is equivalent to `numpy.ptp`.

    The IQR of an empty array is `np.nan`.

    .. versionadded:: 0.18.0

    Parameters
    ----------
    x : array_like
        Input array or object that can be converted to an array.
    axis : int or sequence of int, optional
        Axis along which the range is computed. The default is to
        compute the IQR for the entire array.
    rng : Two-element sequence containing floats in range of [0,100] optional
        Percentiles over which to compute the range. Each must be
        between 0 and 100, inclusive. The default is the true IQR:
        `(25, 75)`. The order of the elements is not important.
    scale : scalar or str, optional
        The numerical value of scale will be divided out of the final
        result. The following string values are recognized:

          'raw' : No scaling, just return the raw IQR.
          'normal' : Scale by :math:`2 \sqrt{2} erf^{-1}(\frac{1}{2}) \approx 1.349`.

        The default is 'raw'. Array-like scale is also allowed, as long
        as it broadcasts correctly to the output such that
        ``out / scale`` is a valid operation. The output dimensions
        depend on the input array, `x`, the `axis` argument, and the
        `keepdims` flag.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values
    interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}, optional
        Specifies the interpolation method to use when the percentile
        boundaries lie between two data points `i` and `j`.
        The following options are available (default is 'linear'):

          * 'linear': `i + (j - i) * fraction`, where `fraction` is the
            fractional part of the index surrounded by `i` and `j`.
          * 'lower': `i`.
          * 'higher': `j`.
          * 'nearest': `i` or `j` whichever is nearest.
          * 'midpoint': `(i + j) / 2`.

    keepdims : bool, optional
        If this is set to `True`, the reduced axes are left in the
        result as dimensions with size one. With this option, the result
        will broadcast correctly against the original array `x`.

    Returns
    -------
    iqr : scalar or ndarray
        If ``axis=None``, a scalar is returned. If the input contains
        integers or floats of smaller precision than ``np.float64``, then the
        output data-type is ``np.float64``. Otherwise, the output data-type is
        the same as that of the input.

    See Also
    --------
    numpy.std, numpy.var

    Notes
    -----
    This function is heavily dependent on the version of `numpy` that is
    installed. Versions greater than 1.11.0b3 are highly recommended, as they
    include a number of enhancements and fixes to `numpy.percentile` and
    `numpy.nanpercentile` that affect the operation of this function. The
    following modifications apply:

    Below 1.10.0 : `nan_policy` is poorly defined.
        The default behavior of `numpy.percentile` is used for 'propagate'. This
        is a hybrid of 'omit' and 'propagate' that mostly yields a skewed
        version of 'omit' since NaNs are sorted to the end of the data. A
        warning is raised if there are NaNs in the data.
    Below 1.9.0: `numpy.nanpercentile` does not exist.
        This means that `numpy.percentile` is used regardless of `nan_policy`
        and a warning is issued. See previous item for a description of the
        behavior.
    Below 1.9.0: `keepdims` and `interpolation` are not supported.
        The keywords get ignored with a warning if supplied with non-default
        values. However, multiple axes are still supported.

    References
    ----------
    .. [1] "Interquartile range" https://en.wikipedia.org/wiki/Interquartile_range
    .. [2] "Robust measures of scale" https://en.wikipedia.org/wiki/Robust_measures_of_scale
    .. [3] "Quantile" https://en.wikipedia.org/wiki/Quantile
    
    Examples
    --------
    >>> from scipy.stats import iqr
    >>> x = np.array([[10, 7, 4], [3, 2, 1]])
    >>> x
    array([[10,  7,  4],
           [ 3,  2,  1]])
    >>> iqr(x)
    4.0
    >>> iqr(x, axis=0)
    array([ 3.5,  2.5,  1.5])
    >>> iqr(x, axis=1)
    array([ 3.,  1.])
    >>> iqr(x, axis=1, keepdims=True)
    array([[ 3.],
           [ 1.]])

    """
    x = asarray(x)

    # This check prevents percentile from raising an error later. Also, it is
    # consistent with `np.var` and `np.std`.
    if not x.size:
        return np.nan

    # An error may be raised here, so fail-fast, before doing lengthy
    # computations, even though `scale` is not used until later
    if isinstance(scale, string_types):
        scale_key = scale.lower()
        if scale_key not in _scale_conversions:
            raise ValueError("{0} not a valid scale for `iqr`".format(scale))
        scale = _scale_conversions[scale_key]

    # Select the percentile function to use based on nans and policy
    contains_nan, nan_policy = _contains_nan(x, nan_policy)

    if contains_nan and nan_policy == 'omit':
        percentile_func = _iqr_nanpercentile
    else:
        percentile_func = _iqr_percentile

    if len(rng) != 2:
        raise TypeError("quantile range must be two element sequence")

    if np.isnan(rng).any():
        raise ValueError("range must not contain NaNs")

    rng = sorted(rng)
    pct = percentile_func(x, rng, axis=axis, interpolation=interpolation,
                          keepdims=keepdims, contains_nan=contains_nan)
    out = np.subtract(pct[1], pct[0])

    if scale != 1.0:
        out /= scale

    return out


def median_absolute_deviation(x, axis=0, center=np.median, scale=1.4826,
                              nan_policy='propagate'):
    """
    Compute the median absolute deviation of the data along the given axis.

    The median absolute deviation (MAD, [1]_) computes the median over the
    absolute deviations from the median. It is a measure of dispersion
    similar to the standard deviation but more robust to outliers [2]_.

    The MAD of an empty array is ``np.nan``.

    .. versionadded:: 1.3.0

    Parameters
    ----------
    x : array_like
        Input array or object that can be converted to an array.
    axis : int or None, optional
        Axis along which the range is computed. Default is 0. If None, compute
        the MAD over the entire array.
    center : callable, optional
        A function that will return the central value. The default is to use
        np.median. Any user defined function used will need to have the function
        signature ``func(arr, axis)``.
    scale : int, optional
        The scaling factor applied to the MAD. The default scale (1.4826)
        ensures consistency with the standard deviation for normally distributed
        data.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    mad : scalar or ndarray
        If ``axis=None``, a scalar is returned. If the input contains
        integers or floats of smaller precision than ``np.float64``, then the
        output data-type is ``np.float64``. Otherwise, the output data-type is
        the same as that of the input.

    See Also
    --------
    numpy.std, numpy.var, numpy.median, scipy.stats.iqr, scipy.stats.tmean,
    scipy.stats.tstd, scipy.stats.tvar

    Notes
    -----
    The `center` argument only affects the calculation of the central value
    around which the MAD is calculated. That is, passing in ``center=np.mean``
    will calculate the MAD around the mean - it will not calculate the *mean*
    absolute deviation.

    References
    ----------
    .. [1] "Median absolute deviation" https://en.wikipedia.org/wiki/Median_absolute_deviation
    .. [2] "Robust measures of scale" https://en.wikipedia.org/wiki/Robust_measures_of_scale

    Examples
    --------
    When comparing the behavior of `median_absolute_deviation` with ``np.std``,
    the latter is affected when we change a single value of an array to have an
    outlier value while the MAD hardly changes:

    >>> from scipy import stats
    >>> x = stats.norm.rvs(size=100, scale=1, random_state=123456)
    >>> x.std()
    0.9973906394005013
    >>> stats.median_absolute_deviation(x)
    1.2280762773108278
    >>> x[0] = 345.6
    >>> x.std()
    34.42304872314415
    >>> stats.median_absolute_deviation(x)
    1.2340335571164334

    Axis handling example:

    >>> x = np.array([[10, 7, 4], [3, 2, 1]])
    >>> x
    array([[10,  7,  4],
           [ 3,  2,  1]])
    >>> stats.median_absolute_deviation(x)
    array([5.1891, 3.7065, 2.2239])
    >>> stats.median_absolute_deviation(x, axis=None)
    2.9652

    """
    x = asarray(x)

    # Consistent with `np.var` and `np.std`.
    if not x.size:
        return np.nan

    contains_nan, nan_policy = _contains_nan(x, nan_policy)

    if contains_nan and nan_policy == 'propagate':
        return np.nan

    if contains_nan and nan_policy == 'omit':
        # Way faster than carrying the masks around
        arr = ma.masked_invalid(x).compressed()
    else:
        arr = x

    if axis is None:
        med = center(arr)
        mad = np.median(np.abs(arr - med))
    else:
        med = np.apply_over_axes(center, arr, axis)
        mad = np.median(np.abs(arr - med), axis=axis)

    return scale * mad


def _iqr_percentile(x, q, axis=None, interpolation='linear', keepdims=False, contains_nan=False):
    """
    Private wrapper that works around older versions of `numpy`.

    While this function is pretty much necessary for the moment, it
    should be removed as soon as the minimum supported numpy version
    allows.
    """
    if contains_nan and NumpyVersion(np.__version__) < '1.10.0a':
        # I see no way to avoid the version check to ensure that the corrected
        # NaN behavior has been implemented except to call `percentile` on a
        # small array.
        msg = "Keyword nan_policy='propagate' not correctly supported for " \
              "numpy versions < 1.10.x. The default behavior of " \
              "`numpy.percentile` will be used."
        warnings.warn(msg, RuntimeWarning)

    try:
        # For older versions of numpy, there are two things that can cause a
        # problem here: missing keywords and non-scalar axis. The former can be
        # partially handled with a warning, the latter can be handled fully by
        # hacking in an implementation similar to numpy's function for
        # providing multi-axis functionality
        # (`numpy.lib.function_base._ureduce` for the curious).
        result = np.percentile(x, q, axis=axis, keepdims=keepdims,
                               interpolation=interpolation)
    except TypeError:
        if interpolation != 'linear' or keepdims:
            # At time or writing, this means np.__version__ < 1.9.0
            warnings.warn("Keywords interpolation and keepdims not supported "
                          "for your version of numpy", RuntimeWarning)
        try:
            # Special processing if axis is an iterable
            original_size = len(axis)
        except TypeError:
            # Axis is a scalar at this point
            pass
        else:
            axis = np.unique(np.asarray(axis) % x.ndim)
            if original_size > axis.size:
                # mimic numpy if axes are duplicated
                raise ValueError("duplicate value in axis")
            if axis.size == x.ndim:
                # axis includes all axes: revert to None
                axis = None
            elif axis.size == 1:
                # no rolling necessary
                axis = axis[0]
            else:
                # roll multiple axes to the end and flatten that part out
                for ax in axis[::-1]:
                    x = np.rollaxis(x, ax, x.ndim)
                x = x.reshape(x.shape[:-axis.size] +
                              (np.prod(x.shape[-axis.size:]),))
                axis = -1
        result = np.percentile(x, q, axis=axis)

    return result


def _iqr_nanpercentile(x, q, axis=None, interpolation='linear', keepdims=False,
                       contains_nan=False):
    """
    Private wrapper that works around the following:

      1. A bug in `np.nanpercentile` that was around until numpy version
         1.11.0.
      2. A bug in `np.percentile` NaN handling that was fixed in numpy
         version 1.10.0.
      3. The non-existence of `np.nanpercentile` before numpy version
         1.9.0.

    While this function is pretty much necessary for the moment, it
    should be removed as soon as the minimum supported numpy version
    allows.
    """
    if hasattr(np, 'nanpercentile'):
        # At time or writing, this means np.__version__ < 1.9.0
        result = np.nanpercentile(x, q, axis=axis,
                                  interpolation=interpolation,
                                  keepdims=keepdims)
        # If non-scalar result and nanpercentile does not do proper axis roll.
        # I see no way of avoiding the version test since dimensions may just
        # happen to match in the data.
        if result.ndim > 1 and NumpyVersion(np.__version__) < '1.11.0a':
            axis = np.asarray(axis)
            if axis.size == 1:
                # If only one axis specified, reduction happens along that dimension
                if axis.ndim == 0:
                    axis = axis[None]
                result = np.rollaxis(result, axis[0])
            else:
                # If multiple axes, reduced dimeision is last
                result = np.rollaxis(result, -1)
    else:
        msg = "Keyword nan_policy='omit' not correctly supported for numpy " \
              "versions < 1.9.x. The default behavior of  numpy.percentile " \
              "will be used."
        warnings.warn(msg, RuntimeWarning)
        result = _iqr_percentile(x, q, axis=axis)

    return result


#####################################
#         TRIMMING FUNCTIONS        #
#####################################

SigmaclipResult = namedtuple('SigmaclipResult', ('clipped', 'lower', 'upper'))


def sigmaclip(a, low=4., high=4.):
    """
    Perform iterative sigma-clipping of array elements.

    Starting from the full sample, all elements outside the critical range are
    removed, i.e. all elements of the input array `c` that satisfy either of
    the following conditions::

        c < mean(c) - std(c)*low
        c > mean(c) + std(c)*high

    The iteration continues with the updated sample until no
    elements are outside the (updated) range.

    Parameters
    ----------
    a : array_like
        Data array, will be raveled if not 1-D.
    low : float, optional
        Lower bound factor of sigma clipping. Default is 4.
    high : float, optional
        Upper bound factor of sigma clipping. Default is 4.

    Returns
    -------
    clipped : ndarray
        Input array with clipped elements removed.
    lower : float
        Lower threshold value use for clipping.
    upper : float
        Upper threshold value use for clipping.

    Examples
    --------
    >>> from scipy.stats import sigmaclip
    >>> a = np.concatenate((np.linspace(9.5, 10.5, 31),
    ...                     np.linspace(0, 20, 5)))
    >>> fact = 1.5
    >>> c, low, upp = sigmaclip(a, fact, fact)
    >>> c
    array([  9.96666667,  10.        ,  10.03333333,  10.        ])
    >>> c.var(), c.std()
    (0.00055555555555555165, 0.023570226039551501)
    >>> low, c.mean() - fact*c.std(), c.min()
    (9.9646446609406727, 9.9646446609406727, 9.9666666666666668)
    >>> upp, c.mean() + fact*c.std(), c.max()
    (10.035355339059327, 10.035355339059327, 10.033333333333333)

    >>> a = np.concatenate((np.linspace(9.5, 10.5, 11),
    ...                     np.linspace(-100, -50, 3)))
    >>> c, low, upp = sigmaclip(a, 1.8, 1.8)
    >>> (c == np.linspace(9.5, 10.5, 11)).all()
    True

    """
    c = np.asarray(a).ravel()
    delta = 1
    while delta:
        c_std = c.std()
        c_mean = c.mean()
        size = c.size
        critlower = c_mean - c_std * low
        critupper = c_mean + c_std * high
        c = c[(c >= critlower) & (c <= critupper)]
        delta = size - c.size

    return SigmaclipResult(c, critlower, critupper)


def trimboth(a, proportiontocut, axis=0):
    """
    Slice off a proportion of items from both ends of an array.

    Slice off the passed proportion of items from both ends of the passed
    array (i.e., with `proportiontocut` = 0.1, slices leftmost 10% **and**
    rightmost 10% of scores). The trimmed values are the lowest and
    highest ones.
    Slice off less if proportion results in a non-integer slice index (i.e.
    conservatively slices off `proportiontocut`).

    Parameters
    ----------
    a : array_like
        Data to trim.
    proportiontocut : float
        Proportion (in range 0-1) of total data set to trim of each end.
    axis : int or None, optional
        Axis along which to trim data. Default is 0. If None, compute over
        the whole array `a`.

    Returns
    -------
    out : ndarray
        Trimmed version of array `a`. The order of the trimmed content
        is undefined.

    See Also
    --------
    trim_mean

    Examples
    --------
    >>> from scipy import stats
    >>> a = np.arange(20)
    >>> b = stats.trimboth(a, 0.1)
    >>> b.shape
    (16,)

    """
    a = np.asarray(a)

    if a.size == 0:
        return a

    if axis is None:
        a = a.ravel()
        axis = 0

    nobs = a.shape[axis]
    lowercut = int(proportiontocut * nobs)
    uppercut = nobs - lowercut
    if (lowercut >= uppercut):
        raise ValueError("Proportion too big.")

    atmp = np.partition(a, (lowercut, uppercut - 1), axis)

    sl = [slice(None)] * atmp.ndim
    sl[axis] = slice(lowercut, uppercut)
    return atmp[tuple(sl)]


def trim1(a, proportiontocut, tail='right', axis=0):
    """
    Slice off a proportion from ONE end of the passed array distribution.

    If `proportiontocut` = 0.1, slices off 'leftmost' or 'rightmost'
    10% of scores. The lowest or highest values are trimmed (depending on
    the tail).
    Slice off less if proportion results in a non-integer slice index
    (i.e. conservatively slices off `proportiontocut` ).

    Parameters
    ----------
    a : array_like
        Input array.
    proportiontocut : float
        Fraction to cut off of 'left' or 'right' of distribution.
    tail : {'left', 'right'}, optional
        Defaults to 'right'.
    axis : int or None, optional
        Axis along which to trim data. Default is 0. If None, compute over
        the whole array `a`.

    Returns
    -------
    trim1 : ndarray
        Trimmed version of array `a`. The order of the trimmed content is
        undefined.

    """
    a = np.asarray(a)
    if axis is None:
        a = a.ravel()
        axis = 0

    nobs = a.shape[axis]

    # avoid possible corner case
    if proportiontocut >= 1:
        return []

    if tail.lower() == 'right':
        lowercut = 0
        uppercut = nobs - int(proportiontocut * nobs)

    elif tail.lower() == 'left':
        lowercut = int(proportiontocut * nobs)
        uppercut = nobs

    atmp = np.partition(a, (lowercut, uppercut - 1), axis)

    return atmp[lowercut:uppercut]


def trim_mean(a, proportiontocut, axis=0):
    """
    Return mean of array after trimming distribution from both tails.

    If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of
    scores. The input is sorted before slicing. Slices off less if proportion
    results in a non-integer slice index (i.e., conservatively slices off
    `proportiontocut` ).

    Parameters
    ----------
    a : array_like
        Input array.
    proportiontocut : float
        Fraction to cut off of both tails of the distribution.
    axis : int or None, optional
        Axis along which the trimmed means are computed. Default is 0.
        If None, compute over the whole array `a`.

    Returns
    -------
    trim_mean : ndarray
        Mean of trimmed array.

    See Also
    --------
    trimboth
    tmean : Compute the trimmed mean ignoring values outside given `limits`.

    Examples
    --------
    >>> from scipy import stats
    >>> x = np.arange(20)
    >>> stats.trim_mean(x, 0.1)
    9.5
    >>> x2 = x.reshape(5, 4)
    >>> x2
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11],
           [12, 13, 14, 15],
           [16, 17, 18, 19]])
    >>> stats.trim_mean(x2, 0.25)
    array([  8.,   9.,  10.,  11.])
    >>> stats.trim_mean(x2, 0.25, axis=1)
    array([  1.5,   5.5,   9.5,  13.5,  17.5])

    """
    a = np.asarray(a)

    if a.size == 0:
        return np.nan

    if axis is None:
        a = a.ravel()
        axis = 0

    nobs = a.shape[axis]
    lowercut = int(proportiontocut * nobs)
    uppercut = nobs - lowercut
    if (lowercut > uppercut):
        raise ValueError("Proportion too big.")

    atmp = np.partition(a, (lowercut, uppercut - 1), axis)

    sl = [slice(None)] * atmp.ndim
    sl[axis] = slice(lowercut, uppercut)
    return np.mean(atmp[tuple(sl)], axis=axis)


F_onewayResult = namedtuple('F_onewayResult', ('statistic', 'pvalue'))


def f_oneway(*args):
    """
    Perform one-way ANOVA.

    The one-way ANOVA tests the null hypothesis that two or more groups have
    the same population mean.  The test is applied to samples from two or
    more groups, possibly with differing sizes.

    Parameters
    ----------
    sample1, sample2, ... : array_like
        The sample measurements for each group.

    Returns
    -------
    statistic : float
        The computed F-value of the test.
    pvalue : float
        The associated p-value from the F-distribution.

    Notes
    -----
    The ANOVA test has important assumptions that must be satisfied in order
    for the associated p-value to be valid.

    1. The samples are independent.
    2. Each sample is from a normally distributed population.
    3. The population standard deviations of the groups are all equal.  This
       property is known as homoscedasticity.

    If these assumptions are not true for a given set of data, it may still be
    possible to use the Kruskal-Wallis H-test (`scipy.stats.kruskal`) although
    with some loss of power.

    The algorithm is from Heiman[2], pp.394-7.

    References
    ----------
    .. [1] R. Lowry, "Concepts and Applications of Inferential Statistics",
           Chapter 14, 2014, http://vassarstats.net/textbook/

    .. [2] G.W. Heiman, "Understanding research methods and statistics: An
           integrated introduction for psychology", Houghton, Mifflin and
           Company, 2001.

    .. [3] G.H. McDonald, "Handbook of Biological Statistics", One-way ANOVA.
           http://www.biostathandbook.com/onewayanova.html

    Examples
    --------
    >>> import scipy.stats as stats

    [3]_ Here are some data on a shell measurement (the length of the anterior
    adductor muscle scar, standardized by dividing by length) in the mussel
    Mytilus trossulus from five locations: Tillamook, Oregon; Newport, Oregon;
    Petersburg, Alaska; Magadan, Russia; and Tvarminne, Finland, taken from a
    much larger data set used in McDonald et al. (1991).

    >>> tillamook = [0.0571, 0.0813, 0.0831, 0.0976, 0.0817, 0.0859, 0.0735,
    ...              0.0659, 0.0923, 0.0836]
    >>> newport = [0.0873, 0.0662, 0.0672, 0.0819, 0.0749, 0.0649, 0.0835,
    ...            0.0725]
    >>> petersburg = [0.0974, 0.1352, 0.0817, 0.1016, 0.0968, 0.1064, 0.105]
    >>> magadan = [0.1033, 0.0915, 0.0781, 0.0685, 0.0677, 0.0697, 0.0764,
    ...            0.0689]
    >>> tvarminne = [0.0703, 0.1026, 0.0956, 0.0973, 0.1039, 0.1045]
    >>> stats.f_oneway(tillamook, newport, petersburg, magadan, tvarminne)
    (7.1210194716424473, 0.00028122423145345439)

    """
    args = [np.asarray(arg, dtype=float) for arg in args]
    # ANOVA on N groups, each in its own array
    num_groups = len(args)
    alldata = np.concatenate(args)
    bign = len(alldata)

    # Determine the mean of the data, and subtract that from all inputs to a
    # variance (via sum_of_sq / sq_of_sum) calculation.  Variance is invariance
    # to a shift in location, and centering all data around zero vastly
    # improves numerical stability.
    offset = alldata.mean()
    alldata -= offset

    sstot = _sum_of_squares(alldata) - (_square_of_sums(alldata) / bign)
    ssbn = 0
    for a in args:
        ssbn += _square_of_sums(a - offset) / len(a)

    # Naming: variables ending in bn/b are for "between treatments", wn/w are
    # for "within treatments"
    ssbn -= _square_of_sums(alldata) / bign
    sswn = sstot - ssbn
    dfbn = num_groups - 1
    dfwn = bign - num_groups
    msb = ssbn / dfbn
    msw = sswn / dfwn
    f = msb / msw

    prob = special.fdtrc(dfbn, dfwn, f)   # equivalent to stats.f.sf

    return F_onewayResult(f, prob)


class PearsonRConstantInputWarning(RuntimeWarning):
    """Warning generated by `pearsonr` when an input is constant."""

    def __init__(self, msg=None):
        if msg is None:
            msg = ("An input array is constant; the correlation coefficent "
                   "is not defined.")
        self.args = (msg,)


class PearsonRNearConstantInputWarning(RuntimeWarning):
    """Warning generated by `pearsonr` when an input is nearly constant."""

    def __init__(self, msg=None):
        if msg is None:
            msg = ("An input array is nearly constant; the computed "
                   "correlation coefficent may be inaccurate.")
        self.args = (msg,)


def pearsonr(x, y):
    r"""
    Pearson correlation coefficient and p-value for testing non-correlation.

    The Pearson correlation coefficient [1]_ measures the linear relationship
    between two datasets.  The calculation of the p-value relies on the
    assumption that each dataset is normally distributed.  (See Kowalski [3]_
    for a discussion of the effects of non-normality of the input on the
    distribution of the correlation coefficient.)  Like other correlation
    coefficients, this one varies between -1 and +1 with 0 implying no
    correlation. Correlations of -1 or +1 imply an exact linear relationship.
    Positive correlations imply that as x increases, so does y. Negative
    correlations imply that as x increases, y decreases.

    The p-value roughly indicates the probability of an uncorrelated system
    producing datasets that have a Pearson correlation at least as extreme
    as the one computed from these datasets.

    Parameters
    ----------
    x : (N,) array_like
        Input array.
    y : (N,) array_like
        Input array.

    Returns
    -------
    r : float
        Pearson's correlation coefficient.
    p-value : float
        Two-tailed p-value.

    Warns
    -----
    PearsonRConstantInputWarning
        Raised if an input is a constant array.  The correlation coefficient
        is not defined in this case, so ``np.nan`` is returned.

    PearsonRNearConstantInputWarning
        Raised if an input is "nearly" constant.  The array ``x`` is considered
        nearly constant if ``norm(x - mean(x)) < 1e-13 * abs(mean(x))``.
        Numerical errors in the calculation ``x - mean(x)`` in this case might
        result in an inaccurate calculation of r.

    See Also
    --------
    spearmanr : Spearman rank-order correlation coefficient.
    kendalltau : Kendall's tau, a correlation measure for ordinal data.

    Notes
    -----
    The correlation coefficient is calculated as follows:

    .. math::

        r = \frac{\sum (x - m_x) (y - m_y)}
                 {\sqrt{\sum (x - m_x)^2 \sum (y - m_y)^2}}

    where :math:`m_x` is the mean of the vector :math:`x` and :math:`m_y` is
    the mean of the vector :math:`y`.

    Under the assumption that x and y are drawn from independent normal
    distributions (so the population correlation coefficient is 0), the
    probability density function of the sample correlation coefficient r
    is ([1]_, [2]_)::

               (1 - r**2)**(n/2 - 2)
        f(r) = ---------------------
                  B(1/2, n/2 - 1)

    where n is the number of samples, and B is the beta function.  This
    is sometimes referred to as the exact distribution of r.  This is
    the distribution that is used in `pearsonr` to compute the p-value.
    The distribution is a beta distribution on the interval [-1, 1],
    with equal shape parameters a = b = n/2 - 1.  In terms of SciPy's
    implementation of the beta distribution, the distribution of r is::

        dist = scipy.stats.beta(n/2 - 1, n/2 - 1, loc=-1, scale=2)

    The p-value returned by `pearsonr` is a two-sided p-value.  For a
    given sample with correlation coefficient r, the p-value is
    the probability that abs(r') of a random sample x' and y' drawn from
    the population with zero correlation would be greater than or equal
    to abs(r).  In terms of the object ``dist`` shown above, the p-value
    for a given r and length n can be computed as::

        p = 2*dist.cdf(-abs(r))

    When n is 2, the above continuous distribution is not well-defined.
    One can interpret the limit of the beta distribution as the shape
    parameters a and b approach a = b = 0 as a discrete distribution with
    equal probability masses at r = 1 and r = -1.  More directly, one
    can observe that, given the data x = [x1, x2] and y = [y1, y2], and
    assuming x1 != x2 and y1 != y2, the only possible values for r are 1
    and -1.  Because abs(r') for any sample x' and y' with length 2 will
    be 1, the two-sided p-value for a sample of length 2 is always 1.

    References
    ----------
    .. [1] "Pearson correlation coefficient", Wikipedia,
           https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
    .. [2] Student, "Probable error of a correlation coefficient",
           Biometrika, Volume 6, Issue 2-3, 1 September 1908, pp. 302-310.
    .. [3] C. J. Kowalski, "On the Effects of Non-Normality on the Distribution
           of the Sample Product-Moment Correlation Coefficient"
           Journal of the Royal Statistical Society. Series C (Applied
           Statistics), Vol. 21, No. 1 (1972), pp. 1-12.

    Examples
    --------
    >>> from scipy import stats
    >>> a = np.array([0, 0, 0, 1, 1, 1, 1])
    >>> b = np.arange(7)
    >>> stats.pearsonr(a, b)
    (0.8660254037844386, 0.011724811003954649)

    >>> stats.pearsonr([1, 2, 3, 4, 5], [10, 9, 2.5, 6, 4])
    (-0.7426106572325057, 0.1505558088534455)

    """
    n = len(x)
    if n != len(y):
        raise ValueError('x and y must have the same length.')

    if n < 2:
        raise ValueError('x and y must have length at least 2.')

    x = np.asarray(x)
    y = np.asarray(y)

    # If an input is constant, the correlation coefficient is not defined.
    if (x == x[0]).all() or (y == y[0]).all():
        warnings.warn(PearsonRConstantInputWarning())
        return np.nan, np.nan

    # dtype is the data type for the calculations.  This expression ensures
    # that the data type is at least 64 bit floating point.  It might have
    # more precision if the input is, for example, np.longdouble.
    dtype = type(1.0 + x[0] + y[0])

    if n == 2:
        return dtype(np.sign(x[1] - x[0])*np.sign(y[1] - y[0])), 1.0

    xmean = x.mean(dtype=dtype)
    ymean = y.mean(dtype=dtype)

    # By using `astype(dtype)`, we ensure that the intermediate calculations
    # use at least 64 bit floating point.
    xm = x.astype(dtype) - xmean
    ym = y.astype(dtype) - ymean

    # Unlike np.linalg.norm or the expression sqrt((xm*xm).sum()),
    # scipy.linalg.norm(xm) does not overflow if xm is, for example,
    # [-5e210, 5e210, 3e200, -3e200]
    normxm = linalg.norm(xm)
    normym = linalg.norm(ym)

    threshold = 1e-13
    if normxm < threshold*abs(xmean) or normym < threshold*abs(ymean):
        # If all the values in x (likewise y) are very close to the mean,
        # the loss of precision that occurs in the subtraction xm = x - xmean
        # might result in large errors in r.
        warnings.warn(PearsonRNearConstantInputWarning())

    r = np.dot(xm/normxm, ym/normym)

    # Presumably, if abs(r) > 1, then it is only some small artifact of
    # floating point arithmetic.
    r = max(min(r, 1.0), -1.0)

    # As explained in the docstring, the p-value can be computed as
    #     p = 2*dist.cdf(-abs(r))
    # where dist is the beta distribution on [-1, 1] with shape parameters
    # a = b = n/2 - 1.  `special.btdtr` is the CDF for the beta distribution
    # on [0, 1].  To use it, we make the transformation  x = (r + 1)/2; the
    # shape parameters do not change.  Then -abs(r) used in `cdf(-abs(r))`
    # becomes x = (-abs(r) + 1)/2 = 0.5*(1 - abs(r)).  (r is cast to float64
    # to avoid a TypeError raised by btdtr when r is higher precision.)
    ab = n/2 - 1
    prob = 2*special.btdtr(ab, ab, 0.5*(1 - abs(np.float64(r))))

    return r, prob


def fisher_exact(table, alternative='two-sided'):
    """
    Perform a Fisher exact test on a 2x2 contingency table.

    Parameters
    ----------
    table : array_like of ints
        A 2x2 contingency table.  Elements should be non-negative integers.
    alternative : {'two-sided', 'less', 'greater'}, optional
        Defines the alternative hypothesis.
        The following options are available (default is 'two-sided'):

          * 'two-sided'
          * 'less': one-sided
          * 'greater': one-sided

    Returns
    -------
    oddsratio : float
        This is prior odds ratio and not a posterior estimate.
    p_value : float
        P-value, the probability of obtaining a distribution at least as
        extreme as the one that was actually observed, assuming that the
        null hypothesis is true.

    See Also
    --------
    chi2_contingency : Chi-square test of independence of variables in a
        contingency table.

    Notes
    -----
    The calculated odds ratio is different from the one R uses. This scipy
    implementation returns the (more common) "unconditional Maximum
    Likelihood Estimate", while R uses the "conditional Maximum Likelihood
    Estimate".

    For tables with large numbers, the (inexact) chi-square test implemented
    in the function `chi2_contingency` can also be used.

    Examples
    --------
    Say we spend a few days counting whales and sharks in the Atlantic and
    Indian oceans. In the Atlantic ocean we find 8 whales and 1 shark, in the
    Indian ocean 2 whales and 5 sharks. Then our contingency table is::

                Atlantic  Indian
        whales     8        2
        sharks     1        5

    We use this table to find the p-value:

    >>> import scipy.stats as stats
    >>> oddsratio, pvalue = stats.fisher_exact([[8, 2], [1, 5]])
    >>> pvalue
    0.0349...

    The probability that we would observe this or an even more imbalanced ratio
    by chance is about 3.5%.  A commonly used significance level is 5%--if we
    adopt that, we can therefore conclude that our observed imbalance is
    statistically significant; whales prefer the Atlantic while sharks prefer
    the Indian ocean.

    """
    hypergeom = distributions.hypergeom
    c = np.asarray(table, dtype=np.int64)  # int32 is not enough for the algorithm
    if not c.shape == (2, 2):
        raise ValueError("The input `table` must be of shape (2, 2).")

    if np.any(c < 0):
        raise ValueError("All values in `table` must be nonnegative.")

    if 0 in c.sum(axis=0) or 0 in c.sum(axis=1):
        # If both values in a row or column are zero, the p-value is 1 and
        # the odds ratio is NaN.
        return np.nan, 1.0

    if c[1, 0] > 0 and c[0, 1] > 0:
        oddsratio = c[0, 0] * c[1, 1] / (c[1, 0] * c[0, 1])
    else:
        oddsratio = np.inf

    n1 = c[0, 0] + c[0, 1]
    n2 = c[1, 0] + c[1, 1]
    n = c[0, 0] + c[1, 0]

    def binary_search(n, n1, n2, side):
        """Binary search for where to begin halves in two-sided test."""
        if side == "upper":
            minval = mode
            maxval = n
        else:
            minval = 0
            maxval = mode
        guess = -1
        while maxval - minval > 1:
            if maxval == minval + 1 and guess == minval:
                guess = maxval
            else:
                guess = (maxval + minval) // 2
            pguess = hypergeom.pmf(guess, n1 + n2, n1, n)
            if side == "upper":
                ng = guess - 1
            else:
                ng = guess + 1
            if pguess <= pexact < hypergeom.pmf(ng, n1 + n2, n1, n):
                break
            elif pguess < pexact:
                maxval = guess
            else:
                minval = guess
        if guess == -1:
            guess = minval
        if side == "upper":
            while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon:
                guess -= 1
            while hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon:
                guess += 1
        else:
            while hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon:
                guess += 1
            while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon:
                guess -= 1
        return guess

    if alternative == 'less':
        pvalue = hypergeom.cdf(c[0, 0], n1 + n2, n1, n)
    elif alternative == 'greater':
        # Same formula as the 'less' case, but with the second column.
        pvalue = hypergeom.cdf(c[0, 1], n1 + n2, n1, c[0, 1] + c[1, 1])
    elif alternative == 'two-sided':
        mode = int((n + 1) * (n1 + 1) / (n1 + n2 + 2))
        pexact = hypergeom.pmf(c[0, 0], n1 + n2, n1, n)
        pmode = hypergeom.pmf(mode, n1 + n2, n1, n)

        epsilon = 1 - 1e-4
        if np.abs(pexact - pmode) / np.maximum(pexact, pmode) <= 1 - epsilon:
            return oddsratio, 1.

        elif c[0, 0] < mode:
            plower = hypergeom.cdf(c[0, 0], n1 + n2, n1, n)
            if hypergeom.pmf(n, n1 + n2, n1, n) > pexact / epsilon:
                return oddsratio, plower

            guess = binary_search(n, n1, n2, "upper")
            pvalue = plower + hypergeom.sf(guess - 1, n1 + n2, n1, n)
        else:
            pupper = hypergeom.sf(c[0, 0] - 1, n1 + n2, n1, n)
            if hypergeom.pmf(0, n1 + n2, n1, n) > pexact / epsilon:
                return oddsratio, pupper

            guess = binary_search(n, n1, n2, "lower")
            pvalue = pupper + hypergeom.cdf(guess, n1 + n2, n1, n)
    else:
        msg = "`alternative` should be one of {'two-sided', 'less', 'greater'}"
        raise ValueError(msg)

    pvalue = min(pvalue, 1.0)

    return oddsratio, pvalue


SpearmanrResult = namedtuple('SpearmanrResult', ('correlation', 'pvalue'))


def spearmanr(a, b=None, axis=0, nan_policy='propagate'):
    """
    Calculate a Spearman correlation coefficient with associated p-value.

    The Spearman rank-order correlation coefficient is a nonparametric measure
    of the monotonicity of the relationship between two datasets. Unlike the
    Pearson correlation, the Spearman correlation does not assume that both
    datasets are normally distributed. Like other correlation coefficients,
    this one varies between -1 and +1 with 0 implying no correlation.
    Correlations of -1 or +1 imply an exact monotonic relationship. Positive
    correlations imply that as x increases, so does y. Negative correlations
    imply that as x increases, y decreases.

    The p-value roughly indicates the probability of an uncorrelated system
    producing datasets that have a Spearman correlation at least as extreme
    as the one computed from these datasets. The p-values are not entirely
    reliable but are probably reasonable for datasets larger than 500 or so.

    Parameters
    ----------
    a, b : 1D or 2D array_like, b is optional
        One or two 1-D or 2-D arrays containing multiple variables and
        observations. When these are 1-D, each represents a vector of
        observations of a single variable. For the behavior in the 2-D case,
        see under ``axis``, below.
        Both arrays need to have the same length in the ``axis`` dimension.
    axis : int or None, optional
        If axis=0 (default), then each column represents a variable, with
        observations in the rows. If axis=1, the relationship is transposed:
        each row represents a variable, while the columns contain observations.
        If axis=None, then both arrays will be raveled.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    correlation : float or ndarray (2-D square)
        Spearman correlation matrix or correlation coefficient (if only 2
        variables are given as parameters. Correlation matrix is square with
        length equal to total number of variables (columns or rows) in ``a``
        and ``b`` combined.
    pvalue : float
        The two-sided p-value for a hypothesis test whose null hypothesis is
        that two sets of data are uncorrelated, has same dimension as rho.

    References
    ----------
    .. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
       Probability and Statistics Tables and Formulae. Chapman & Hall: New
       York. 2000.
       Section  14.7

    Examples
    --------
    >>> from scipy import stats
    >>> stats.spearmanr([1,2,3,4,5], [5,6,7,8,7])
    (0.82078268166812329, 0.088587005313543798)
    >>> np.random.seed(1234321)
    >>> x2n = np.random.randn(100, 2)
    >>> y2n = np.random.randn(100, 2)
    >>> stats.spearmanr(x2n)
    (0.059969996999699973, 0.55338590803773591)
    >>> stats.spearmanr(x2n[:,0], x2n[:,1])
    (0.059969996999699973, 0.55338590803773591)
    >>> rho, pval = stats.spearmanr(x2n, y2n)
    >>> rho
    array([[ 1.        ,  0.05997   ,  0.18569457,  0.06258626],
           [ 0.05997   ,  1.        ,  0.110003  ,  0.02534653],
           [ 0.18569457,  0.110003  ,  1.        ,  0.03488749],
           [ 0.06258626,  0.02534653,  0.03488749,  1.        ]])
    >>> pval
    array([[ 0.        ,  0.55338591,  0.06435364,  0.53617935],
           [ 0.55338591,  0.        ,  0.27592895,  0.80234077],
           [ 0.06435364,  0.27592895,  0.        ,  0.73039992],
           [ 0.53617935,  0.80234077,  0.73039992,  0.        ]])
    >>> rho, pval = stats.spearmanr(x2n.T, y2n.T, axis=1)
    >>> rho
    array([[ 1.        ,  0.05997   ,  0.18569457,  0.06258626],
           [ 0.05997   ,  1.        ,  0.110003  ,  0.02534653],
           [ 0.18569457,  0.110003  ,  1.        ,  0.03488749],
           [ 0.06258626,  0.02534653,  0.03488749,  1.        ]])
    >>> stats.spearmanr(x2n, y2n, axis=None)
    (0.10816770419260482, 0.1273562188027364)
    >>> stats.spearmanr(x2n.ravel(), y2n.ravel())
    (0.10816770419260482, 0.1273562188027364)

    >>> xint = np.random.randint(10, size=(100, 2))
    >>> stats.spearmanr(xint)
    (0.052760927029710199, 0.60213045837062351)

    """
    a, axisout = _chk_asarray(a, axis)
    if a.ndim > 2:
        raise ValueError("spearmanr only handles 1-D or 2-D arrays")

    if b is None:
        if a.ndim < 2:
            raise ValueError("`spearmanr` needs at least 2 variables to compare")
    else:
        # Concatenate a and b, so that we now only have to handle the case
        # of a 2-D `a`.
        b, _ = _chk_asarray(b, axis)
        if axisout == 0:
            a = np.column_stack((a, b))
        else:
            a = np.row_stack((a, b))

    n_vars = a.shape[1 - axisout]
    n_obs = a.shape[axisout]
    if n_obs <= 1:
        # Handle empty arrays or single observations.
        return SpearmanrResult(np.nan, np.nan)

    a_contains_nan, nan_policy = _contains_nan(a, nan_policy)
    variable_has_nan = np.zeros(n_vars, dtype=bool)
    if a_contains_nan:
        if nan_policy == 'omit':
            return mstats_basic.spearmanr(a, axis=axis, nan_policy=nan_policy)
        elif nan_policy == 'propagate':
            if a.ndim == 1 or n_vars <= 2:
                return SpearmanrResult(np.nan, np.nan)
            else:
                # Keep track of variables with NaNs, set the outputs to NaN
                # only for those variables
                variable_has_nan = np.isnan(a).sum(axis=axisout)

    a_ranked = np.apply_along_axis(rankdata, axisout, a)
    rs = np.corrcoef(a_ranked, rowvar=axisout)
    dof = n_obs - 2  # degrees of freedom

    # rs can have elements equal to 1, so avoid zero division warnings
    olderr = np.seterr(divide='ignore')
    try:
        # clip the small negative values possibly caused by rounding
        # errors before taking the square root
        t = rs * np.sqrt((dof/((rs+1.0)*(1.0-rs))).clip(0))
    finally:
        np.seterr(**olderr)

    prob = 2 * distributions.t.sf(np.abs(t), dof)

    # For backwards compatibility, return scalars when comparing 2 columns
    if rs.shape == (2, 2):
        return SpearmanrResult(rs[1, 0], prob[1, 0])
    else:
        rs[variable_has_nan, :] = np.nan
        rs[:, variable_has_nan] = np.nan
        return SpearmanrResult(rs, prob)


PointbiserialrResult = namedtuple('PointbiserialrResult',
                                  ('correlation', 'pvalue'))


def pointbiserialr(x, y):
    r"""
    Calculate a point biserial correlation coefficient and its p-value.

    The point biserial correlation is used to measure the relationship
    between a binary variable, x, and a continuous variable, y. Like other
    correlation coefficients, this one varies between -1 and +1 with 0
    implying no correlation. Correlations of -1 or +1 imply a determinative
    relationship.

    This function uses a shortcut formula but produces the same result as
    `pearsonr`.

    Parameters
    ----------
    x : array_like of bools
        Input array.
    y : array_like
        Input array.

    Returns
    -------
    correlation : float
        R value.
    pvalue : float
        Two-sided p-value.

    Notes
    -----
    `pointbiserialr` uses a t-test with ``n-1`` degrees of freedom.
    It is equivalent to `pearsonr.`

    The value of the point-biserial correlation can be calculated from:

    .. math::

        r_{pb} = \frac{\overline{Y_{1}} -
                 \overline{Y_{0}}}{s_{y}}\sqrt{\frac{N_{1} N_{2}}{N (N - 1))}}

    Where :math:`Y_{0}` and :math:`Y_{1}` are means of the metric
    observations coded 0 and 1 respectively; :math:`N_{0}` and :math:`N_{1}`
    are number of observations coded 0 and 1 respectively; :math:`N` is the
    total number of observations and :math:`s_{y}` is the standard
    deviation of all the metric observations.

    A value of :math:`r_{pb}` that is significantly different from zero is
    completely equivalent to a significant difference in means between the two
    groups. Thus, an independent groups t Test with :math:`N-2` degrees of
    freedom may be used to test whether :math:`r_{pb}` is nonzero. The
    relation between the t-statistic for comparing two independent groups and
    :math:`r_{pb}` is given by:

    .. math::

        t = \sqrt{N - 2}\frac{r_{pb}}{\sqrt{1 - r^{2}_{pb}}}

    References
    ----------
    .. [1] J. Lev, "The Point Biserial Coefficient of Correlation", Ann. Math.
           Statist., Vol. 20, no.1, pp. 125-126, 1949.

    .. [2] R.F. Tate, "Correlation Between a Discrete and a Continuous
           Variable. Point-Biserial Correlation.", Ann. Math. Statist., Vol. 25,
           np. 3, pp. 603-607, 1954.

    .. [3] D. Kornbrot "Point Biserial Correlation", In Wiley StatsRef:
           Statistics Reference Online (eds N. Balakrishnan, et al.), 2014.
           https://doi.org/10.1002/9781118445112.stat06227

    Examples
    --------
    >>> from scipy import stats
    >>> a = np.array([0, 0, 0, 1, 1, 1, 1])
    >>> b = np.arange(7)
    >>> stats.pointbiserialr(a, b)
    (0.8660254037844386, 0.011724811003954652)
    >>> stats.pearsonr(a, b)
    (0.86602540378443871, 0.011724811003954626)
    >>> np.corrcoef(a, b)
    array([[ 1.       ,  0.8660254],
           [ 0.8660254,  1.       ]])

    """
    rpb, prob = pearsonr(x, y)
    return PointbiserialrResult(rpb, prob)


KendalltauResult = namedtuple('KendalltauResult', ('correlation', 'pvalue'))


def kendalltau(x, y, initial_lexsort=None, nan_policy='propagate', method='auto'):
    """
    Calculate Kendall's tau, a correlation measure for ordinal data.

    Kendall's tau is a measure of the correspondence between two rankings.
    Values close to 1 indicate strong agreement, values close to -1 indicate
    strong disagreement.  This is the 1945 "tau-b" version of Kendall's
    tau [2]_, which can account for ties and which reduces to the 1938 "tau-a"
    version [1]_ in absence of ties.

    Parameters
    ----------
    x, y : array_like
        Arrays of rankings, of the same shape. If arrays are not 1-D, they will
        be flattened to 1-D.
    initial_lexsort : bool, optional
        Unused (deprecated).
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values
    method : {'auto', 'asymptotic', 'exact'}, optional
        Defines which method is used to calculate the p-value [5]_.
        The following options are available (default is 'auto'):

          * 'auto': selects the appropriate method based on a trade-off between
            speed and accuracy
          * 'asymptotic': uses a normal approximation valid for large samples
          * 'exact': computes the exact p-value, but can only be used if no ties
            are present

    Returns
    -------
    correlation : float
       The tau statistic.
    pvalue : float
       The two-sided p-value for a hypothesis test whose null hypothesis is
       an absence of association, tau = 0.

    See Also
    --------
    spearmanr : Calculates a Spearman rank-order correlation coefficient.
    theilslopes : Computes the Theil-Sen estimator for a set of points (x, y).
    weightedtau : Computes a weighted version of Kendall's tau.

    Notes
    -----
    The definition of Kendall's tau that is used is [2]_::

      tau = (P - Q) / sqrt((P + Q + T) * (P + Q + U))

    where P is the number of concordant pairs, Q the number of discordant
    pairs, T the number of ties only in `x`, and U the number of ties only in
    `y`.  If a tie occurs for the same pair in both `x` and `y`, it is not
    added to either T or U.

    References
    ----------
    .. [1] Maurice G. Kendall, "A New Measure of Rank Correlation", Biometrika
           Vol. 30, No. 1/2, pp. 81-93, 1938.
    .. [2] Maurice G. Kendall, "The treatment of ties in ranking problems",
           Biometrika Vol. 33, No. 3, pp. 239-251. 1945.
    .. [3] Gottfried E. Noether, "Elements of Nonparametric Statistics", John
           Wiley & Sons, 1967.
    .. [4] Peter M. Fenwick, "A new data structure for cumulative frequency
           tables", Software: Practice and Experience, Vol. 24, No. 3,
           pp. 327-336, 1994.
    .. [5] Maurice G. Kendall, "Rank Correlation Methods" (4th Edition),
           Charles Griffin & Co., 1970.

    Examples
    --------
    >>> from scipy import stats
    >>> x1 = [12, 2, 1, 12, 2]
    >>> x2 = [1, 4, 7, 1, 0]
    >>> tau, p_value = stats.kendalltau(x1, x2)
    >>> tau
    -0.47140452079103173
    >>> p_value
    0.2827454599327748

    """
    x = np.asarray(x).ravel()
    y = np.asarray(y).ravel()

    if x.size != y.size:
        raise ValueError("All inputs to `kendalltau` must be of the same size, "
                         "found x-size %s and y-size %s" % (x.size, y.size))
    elif not x.size or not y.size:
        return KendalltauResult(np.nan, np.nan)  # Return NaN if arrays are empty

    # check both x and y
    cnx, npx = _contains_nan(x, nan_policy)
    cny, npy = _contains_nan(y, nan_policy)
    contains_nan = cnx or cny
    if npx == 'omit' or npy == 'omit':
        nan_policy = 'omit'

    if contains_nan and nan_policy == 'propagate':
        return KendalltauResult(np.nan, np.nan)

    elif contains_nan and nan_policy == 'omit':
        x = ma.masked_invalid(x)
        y = ma.masked_invalid(y)
        return mstats_basic.kendalltau(x, y, method=method)

    if initial_lexsort is not None:  # deprecate to drop!
        warnings.warn('"initial_lexsort" is gone!')

    def count_rank_tie(ranks):
        cnt = np.bincount(ranks).astype('int64', copy=False)
        cnt = cnt[cnt > 1]
        return ((cnt * (cnt - 1) // 2).sum(),
            (cnt * (cnt - 1.) * (cnt - 2)).sum(),
            (cnt * (cnt - 1.) * (2*cnt + 5)).sum())

    size = x.size
    perm = np.argsort(y)  # sort on y and convert y to dense ranks
    x, y = x[perm], y[perm]
    y = np.r_[True, y[1:] != y[:-1]].cumsum(dtype=np.intp)

    # stable sort on x and convert x to dense ranks
    perm = np.argsort(x, kind='mergesort')
    x, y = x[perm], y[perm]
    x = np.r_[True, x[1:] != x[:-1]].cumsum(dtype=np.intp)

    dis = _kendall_dis(x, y)  # discordant pairs

    obs = np.r_[True, (x[1:] != x[:-1]) | (y[1:] != y[:-1]), True]
    cnt = np.diff(np.nonzero(obs)[0]).astype('int64', copy=False)

    ntie = (cnt * (cnt - 1) // 2).sum()  # joint ties
    xtie, x0, x1 = count_rank_tie(x)     # ties in x, stats
    ytie, y0, y1 = count_rank_tie(y)     # ties in y, stats

    tot = (size * (size - 1)) // 2

    if xtie == tot or ytie == tot:
        return KendalltauResult(np.nan, np.nan)

    # Note that tot = con + dis + (xtie - ntie) + (ytie - ntie) + ntie
    #               = con + dis + xtie + ytie - ntie
    con_minus_dis = tot - xtie - ytie + ntie - 2 * dis
    tau = con_minus_dis / np.sqrt(tot - xtie) / np.sqrt(tot - ytie)
    # Limit range to fix computational errors
    tau = min(1., max(-1., tau))

    if method == 'exact' and (xtie != 0 or ytie != 0):
        raise ValueError("Ties found, exact method cannot be used.")

    if method == 'auto':
        if (xtie == 0 and ytie == 0) and (size <= 33 or min(dis, tot-dis) <= 1):
            method = 'exact'
        else:
            method = 'asymptotic'

    if xtie == 0 and ytie == 0 and method == 'exact':
        # Exact p-value, see Maurice G. Kendall, "Rank Correlation Methods" (4th Edition), Charles Griffin & Co., 1970.
        c = min(dis, tot-dis)
        if size <= 0:
            raise ValueError
        elif c < 0 or 2*c > size*(size-1):
            raise ValueError
        elif size == 1:
            pvalue = 1.0
        elif size == 2:
            pvalue = 1.0
        elif c == 0:
            pvalue = 2.0/math.factorial(size) if size < 171 else 0.0
        elif c == 1:
            pvalue = 2.0/math.factorial(size-1) if (size-1) < 171 else 0.0
        else:
            new = [0.0]*(c+1)
            new[0] = 1.0
            new[1] = 1.0
            for j in range(3,size+1):
                old = new[:]
                for k in range(1,min(j,c+1)):
                    new[k] += new[k-1]
                for k in range(j,c+1):
                    new[k] += new[k-1] - old[k-j]
            pvalue = 2.0*sum(new)/math.factorial(size) if size < 171 else 0.0

    elif method == 'asymptotic':
        # con_minus_dis is approx normally distributed with this variance [3]_
        var = (size * (size - 1) * (2.*size + 5) - x1 - y1) / 18. + (
            2. * xtie * ytie) / (size * (size - 1)) + x0 * y0 / (9. *
            size * (size - 1) * (size - 2))
        pvalue = special.erfc(np.abs(con_minus_dis) / np.sqrt(var) / np.sqrt(2))
    else:
        raise ValueError("Unknown method "+str(method)+" specified, please use auto, exact or asymptotic.")

    return KendalltauResult(tau, pvalue)


WeightedTauResult = namedtuple('WeightedTauResult', ('correlation', 'pvalue'))


def weightedtau(x, y, rank=True, weigher=None, additive=True):
    r"""
    Compute a weighted version of Kendall's :math:`\tau`.

    The weighted :math:`\tau` is a weighted version of Kendall's
    :math:`\tau` in which exchanges of high weight are more influential than
    exchanges of low weight. The default parameters compute the additive
    hyperbolic version of the index, :math:`\tau_\mathrm h`, which has
    been shown to provide the best balance between important and
    unimportant elements [1]_.

    The weighting is defined by means of a rank array, which assigns a
    nonnegative rank to each element, and a weigher function, which
    assigns a weight based from the rank to each element. The weight of an
    exchange is then the sum or the product of the weights of the ranks of
    the exchanged elements. The default parameters compute
    :math:`\tau_\mathrm h`: an exchange between elements with rank
    :math:`r` and :math:`s` (starting from zero) has weight
    :math:`1/(r+1) + 1/(s+1)`.

    Specifying a rank array is meaningful only if you have in mind an
    external criterion of importance. If, as it usually happens, you do
    not have in mind a specific rank, the weighted :math:`\tau` is
    defined by averaging the values obtained using the decreasing
    lexicographical rank by (`x`, `y`) and by (`y`, `x`). This is the
    behavior with default parameters.

    Note that if you are computing the weighted :math:`\tau` on arrays of
    ranks, rather than of scores (i.e., a larger value implies a lower
    rank) you must negate the ranks, so that elements of higher rank are
    associated with a larger value.

    Parameters
    ----------
    x, y : array_like
        Arrays of scores, of the same shape. If arrays are not 1-D, they will
        be flattened to 1-D.
    rank : array_like of ints or bool, optional
        A nonnegative rank assigned to each element. If it is None, the
        decreasing lexicographical rank by (`x`, `y`) will be used: elements of
        higher rank will be those with larger `x`-values, using `y`-values to
        break ties (in particular, swapping `x` and `y` will give a different
        result). If it is False, the element indices will be used
        directly as ranks. The default is True, in which case this
        function returns the average of the values obtained using the
        decreasing lexicographical rank by (`x`, `y`) and by (`y`, `x`).
    weigher : callable, optional
        The weigher function. Must map nonnegative integers (zero
        representing the most important element) to a nonnegative weight.
        The default, None, provides hyperbolic weighing, that is,
        rank :math:`r` is mapped to weight :math:`1/(r+1)`.
    additive : bool, optional
        If True, the weight of an exchange is computed by adding the
        weights of the ranks of the exchanged elements; otherwise, the weights
        are multiplied. The default is True.

    Returns
    -------
    correlation : float
       The weighted :math:`\tau` correlation index.
    pvalue : float
       Presently ``np.nan``, as the null statistics is unknown (even in the
       additive hyperbolic case).

    See Also
    --------
    kendalltau : Calculates Kendall's tau.
    spearmanr : Calculates a Spearman rank-order correlation coefficient.
    theilslopes : Computes the Theil-Sen estimator for a set of points (x, y).

    Notes
    -----
    This function uses an :math:`O(n \log n)`, mergesort-based algorithm
    [1]_ that is a weighted extension of Knight's algorithm for Kendall's
    :math:`\tau` [2]_. It can compute Shieh's weighted :math:`\tau` [3]_
    between rankings without ties (i.e., permutations) by setting
    `additive` and `rank` to False, as the definition given in [1]_ is a
    generalization of Shieh's.

    NaNs are considered the smallest possible score.

    .. versionadded:: 0.19.0

    References
    ----------
    .. [1] Sebastiano Vigna, "A weighted correlation index for rankings with
           ties", Proceedings of the 24th international conference on World
           Wide Web, pp. 1166-1176, ACM, 2015.
    .. [2] W.R. Knight, "A Computer Method for Calculating Kendall's Tau with
           Ungrouped Data", Journal of the American Statistical Association,
           Vol. 61, No. 314, Part 1, pp. 436-439, 1966.
    .. [3] Grace S. Shieh. "A weighted Kendall's tau statistic", Statistics &
           Probability Letters, Vol. 39, No. 1, pp. 17-24, 1998.

    Examples
    --------
    >>> from scipy import stats
    >>> x = [12, 2, 1, 12, 2]
    >>> y = [1, 4, 7, 1, 0]
    >>> tau, p_value = stats.weightedtau(x, y)
    >>> tau
    -0.56694968153682723
    >>> p_value
    nan
    >>> tau, p_value = stats.weightedtau(x, y, additive=False)
    >>> tau
    -0.62205716951801038

    NaNs are considered the smallest possible score:

    >>> x = [12, 2, 1, 12, 2]
    >>> y = [1, 4, 7, 1, np.nan]
    >>> tau, _ = stats.weightedtau(x, y)
    >>> tau
    -0.56694968153682723

    This is exactly Kendall's tau:

    >>> x = [12, 2, 1, 12, 2]
    >>> y = [1, 4, 7, 1, 0]
    >>> tau, _ = stats.weightedtau(x, y, weigher=lambda x: 1)
    >>> tau
    -0.47140452079103173

    >>> x = [12, 2, 1, 12, 2]
    >>> y = [1, 4, 7, 1, 0]
    >>> stats.weightedtau(x, y, rank=None)
    WeightedTauResult(correlation=-0.4157652301037516, pvalue=nan)
    >>> stats.weightedtau(y, x, rank=None)
    WeightedTauResult(correlation=-0.7181341329699028, pvalue=nan)

    """
    x = np.asarray(x).ravel()
    y = np.asarray(y).ravel()

    if x.size != y.size:
        raise ValueError("All inputs to `weightedtau` must be of the same size, "
                         "found x-size %s and y-size %s" % (x.size, y.size))
    if not x.size:
        return WeightedTauResult(np.nan, np.nan)  # Return NaN if arrays are empty

    # If there are NaNs we apply _toint64()
    if np.isnan(np.sum(x)):
        x = _toint64(x)
    if np.isnan(np.sum(x)):
        y = _toint64(y)

    # Reduce to ranks unsupported types
    if x.dtype != y.dtype:
        if x.dtype != np.int64:
            x = _toint64(x)
        if y.dtype != np.int64:
            y = _toint64(y)
    else:
        if x.dtype not in (np.int32, np.int64, np.float32, np.float64):
            x = _toint64(x)
            y = _toint64(y)

    if rank is True:
        return WeightedTauResult((
            _weightedrankedtau(x, y, None, weigher, additive) +
            _weightedrankedtau(y, x, None, weigher, additive)
            ) / 2, np.nan)

    if rank is False:
        rank = np.arange(x.size, dtype=np.intp)
    elif rank is not None:
        rank = np.asarray(rank).ravel()
        if rank.size != x.size:
            raise ValueError("All inputs to `weightedtau` must be of the same size, "
                         "found x-size %s and rank-size %s" % (x.size, rank.size))

    return WeightedTauResult(_weightedrankedtau(x, y, rank, weigher, additive), np.nan)


# FROM MGCPY: https://github.com/neurodata/mgcpy

class _ParallelP(object):
    """
    Helper function to calculate parallel p-value.
    """
    def __init__(self, x, y, compute_distance, random_states):
        self.x = x
        self.y = y
        self.compute_distance = compute_distance
        self.random_states = random_states

    def __call__(self, index):
        permx = self.random_states[index].permutation(self.x)
        permy = self.random_states[index].permutation(self.y)

        # calculate permuted stats, store in null distribution
        perm_stat = _mgc_stat(permx, permy, self.compute_distance)[0]

        return perm_stat


def _perm_test(x, y, stat, compute_distance, reps=1000, workers=-1,
               random_state=None):
    r"""
    Helper function that calculates the p-value. See below for uses.

    Parameters
    ----------
    x, y : ndarray
        `x` and `y` have shapes `(n, p)` and `(n, q)`.
    stat : float
        The sample test statistic.
    compute_distance : callable
        A function that computes the distance or similarity among the samples
        within each data matrix. Set to `None` if `x` and `y` are already
        distance.
    reps : int, optional
        The number of replications used to estimate the null when using the
        permutation test. The default is 1000 replications.
    workers : int or map-like callable, optional
        If `workers` is an int the population is subdivided into `workers`
        sections and evaluated in parallel (uses
        `multiprocessing.Pool <multiprocessing>`). Supply `-1` to use all cores
        available to the Process. Alternatively supply a map-like callable,
        such as `multiprocessing.Pool.map` for evaluating the population in
        parallel. This evaluation is carried out as `workers(func, iterable)`.
        Requires that `func` be pickleable.
    random_state : int or np.random.RandomState instance, optional
        If already a RandomState instance, use it.
        If seed is an int, return a new RandomState instance seeded with seed.
        If None, use np.random.RandomState. Default is None.

    Returns
    -------
    pvalue : float
        The sample test p-value.
    null_dist : list
        The approximated null distribution.
    """
    # generate seeds for each rep (change to new parallel random number
    # capabilities in numpy >= 1.17+)
    random_state = check_random_state(random_state)
    random_states = [np.random.RandomState(random_state.randint(1 << 32,
                     size=4, dtype=np.uint32)) for _ in range(reps)]

    # parallelizes with specified workers over number of reps and set seeds
    mapwrapper = MapWrapper(workers)
    parallelp = _ParallelP(x=x, y=y, compute_distance=compute_distance,
                           random_states=random_states)
    null_dist = np.array(list(mapwrapper(parallelp, range(reps))))

    # calculate p-value and significant permutation map through list
    pvalue = (null_dist >= stat).sum() / reps

    # correct for a p-value of 0. This is because, with bootstrapping
    # permutations, a p-value of 0 is incorrect
    if pvalue == 0:
        pvalue = 1 / reps

    return pvalue, null_dist


def _euclidean_dist(x):
    return cdist(x, x)


MGCResult = namedtuple('MGCResult', ('stat', 'pvalue', 'mgc_dict'))


def multiscale_graphcorr(x, y, compute_distance=_euclidean_dist, reps=1000,
                         workers=1, is_twosamp=False, random_state=None):
    r"""
    Computes the Multiscale Graph Correlation (MGC) test statistic.

    Specifically, for each point, MGC finds the :math:`k`-nearest neighbors for
    one property (e.g. cloud density), and the :math:`l`-nearest neighbors for
    the other property (e.g. grass wetness) [1]_. This pair :math:`(k, l)` is
    called the "scale". A priori, however, it is not know which scales will be
    most informative. So, MGC computes all distance pairs, and then efficiently
    computes the distance correlations for all scales. The local correlations
    illustrate which scales are relatively informative about the relationship.
    The key, therefore, to successfully discover and decipher relationships
    between disparate data modalities is to adaptively determine which scales
    are the most informative, and the geometric implication for the most
    informative scales. Doing so not only provides an estimate of whether the
    modalities are related, but also provides insight into how the
    determination was made. This is especially important in high-dimensional
    data, where simple visualizations do not reveal relationships to the
    unaided human eye. Characterizations of this implementation in particular
    have been derived from and benchmarked within in [2]_.

    Parameters
    ----------
    x, y : ndarray
        If ``x`` and ``y`` have shapes ``(n, p)`` and ``(n, q)`` where `n` is
        the number of samples and `p` and `q` are the number of dimensions,
        then the MGC independence test will be run.  Alternatively, ``x`` and
        ``y`` can have shapes ``(n, n)`` if they are distance or similarity
        matrices, and ``compute_distance`` must be sent to ``None``. If ``x``
        and ``y`` have shapes ``(n, p)`` and ``(m, p)``, an unpaired
        two-sample MGC test will be run.
    compute_distance : callable, optional
        A function that computes the distance or similarity among the samples
        within each data matrix. Set to ``None`` if ``x`` and ``y`` are
        already distance matrices. The default uses the euclidean norm metric.
        If you are calling a custom function, either create the distance
        matrix before-hand or create a function of the form
        ``compute_distance(x)`` where `x` is the data matrix for which
        pairwise distances are calculated.
    reps : int, optional
        The number of replications used to estimate the null when using the
        permutation test. The default is ``1000``.
    workers : int or map-like callable, optional
        If ``workers`` is an int the population is subdivided into ``workers``
        sections and evaluated in parallel (uses ``multiprocessing.Pool
        <multiprocessing>``). Supply ``-1`` to use all cores available to the
        Process. Alternatively supply a map-like callable, such as
        ``multiprocessing.Pool.map`` for evaluating the p-value in parallel.
        This evaluation is carried out as ``workers(func, iterable)``.
        Requires that `func` be pickleable. The default is ``1``.
    is_twosamp : bool, optional
        If `True`, a two sample test will be run. If ``x`` and ``y`` have
        shapes ``(n, p)`` and ``(m, p)``, this optional will be overriden and
        set to ``True``. Set to ``True`` if ``x`` and ``y`` both have shapes
        ``(n, p)`` and a two sample test is desired. The default is ``False``.
    random_state : int or np.random.RandomState instance, optional
        If already a RandomState instance, use it.
        If seed is an int, return a new RandomState instance seeded with seed.
        If None, use np.random.RandomState. Default is None.

    Returns
    -------
    stat : float
        The sample MGC test statistic within `[-1, 1]`.
    pvalue : float
        The p-value obtained via permutation.
    mgc_dict : dict
        Contains additional useful additional returns containing the following
        keys:

            - mgc_map : ndarray
                A 2D representation of the latent geometry of the relationship.
                of the relationship.
            - opt_scale : (int, int)
                The estimated optimal scale as a `(x, y)` pair.
            - null_dist : list
                The null distribution derived from the permuted matrices

    See Also
    --------
    pearsonr : Pearson correlation coefficient and p-value for testing
               non-correlation.
    kendalltau : Calculates Kendall's tau.
    spearmanr : Calculates a Spearman rank-order correlation coefficient.

    Notes
    -----
    A description of the process of MGC and applications on neuroscience data
    can be found in [1]_. It is performed using the following steps:

    #. Two distance matrices :math:`D^X` and :math:`D^Y` are computed and
       modified to be mean zero columnwise. This results in two
       :math:`n \times n` distance matrices :math:`A` and :math:`B` (the
       centering and unbiased modification) [3]_.

    #. For all values :math:`k` and :math:`l` from :math:`1, ..., n`,

       * The :math:`k`-nearest neighbor and :math:`l`-nearest neighbor graphs
         are calculated for each property. Here, :math:`G_k (i, j)` indicates
         the :math:`k`-smallest values of the :math:`i`-th row of :math:`A`
         and :math:`H_l (i, j)` indicates the :math:`l` smallested values of
         the :math:`i`-th row of :math:`B`

       * Let :math:`\circ` denotes the entry-wise matrix product, then local
         correlations are summed and normalized using the following statistic:

    .. math::

        c^{kl} = \frac{\sum_{ij} A G_k B H_l}
                      {\sqrt{\sum_{ij} A^2 G_k \times \sum_{ij} B^2 H_l}}

    #. The MGC test statistic is the smoothed optimal local correlation of
       :math:`\{ c^{kl} \}`. Denote the smoothing operation as :math:`R(\cdot)`
       (which essentially set all isolated large correlations) as 0 and
       connected large correlations the same as before, see [3]_.) MGC is,

    .. math::

        MGC_n (x, y) = \max_{(k, l)} R \left(c^{kl} \left( x_n, y_n \right)
                                                    \right)

    The test statistic returns a value between :math:`(-1, 1)` since it is
    normalized.

    The p-value returned is calculated using a permutation test. This process
    is completed by first randomly permuting :math:`y` to estimate the null
    distribution and then calculating the probability of observing a test
    statistic, under the null, at least as extreme as the observed test
    statistic.

    MGC requires at least 5 samples to run with reliable results. It can also
    handle high-dimensional data sets.

    In addition, by manipulating the input data matrices, the two-sample
    testing problem can be reduced to the independence testing problem [4]_.
    Given sample data :math:`U` and :math:`V` of sizes :math:`p \times n`
    :math:`p \times m`, data matrix :math:`X` and :math:`Y` can be created as
    follows:

    .. math::

        X = [U | V] \in \mathcal{R}^{p \times (n + m)}

        Y = [0_{1 \times n} | 1_{1 \times m}] \in \mathcal{R}^{(n + m)}

    Then, the MGC statistic can be calculated as normal. This methodology can
    be extended to similar tests such as distance correlation [4]_.

    .. versionadded:: 1.4.0

    References
    ----------
    .. [1] Vogelstein, J. T., Bridgeford, E. W., Wang, Q., Priebe, C. E.,
           Maggioni, M., & Shen, C. (2019). Discovering and deciphering
           relationships across disparate data modalities. ELife.
    .. [2] Panda, S., Palaniappan, S., Xiong, J., Swaminathan, A.,
           Ramachandran, S., Bridgeford, E. W., ... Vogelstein, J. T. (2019).
           mgcpy: A Comprehensive High Dimensional Independence Testing Python
           Package. ArXiv:1907.02088 [Cs, Stat].
    .. [3] Shen, C., Priebe, C.E., & Vogelstein, J. T. (2019). From distance
           correlation to multiscale graph correlation. Journal of the American
           Statistical Association.
    .. [4] Shen, C. & Vogelstein, J. T. (2018). The Exact Equivalence of
           Distance and Kernel Methods for Hypothesis Testing. ArXiv:1806.05514
           [Cs, Stat].

    Examples
    --------
    >>> from scipy.stats import multiscale_graphcorr
    >>> x = np.arange(100)
    >>> y = x
    >>> stat, pvalue, _ = multiscale_graphcorr(x, y, workers=-1)
    >>> '%.1f, %.3f' % (stat, pvalue)
    '1.0, 0.001'

    Alternatively,

    >>> x = np.arange(100)
    >>> y = x
    >>> mgc = multiscale_graphcorr(x, y)
    >>> '%.1f, %.3f' % (mgc.stat, mgc.pvalue)
    '1.0, 0.001'

    To run an unpaired two-sample test,

    >>> x = np.arange(100)
    >>> y = np.arange(79)
    >>> mgc = multiscale_graphcorr(x, y, random_state=1)
    >>> '%.3f, %.2f' % (mgc.stat, mgc.pvalue)
    '0.033, 0.02'

    or, if shape of the inputs are the same,

    >>> x = np.arange(100)
    >>> y = x
    >>> mgc = multiscale_graphcorr(x, y, is_twosamp=True)
    >>> '%.3f, %.1f' % (mgc.stat, mgc.pvalue)
    '-0.008, 1.0'
    """
    if not isinstance(x, np.ndarray) or not isinstance(y, np.ndarray):
        raise ValueError("x and y must be ndarrays")

    # convert arrays of type (n,) to (n, 1)
    if x.ndim == 1:
        x = x[:, np.newaxis]
    elif x.ndim != 2:
        raise ValueError("Expected a 2-D array `x`, found shape "
                         "{}".format(x.shape))
    if y.ndim == 1:
        y = y[:, np.newaxis]
    elif y.ndim != 2:
        raise ValueError("Expected a 2-D array `y`, found shape "
                         "{}".format(y.shape))

    nx, px = x.shape
    ny, py = y.shape

    # check for NaNs
    _contains_nan(x, nan_policy='raise')
    _contains_nan(y, nan_policy='raise')

    # check for positive or negative infinity and raise error
    if np.sum(np.isinf(x)) > 0 or np.sum(np.isinf(y)) > 0:
        raise ValueError("Inputs contain infinities")

    if nx != ny:
        if px == py:
            # reshape x and y for two sample testing
            is_twosamp = True
        else:
            raise ValueError("Shape mismatch, x and y must have shape [n, p] "
                             "and [n, q] or have shape [n, p] and [m, p].")

    if nx < 5 or ny < 5:
        raise ValueError("MGC requires at least 5 samples to give reasonable "
                         "results.")

    # convert x and y to float
    x = x.astype(np.float64)
    y = y.astype(np.float64)

    # check if compute_distance_matrix if a callable()
    if not callable(compute_distance) and compute_distance is not None:
        raise ValueError("Compute_distance must be a function.")

    # check if number of reps exists, integer, or > 0 (if under 1000 raises
    # warning)
    if not isinstance(reps, int) or reps < 0:
        raise ValueError("Number of reps must be an integer greater than 0.")
    elif reps < 1000:
        msg = ("The number of replications is low (under 1000), and p-value "
               "calculations may be unreliable. Use the p-value result, with "
               "caution!")
        warnings.warn(msg, RuntimeWarning)

    if is_twosamp:
        x, y = _two_sample_transform(x, y)

    # calculate MGC stat
    stat, stat_dict = _mgc_stat(x, y, compute_distance)
    stat_mgc_map = stat_dict["stat_mgc_map"]
    opt_scale = stat_dict["opt_scale"]

    # calculate permutation MGC p-value
    pvalue, null_dist = _perm_test(x, y, stat, compute_distance, reps=reps,
                                   workers=workers, random_state=random_state)

    # save all stats (other than stat/p-value) in dictionary
    mgc_dict = {"mgc_map": stat_mgc_map,
                "opt_scale": opt_scale,
                "null_dist": null_dist}

    return MGCResult(stat, pvalue, mgc_dict)


def _mgc_stat(x, y, compute_distance):
    r"""
    Helper function that calculates the MGC stat. See above for use.

    Parameters
    ----------
    x, y : ndarray
        `x` and `y` have shapes `(n, p)` and `(n, q)` or `(n, n)` and `(n, n)`
        if distance matrices.
    compute_distance : callable
        A function that computes the distance or similarity among the samples
        within each data matrix. Set to `None` if `x` and `y` are already
        distance.

    Returns
    -------
    stat : float
        The sample MGC test statistic within `[-1, 1]`.
    stat_dict : dict
        Contains additional useful additional returns containing the following
        keys:
            - stat_mgc_map : ndarray
                MGC-map of the statistics.
            - opt_scale : (float, float)
                The estimated optimal scale as a `(x, y)` pair.
    """
    # set distx and disty to x and y when compute_distance = None
    distx = x
    disty = y

    if compute_distance is not None:
        # compute distance matrices for x and y
        distx = compute_distance(x)
        disty = compute_distance(y)

    # calculate MGC map and optimal scale
    stat_mgc_map = _local_correlations(distx, disty, global_corr='mgc')

    n, m = stat_mgc_map.shape
    if m == 1 or n == 1:
        # the global scale at is the statistic calculated at maximial nearest
        # neighbors. There is not enough local scale to search over, so
        # default to global scale
        stat = stat_mgc_map[m - 1][n - 1]
        opt_scale = m * n
    else:
        samp_size = len(distx) - 1

        # threshold to find connected region of significant local correlations
        sig_connect = _threshold_mgc_map(stat_mgc_map, samp_size)

        # maximum within the significant region
        stat, opt_scale = _smooth_mgc_map(sig_connect, stat_mgc_map)

    stat_dict = {"stat_mgc_map": stat_mgc_map,
                 "opt_scale": opt_scale}

    return stat, stat_dict


def _threshold_mgc_map(stat_mgc_map, samp_size):
    r"""
    Finds a connected region of significance in the MGC-map by thresholding.

    Parameters
    ----------
    stat_mgc_map : ndarray
        All local correlations within `[-1,1]`.
    samp_size : int
        The sample size of original data.

    Returns
    -------
    sig_connect : ndarray
        A binary matrix with 1's indicating the significant region.
    """
    m, n = stat_mgc_map.shape

    # 0.02 is simply an empirical threshold, this can be set to 0.01 or 0.05
    # with varying levels of performance. Threshold is based on a beta
    # approximation.
    per_sig = 1 - (0.02 / samp_size)  # Percentile to consider as significant
    threshold = samp_size * (samp_size - 3)/4 - 1/2  # Beta approximation
    threshold = distributions.beta.ppf(per_sig, threshold, threshold) * 2 - 1

    # the global scale at is the statistic calculated at maximial nearest
    # neighbors. Threshold is the maximium on the global and local scales
    threshold = max(threshold, stat_mgc_map[m - 1][n - 1])

    # find the largest connected component of significant correlations
    sig_connect = stat_mgc_map > threshold
    if np.sum(sig_connect) > 0:
        sig_connect, _ = measurements.label(sig_connect)
        _, label_counts = np.unique(sig_connect, return_counts=True)

        # skip the first element in label_counts, as it is count(zeros)
        max_label = np.argmax(label_counts[1:]) + 1
        sig_connect = sig_connect == max_label
    else:
        sig_connect = np.array([[False]])

    return sig_connect


def _smooth_mgc_map(sig_connect, stat_mgc_map):
    """
    Finds the smoothed maximal within the significant region R.

    If area of R is too small it returns the last local correlation. Otherwise,
    returns the maximum within significant_connected_region.

    Parameters
    ----------
    sig_connect: ndarray
        A binary matrix with 1's indicating the significant region.
    stat_mgc_map: ndarray
        All local correlations within `[-1, 1]`.

    Returns
    -------
    stat : float
        The sample MGC statistic within `[-1, 1]`.
    opt_scale: (float, float)
        The estimated optimal scale as an `(x, y)` pair.
    """

    m, n = stat_mgc_map.shape

    # the global scale at is the statistic calculated at maximial nearest
    # neighbors. By default, statistic and optimal scale are global.
    stat = stat_mgc_map[m - 1][n - 1]
    opt_scale = [m, n]

    if np.linalg.norm(sig_connect) != 0:
        # proceed only when the connected region's area is sufficiently large
        # 0.02 is simply an empirical threshold, this can be set to 0.01 or 0.05
        # with varying levels of performance
        if np.sum(sig_connect) >= np.ceil(0.02 * max(m, n)) * min(m, n):
            max_corr = max(stat_mgc_map[sig_connect])

            # find all scales within significant_connected_region that maximize
            # the local correlation
            max_corr_index = np.where((stat_mgc_map >= max_corr) & sig_connect)

            if max_corr >= stat:
                stat = max_corr

                k, l = max_corr_index
                one_d_indices = k * n + l  # 2D to 1D indexing
                k = np.max(one_d_indices) // n
                l = np.max(one_d_indices) % n
                opt_scale = [k+1, l+1]  # adding 1s to match R indexing

    return stat, opt_scale


def _two_sample_transform(u, v):
    """
    Helper function that concatenates x and y for two sample MGC stat. See
    above for use.

    Parameters
    ----------
    u, v : ndarray
        `u` and `v` have shapes `(n, p)` and `(m, p)`,

    Returns
    -------
    x : ndarray
        Concatenate `u` and `v` along the `axis = 0`. `x` thus has shape
        `(2n, p)`.
    y : ndarray
        Label matrix for `x` where 0 refers to samples that comes from `u` and
        1 refers to samples that come from `v`. `y` thus has shape `(2n, 1)`.
    """
    nx = u.shape[0]
    ny = v.shape[0]
    x = np.concatenate([u, v], axis=0)
    y = np.concatenate([np.zeros(nx), np.ones(ny)], axis=0).reshape(-1, 1)
    return x, y


#####################################
#       INFERENTIAL STATISTICS      #
#####################################

Ttest_1sampResult = namedtuple('Ttest_1sampResult', ('statistic', 'pvalue'))


def ttest_1samp(a, popmean, axis=0, nan_policy='propagate'):
    """
    Calculate the T-test for the mean of ONE group of scores.

    This is a two-sided test for the null hypothesis that the expected value
    (mean) of a sample of independent observations `a` is equal to the given
    population mean, `popmean`.

    Parameters
    ----------
    a : array_like
        Sample observation.
    popmean : float or array_like
        Expected value in null hypothesis. If array_like, then it must have the
        same shape as `a` excluding the axis dimension.
    axis : int or None, optional
        Axis along which to compute test. If None, compute over the whole
        array `a`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    statistic : float or array
        t-statistic.
    pvalue : float or array
        Two-sided p-value.

    Examples
    --------
    >>> from scipy import stats

    >>> np.random.seed(7654567)  # fix seed to get the same result
    >>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2))

    Test if mean of random sample is equal to true mean, and different mean.
    We reject the null hypothesis in the second case and don't reject it in
    the first case.

    >>> stats.ttest_1samp(rvs,5.0)
    (array([-0.68014479, -0.04323899]), array([ 0.49961383,  0.96568674]))
    >>> stats.ttest_1samp(rvs,0.0)
    (array([ 2.77025808,  4.11038784]), array([ 0.00789095,  0.00014999]))

    Examples using axis and non-scalar dimension for population mean.

    >>> stats.ttest_1samp(rvs,[5.0,0.0])
    (array([-0.68014479,  4.11038784]), array([  4.99613833e-01,   1.49986458e-04]))
    >>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
    (array([-0.68014479,  4.11038784]), array([  4.99613833e-01,   1.49986458e-04]))
    >>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
    (array([[-0.68014479, -0.04323899],
           [ 2.77025808,  4.11038784]]), array([[  4.99613833e-01,   9.65686743e-01],
           [  7.89094663e-03,   1.49986458e-04]]))

    """
    a, axis = _chk_asarray(a, axis)

    contains_nan, nan_policy = _contains_nan(a, nan_policy)

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        return mstats_basic.ttest_1samp(a, popmean, axis)

    n = a.shape[axis]
    df = n - 1

    d = np.mean(a, axis) - popmean
    v = np.var(a, axis, ddof=1)
    denom = np.sqrt(v / n)

    with np.errstate(divide='ignore', invalid='ignore'):
        t = np.divide(d, denom)
    t, prob = _ttest_finish(df, t)

    return Ttest_1sampResult(t, prob)


def _ttest_finish(df, t):
    """Common code between all 3 t-test functions."""
    prob = distributions.t.sf(np.abs(t), df) * 2  # use np.abs to get upper tail
    if t.ndim == 0:
        t = t[()]

    return t, prob


def _ttest_ind_from_stats(mean1, mean2, denom, df):

    d = mean1 - mean2
    with np.errstate(divide='ignore', invalid='ignore'):
        t = np.divide(d, denom)
    t, prob = _ttest_finish(df, t)

    return (t, prob)


def _unequal_var_ttest_denom(v1, n1, v2, n2):
    vn1 = v1 / n1
    vn2 = v2 / n2
    with np.errstate(divide='ignore', invalid='ignore'):
        df = (vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1))

    # If df is undefined, variances are zero (assumes n1 > 0 & n2 > 0).
    # Hence it doesn't matter what df is as long as it's not NaN.
    df = np.where(np.isnan(df), 1, df)
    denom = np.sqrt(vn1 + vn2)
    return df, denom


def _equal_var_ttest_denom(v1, n1, v2, n2):
    df = n1 + n2 - 2.0
    svar = ((n1 - 1) * v1 + (n2 - 1) * v2) / df
    denom = np.sqrt(svar * (1.0 / n1 + 1.0 / n2))
    return df, denom


Ttest_indResult = namedtuple('Ttest_indResult', ('statistic', 'pvalue'))


def ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2,
                         equal_var=True):
    r"""
    T-test for means of two independent samples from descriptive statistics.

    This is a two-sided test for the null hypothesis that two independent
    samples have identical average (expected) values.

    Parameters
    ----------
    mean1 : array_like
        The mean(s) of sample 1.
    std1 : array_like
        The standard deviation(s) of sample 1.
    nobs1 : array_like
        The number(s) of observations of sample 1.
    mean2 : array_like
        The mean(s) of sample 2.
    std2 : array_like
        The standard deviations(s) of sample 2.
    nobs2 : array_like
        The number(s) of observations of sample 2.
    equal_var : bool, optional
        If True (default), perform a standard independent 2 sample test
        that assumes equal population variances [1]_.
        If False, perform Welch's t-test, which does not assume equal
        population variance [2]_.

    Returns
    -------
    statistic : float or array
        The calculated t-statistics.
    pvalue : float or array
        The two-tailed p-value.

    See Also
    --------
    scipy.stats.ttest_ind

    Notes
    -----
    .. versionadded:: 0.16.0

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test

    .. [2] https://en.wikipedia.org/wiki/Welch%27s_t-test

    Examples
    --------
    Suppose we have the summary data for two samples, as follows::

                         Sample   Sample
                   Size   Mean   Variance
        Sample 1    13    15.0     87.5
        Sample 2    11    12.0     39.0

    Apply the t-test to this data (with the assumption that the population
    variances are equal):

    >>> from scipy.stats import ttest_ind_from_stats
    >>> ttest_ind_from_stats(mean1=15.0, std1=np.sqrt(87.5), nobs1=13,
    ...                      mean2=12.0, std2=np.sqrt(39.0), nobs2=11)
    Ttest_indResult(statistic=0.9051358093310269, pvalue=0.3751996797581487)

    For comparison, here is the data from which those summary statistics
    were taken.  With this data, we can compute the same result using
    `scipy.stats.ttest_ind`:

    >>> a = np.array([1, 3, 4, 6, 11, 13, 15, 19, 22, 24, 25, 26, 26])
    >>> b = np.array([2, 4, 6, 9, 11, 13, 14, 15, 18, 19, 21])
    >>> from scipy.stats import ttest_ind
    >>> ttest_ind(a, b)
    Ttest_indResult(statistic=0.905135809331027, pvalue=0.3751996797581486)

    Suppose we instead have binary data and would like to apply a t-test to
    compare the proportion of 1s in two independent groups::

                          Number of    Sample     Sample
                    Size    ones        Mean     Variance
        Sample 1    150      30         0.2        0.16
        Sample 2    200      45         0.225      0.174375

    The sample mean :math:`\hat{p}` is the proportion of ones in the sample
    and the variance for a binary observation is estimated by
    :math:`\hat{p}(1-\hat{p})`.

    >>> ttest_ind_from_stats(mean1=0.2, std1=np.sqrt(0.16), nobs1=150,
    ...                      mean2=0.225, std2=np.sqrt(0.17437), nobs2=200)
    Ttest_indResult(statistic=-0.564327545549774, pvalue=0.5728947691244874)

    For comparison, we could compute the t statistic and p-value using
    arrays of 0s and 1s and `scipy.stat.ttest_ind`, as above.

    >>> group1 = np.array([1]*30 + [0]*(150-30))
    >>> group2 = np.array([1]*45 + [0]*(200-45))
    >>> ttest_ind(group1, group2)
    Ttest_indResult(statistic=-0.5627179589855622, pvalue=0.573989277115258)

    """
    if equal_var:
        df, denom = _equal_var_ttest_denom(std1**2, nobs1, std2**2, nobs2)
    else:
        df, denom = _unequal_var_ttest_denom(std1**2, nobs1,
                                             std2**2, nobs2)

    res = _ttest_ind_from_stats(mean1, mean2, denom, df)
    return Ttest_indResult(*res)


def ttest_ind(a, b, axis=0, equal_var=True, nan_policy='propagate'):
    """
    Calculate the T-test for the means of *two independent* samples of scores.

    This is a two-sided test for the null hypothesis that 2 independent samples
    have identical average (expected) values. This test assumes that the
    populations have identical variances by default.

    Parameters
    ----------
    a, b : array_like
        The arrays must have the same shape, except in the dimension
        corresponding to `axis` (the first, by default).
    axis : int or None, optional
        Axis along which to compute test. If None, compute over the whole
        arrays, `a`, and `b`.
    equal_var : bool, optional
        If True (default), perform a standard independent 2 sample test
        that assumes equal population variances [1]_.
        If False, perform Welch's t-test, which does not assume equal
        population variance [2]_.

        .. versionadded:: 0.11.0
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values


    Returns
    -------
    statistic : float or array
        The calculated t-statistic.
    pvalue : float or array
        The two-tailed p-value.

    Notes
    -----
    We can use this test, if we observe two independent samples from
    the same or different population, e.g. exam scores of boys and
    girls or of two ethnic groups. The test measures whether the
    average (expected) value differs significantly across samples. If
    we observe a large p-value, for example larger than 0.05 or 0.1,
    then we cannot reject the null hypothesis of identical average scores.
    If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%,
    then we reject the null hypothesis of equal averages.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test

    .. [2] https://en.wikipedia.org/wiki/Welch%27s_t-test

    Examples
    --------
    >>> from scipy import stats
    >>> np.random.seed(12345678)

    Test with sample with identical means:

    >>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
    >>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
    >>> stats.ttest_ind(rvs1,rvs2)
    (0.26833823296239279, 0.78849443369564776)
    >>> stats.ttest_ind(rvs1,rvs2, equal_var = False)
    (0.26833823296239279, 0.78849452749500748)

    `ttest_ind` underestimates p for unequal variances:

    >>> rvs3 = stats.norm.rvs(loc=5, scale=20, size=500)
    >>> stats.ttest_ind(rvs1, rvs3)
    (-0.46580283298287162, 0.64145827413436174)
    >>> stats.ttest_ind(rvs1, rvs3, equal_var = False)
    (-0.46580283298287162, 0.64149646246569292)

    When n1 != n2, the equal variance t-statistic is no longer equal to the
    unequal variance t-statistic:

    >>> rvs4 = stats.norm.rvs(loc=5, scale=20, size=100)
    >>> stats.ttest_ind(rvs1, rvs4)
    (-0.99882539442782481, 0.3182832709103896)
    >>> stats.ttest_ind(rvs1, rvs4, equal_var = False)
    (-0.69712570584654099, 0.48716927725402048)

    T-test with different means, variance, and n:

    >>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100)
    >>> stats.ttest_ind(rvs1, rvs5)
    (-1.4679669854490653, 0.14263895620529152)
    >>> stats.ttest_ind(rvs1, rvs5, equal_var = False)
    (-0.94365973617132992, 0.34744170334794122)

    """
    a, b, axis = _chk2_asarray(a, b, axis)

    # check both a and b
    cna, npa = _contains_nan(a, nan_policy)
    cnb, npb = _contains_nan(b, nan_policy)
    contains_nan = cna or cnb
    if npa == 'omit' or npb == 'omit':
        nan_policy = 'omit'

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        b = ma.masked_invalid(b)
        return mstats_basic.ttest_ind(a, b, axis, equal_var)

    if a.size == 0 or b.size == 0:
        return Ttest_indResult(np.nan, np.nan)

    v1 = np.var(a, axis, ddof=1)
    v2 = np.var(b, axis, ddof=1)
    n1 = a.shape[axis]
    n2 = b.shape[axis]

    if equal_var:
        df, denom = _equal_var_ttest_denom(v1, n1, v2, n2)
    else:
        df, denom = _unequal_var_ttest_denom(v1, n1, v2, n2)

    res = _ttest_ind_from_stats(np.mean(a, axis), np.mean(b, axis), denom, df)

    return Ttest_indResult(*res)


Ttest_relResult = namedtuple('Ttest_relResult', ('statistic', 'pvalue'))


def ttest_rel(a, b, axis=0, nan_policy='propagate'):
    """
    Calculate the t-test on TWO RELATED samples of scores, a and b.

    This is a two-sided test for the null hypothesis that 2 related or
    repeated samples have identical average (expected) values.

    Parameters
    ----------
    a, b : array_like
        The arrays must have the same shape.
    axis : int or None, optional
        Axis along which to compute test. If None, compute over the whole
        arrays, `a`, and `b`.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    statistic : float or array
        t-statistic.
    pvalue : float or array
        Two-sided p-value.

    Notes
    -----
    Examples for use are scores of the same set of student in
    different exams, or repeated sampling from the same units. The
    test measures whether the average score differs significantly
    across samples (e.g. exams). If we observe a large p-value, for
    example greater than 0.05 or 0.1 then we cannot reject the null
    hypothesis of identical average scores. If the p-value is smaller
    than the threshold, e.g. 1%, 5% or 10%, then we reject the null
    hypothesis of equal averages. Small p-values are associated with
    large t-statistics.

    References
    ----------
    https://en.wikipedia.org/wiki/T-test#Dependent_t-test_for_paired_samples

    Examples
    --------
    >>> from scipy import stats
    >>> np.random.seed(12345678) # fix random seed to get same numbers

    >>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
    >>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) +
    ...         stats.norm.rvs(scale=0.2,size=500))
    >>> stats.ttest_rel(rvs1,rvs2)
    (0.24101764965300962, 0.80964043445811562)
    >>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) +
    ...         stats.norm.rvs(scale=0.2,size=500))
    >>> stats.ttest_rel(rvs1,rvs3)
    (-3.9995108708727933, 7.3082402191726459e-005)

    """
    a, b, axis = _chk2_asarray(a, b, axis)

    cna, npa = _contains_nan(a, nan_policy)
    cnb, npb = _contains_nan(b, nan_policy)
    contains_nan = cna or cnb
    if npa == 'omit' or npb == 'omit':
        nan_policy = 'omit'

    if contains_nan and nan_policy == 'omit':
        a = ma.masked_invalid(a)
        b = ma.masked_invalid(b)
        m = ma.mask_or(ma.getmask(a), ma.getmask(b))
        aa = ma.array(a, mask=m, copy=True)
        bb = ma.array(b, mask=m, copy=True)
        return mstats_basic.ttest_rel(aa, bb, axis)

    if a.shape[axis] != b.shape[axis]:
        raise ValueError('unequal length arrays')

    if a.size == 0 or b.size == 0:
        return np.nan, np.nan

    n = a.shape[axis]
    df = n - 1

    d = (a - b).astype(np.float64)
    v = np.var(d, axis, ddof=1)
    dm = np.mean(d, axis)
    denom = np.sqrt(v / n)

    with np.errstate(divide='ignore', invalid='ignore'):
        t = np.divide(dm, denom)
    t, prob = _ttest_finish(df, t)

    return Ttest_relResult(t, prob)


KstestResult = namedtuple('KstestResult', ('statistic', 'pvalue'))


def kstest(rvs, cdf, args=(), N=20, alternative='two-sided', mode='approx'):
    """
    Perform the Kolmogorov-Smirnov test for goodness of fit.

    This performs a test of the distribution F(x) of an observed
    random variable against a given distribution G(x). Under the null
    hypothesis, the two distributions are identical, F(x)=G(x). The
    alternative hypothesis can be either 'two-sided' (default), 'less'
    or 'greater'. The KS test is only valid for continuous distributions.

    Parameters
    ----------
    rvs : str, array_like, or callable
        If a string, it should be the name of a distribution in `scipy.stats`.
        If an array, it should be a 1-D array of observations of random
        variables.
        If a callable, it should be a function to generate random variables;
        it is required to have a keyword argument `size`.
    cdf : str or callable
        If a string, it should be the name of a distribution in `scipy.stats`.
        If `rvs` is a string then `cdf` can be False or the same as `rvs`.
        If a callable, that callable is used to calculate the cdf.
    args : tuple, sequence, optional
        Distribution parameters, used if `rvs` or `cdf` are strings.
    N : int, optional
        Sample size if `rvs` is string or callable.  Default is 20.
    alternative : {'two-sided', 'less', 'greater'}, optional
        Defines the alternative hypothesis.
        The following options are available (default is 'two-sided'):

          * 'two-sided'
          * 'less': one-sided, see explanation in Notes
          * 'greater': one-sided, see explanation in Notes
    mode : {'approx', 'asymp'}, optional
        Defines the distribution used for calculating the p-value.
        The following options are available (default is 'approx'):

          * 'approx': use approximation to exact distribution of test statistic
          * 'asymp': use asymptotic distribution of test statistic

    Returns
    -------
    statistic : float
        KS test statistic, either D, D+ or D-.
    pvalue :  float
        One-tailed or two-tailed p-value.

    See Also
    --------
    ks_2samp

    Notes
    -----
    In the one-sided test, the alternative is that the empirical
    cumulative distribution function of the random variable is "less"
    or "greater" than the cumulative distribution function G(x) of the
    hypothesis, ``F(x)<=G(x)``, resp. ``F(x)>=G(x)``.

    Examples
    --------
    >>> from scipy import stats

    >>> x = np.linspace(-15, 15, 9)
    >>> stats.kstest(x, 'norm')
    (0.44435602715924361, 0.038850142705171065)

    >>> np.random.seed(987654321) # set random seed to get the same result
    >>> stats.kstest('norm', False, N=100)
    (0.058352892479417884, 0.88531190944151261)

    The above lines are equivalent to:

    >>> np.random.seed(987654321)
    >>> stats.kstest(stats.norm.rvs(size=100), 'norm')
    (0.058352892479417884, 0.88531190944151261)

    *Test against one-sided alternative hypothesis*

    Shift distribution to larger values, so that ``cdf_dgp(x) < norm.cdf(x)``:

    >>> np.random.seed(987654321)
    >>> x = stats.norm.rvs(loc=0.2, size=100)
    >>> stats.kstest(x,'norm', alternative = 'less')
    (0.12464329735846891, 0.040989164077641749)

    Reject equal distribution against alternative hypothesis: less

    >>> stats.kstest(x,'norm', alternative = 'greater')
    (0.0072115233216311081, 0.98531158590396395)

    Don't reject equal distribution against alternative hypothesis: greater

    >>> stats.kstest(x,'norm', mode='asymp')
    (0.12464329735846891, 0.08944488871182088)

    *Testing t distributed random variables against normal distribution*

    With 100 degrees of freedom the t distribution looks close to the normal
    distribution, and the K-S test does not reject the hypothesis that the
    sample came from the normal distribution:

    >>> np.random.seed(987654321)
    >>> stats.kstest(stats.t.rvs(100,size=100),'norm')
    (0.072018929165471257, 0.67630062862479168)

    With 3 degrees of freedom the t distribution looks sufficiently different
    from the normal distribution, that we can reject the hypothesis that the
    sample came from the normal distribution at the 10% level:

    >>> np.random.seed(987654321)
    >>> stats.kstest(stats.t.rvs(3,size=100),'norm')
    (0.131016895759829, 0.058826222555312224)

    """
    if isinstance(rvs, string_types):
        if (not cdf) or (cdf == rvs):
            cdf = getattr(distributions, rvs).cdf
            rvs = getattr(distributions, rvs).rvs
        else:
            raise AttributeError("if rvs is string, cdf has to be the "
                                 "same distribution")

    if isinstance(cdf, string_types):
        cdf = getattr(distributions, cdf).cdf
    if callable(rvs):
        kwds = {'size': N}
        vals = np.sort(rvs(*args, **kwds))
    else:
        vals = np.sort(rvs)
        N = len(vals)
    cdfvals = cdf(vals, *args)

    # to not break compatibility with existing code
    if alternative == 'two_sided':
        alternative = 'two-sided'

    if alternative in ['two-sided', 'greater']:
        Dplus = (np.arange(1.0, N + 1)/N - cdfvals).max()
        if alternative == 'greater':
            return KstestResult(Dplus, distributions.ksone.sf(Dplus, N))

    if alternative in ['two-sided', 'less']:
        Dmin = (cdfvals - np.arange(0.0, N)/N).max()
        if alternative == 'less':
            return KstestResult(Dmin, distributions.ksone.sf(Dmin, N))

    if alternative == 'two-sided':
        D = np.max([Dplus, Dmin])
        if mode == 'asymp':
            return KstestResult(D, distributions.kstwobign.sf(D * np.sqrt(N)))
        if mode == 'approx':
            pval_two = distributions.kstwobign.sf(D * np.sqrt(N))
            if N > 2666 or pval_two > 0.80 - N*0.3/1000:
                return KstestResult(D, pval_two)
            else:
                return KstestResult(D, 2 * distributions.ksone.sf(D, N))


# Map from names to lambda_ values used in power_divergence().
_power_div_lambda_names = {
    "pearson": 1,
    "log-likelihood": 0,
    "freeman-tukey": -0.5,
    "mod-log-likelihood": -1,
    "neyman": -2,
    "cressie-read": 2/3,
}


def _count(a, axis=None):
    """
    Count the number of non-masked elements of an array.

    This function behaves like np.ma.count(), but is much faster
    for ndarrays.
    """
    if hasattr(a, 'count'):
        num = a.count(axis=axis)
        if isinstance(num, np.ndarray) and num.ndim == 0:
            # In some cases, the `count` method returns a scalar array (e.g.
            # np.array(3)), but we want a plain integer.
            num = int(num)
    else:
        if axis is None:
            num = a.size
        else:
            num = a.shape[axis]
    return num


Power_divergenceResult = namedtuple('Power_divergenceResult',
                                    ('statistic', 'pvalue'))


def power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None):
    """
    Cressie-Read power divergence statistic and goodness of fit test.

    This function tests the null hypothesis that the categorical data
    has the given frequencies, using the Cressie-Read power divergence
    statistic.

    Parameters
    ----------
    f_obs : array_like
        Observed frequencies in each category.
    f_exp : array_like, optional
        Expected frequencies in each category.  By default the categories are
        assumed to be equally likely.
    ddof : int, optional
        "Delta degrees of freedom": adjustment to the degrees of freedom
        for the p-value.  The p-value is computed using a chi-squared
        distribution with ``k - 1 - ddof`` degrees of freedom, where `k`
        is the number of observed frequencies.  The default value of `ddof`
        is 0.
    axis : int or None, optional
        The axis of the broadcast result of `f_obs` and `f_exp` along which to
        apply the test.  If axis is None, all values in `f_obs` are treated
        as a single data set.  Default is 0.
    lambda_ : float or str, optional
        The power in the Cressie-Read power divergence statistic.  The default
        is 1.  For convenience, `lambda_` may be assigned one of the following
        strings, in which case the corresponding numerical value is used::

            String              Value   Description
            "pearson"             1     Pearson's chi-squared statistic.
                                        In this case, the function is
                                        equivalent to `stats.chisquare`.
            "log-likelihood"      0     Log-likelihood ratio. Also known as
                                        the G-test [3]_.
            "freeman-tukey"      -1/2   Freeman-Tukey statistic.
            "mod-log-likelihood" -1     Modified log-likelihood ratio.
            "neyman"             -2     Neyman's statistic.
            "cressie-read"        2/3   The power recommended in [5]_.

    Returns
    -------
    statistic : float or ndarray
        The Cressie-Read power divergence test statistic.  The value is
        a float if `axis` is None or if` `f_obs` and `f_exp` are 1-D.
    pvalue : float or ndarray
        The p-value of the test.  The value is a float if `ddof` and the
        return value `stat` are scalars.

    See Also
    --------
    chisquare

    Notes
    -----
    This test is invalid when the observed or expected frequencies in each
    category are too small.  A typical rule is that all of the observed
    and expected frequencies should be at least 5.

    When `lambda_` is less than zero, the formula for the statistic involves
    dividing by `f_obs`, so a warning or error may be generated if any value
    in `f_obs` is 0.

    Similarly, a warning or error may be generated if any value in `f_exp` is
    zero when `lambda_` >= 0.

    The default degrees of freedom, k-1, are for the case when no parameters
    of the distribution are estimated. If p parameters are estimated by
    efficient maximum likelihood then the correct degrees of freedom are
    k-1-p. If the parameters are estimated in a different way, then the
    dof can be between k-1-p and k-1. However, it is also possible that
    the asymptotic distribution is not a chisquare, in which case this
    test is not appropriate.

    This function handles masked arrays.  If an element of `f_obs` or `f_exp`
    is masked, then data at that position is ignored, and does not count
    towards the size of the data set.

    .. versionadded:: 0.13.0

    References
    ----------
    .. [1] Lowry, Richard.  "Concepts and Applications of Inferential
           Statistics". Chapter 8.
           https://web.archive.org/web/20171015035606/http://faculty.vassar.edu/lowry/ch8pt1.html
    .. [2] "Chi-squared test", https://en.wikipedia.org/wiki/Chi-squared_test
    .. [3] "G-test", https://en.wikipedia.org/wiki/G-test
    .. [4] Sokal, R. R. and Rohlf, F. J. "Biometry: the principles and
           practice of statistics in biological research", New York: Freeman
           (1981)
    .. [5] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit
           Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984),
           pp. 440-464.

    Examples
    --------
    (See `chisquare` for more examples.)

    When just `f_obs` is given, it is assumed that the expected frequencies
    are uniform and given by the mean of the observed frequencies.  Here we
    perform a G-test (i.e. use the log-likelihood ratio statistic):

    >>> from scipy.stats import power_divergence
    >>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood')
    (2.006573162632538, 0.84823476779463769)

    The expected frequencies can be given with the `f_exp` argument:

    >>> power_divergence([16, 18, 16, 14, 12, 12],
    ...                  f_exp=[16, 16, 16, 16, 16, 8],
    ...                  lambda_='log-likelihood')
    (3.3281031458963746, 0.6495419288047497)

    When `f_obs` is 2-D, by default the test is applied to each column.

    >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
    >>> obs.shape
    (6, 2)
    >>> power_divergence(obs, lambda_="log-likelihood")
    (array([ 2.00657316,  6.77634498]), array([ 0.84823477,  0.23781225]))

    By setting ``axis=None``, the test is applied to all data in the array,
    which is equivalent to applying the test to the flattened array.

    >>> power_divergence(obs, axis=None)
    (23.31034482758621, 0.015975692534127565)
    >>> power_divergence(obs.ravel())
    (23.31034482758621, 0.015975692534127565)

    `ddof` is the change to make to the default degrees of freedom.

    >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1)
    (2.0, 0.73575888234288467)

    The calculation of the p-values is done by broadcasting the
    test statistic with `ddof`.

    >>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
    (2.0, array([ 0.84914504,  0.73575888,  0.5724067 ]))

    `f_obs` and `f_exp` are also broadcast.  In the following, `f_obs` has
    shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting
    `f_obs` and `f_exp` has shape (2, 6).  To compute the desired chi-squared
    statistics, we must use ``axis=1``:

    >>> power_divergence([16, 18, 16, 14, 12, 12],
    ...                  f_exp=[[16, 16, 16, 16, 16, 8],
    ...                         [8, 20, 20, 16, 12, 12]],
    ...                  axis=1)
    (array([ 3.5 ,  9.25]), array([ 0.62338763,  0.09949846]))

    """
    # Convert the input argument `lambda_` to a numerical value.
    if isinstance(lambda_, string_types):
        if lambda_ not in _power_div_lambda_names:
            names = repr(list(_power_div_lambda_names.keys()))[1:-1]
            raise ValueError("invalid string for lambda_: {0!r}.  Valid strings "
                             "are {1}".format(lambda_, names))
        lambda_ = _power_div_lambda_names[lambda_]
    elif lambda_ is None:
        lambda_ = 1

    f_obs = np.asanyarray(f_obs)

    if f_exp is not None:
        f_exp = np.asanyarray(f_exp)
    else:
        # Ignore 'invalid' errors so the edge case of a data set with length 0
        # is handled without spurious warnings.
        with np.errstate(invalid='ignore'):
            f_exp = f_obs.mean(axis=axis, keepdims=True)

    # `terms` is the array of terms that are summed along `axis` to create
    # the test statistic.  We use some specialized code for a few special
    # cases of lambda_.
    if lambda_ == 1:
        # Pearson's chi-squared statistic
        terms = (f_obs - f_exp)**2 / f_exp
    elif lambda_ == 0:
        # Log-likelihood ratio (i.e. G-test)
        terms = 2.0 * special.xlogy(f_obs, f_obs / f_exp)
    elif lambda_ == -1:
        # Modified log-likelihood ratio
        terms = 2.0 * special.xlogy(f_exp, f_exp / f_obs)
    else:
        # General Cressie-Read power divergence.
        terms = f_obs * ((f_obs / f_exp)**lambda_ - 1)
        terms /= 0.5 * lambda_ * (lambda_ + 1)

    stat = terms.sum(axis=axis)

    num_obs = _count(terms, axis=axis)
    ddof = asarray(ddof)
    p = distributions.chi2.sf(stat, num_obs - 1 - ddof)

    return Power_divergenceResult(stat, p)


def chisquare(f_obs, f_exp=None, ddof=0, axis=0):
    """
    Calculate a one-way chi-square test.

    The chi-square test tests the null hypothesis that the categorical data
    has the given frequencies.

    Parameters
    ----------
    f_obs : array_like
        Observed frequencies in each category.
    f_exp : array_like, optional
        Expected frequencies in each category.  By default the categories are
        assumed to be equally likely.
    ddof : int, optional
        "Delta degrees of freedom": adjustment to the degrees of freedom
        for the p-value.  The p-value is computed using a chi-squared
        distribution with ``k - 1 - ddof`` degrees of freedom, where `k`
        is the number of observed frequencies.  The default value of `ddof`
        is 0.
    axis : int or None, optional
        The axis of the broadcast result of `f_obs` and `f_exp` along which to
        apply the test.  If axis is None, all values in `f_obs` are treated
        as a single data set.  Default is 0.

    Returns
    -------
    chisq : float or ndarray
        The chi-squared test statistic.  The value is a float if `axis` is
        None or `f_obs` and `f_exp` are 1-D.
    p : float or ndarray
        The p-value of the test.  The value is a float if `ddof` and the
        return value `chisq` are scalars.

    See Also
    --------
    scipy.stats.power_divergence

    Notes
    -----
    This test is invalid when the observed or expected frequencies in each
    category are too small.  A typical rule is that all of the observed
    and expected frequencies should be at least 5.

    The default degrees of freedom, k-1, are for the case when no parameters
    of the distribution are estimated. If p parameters are estimated by
    efficient maximum likelihood then the correct degrees of freedom are
    k-1-p. If the parameters are estimated in a different way, then the
    dof can be between k-1-p and k-1. However, it is also possible that
    the asymptotic distribution is not chi-square, in which case this test
    is not appropriate.

    References
    ----------
    .. [1] Lowry, Richard.  "Concepts and Applications of Inferential
           Statistics". Chapter 8.
           https://web.archive.org/web/20171022032306/http://vassarstats.net:80/textbook/ch8pt1.html
    .. [2] "Chi-squared test", https://en.wikipedia.org/wiki/Chi-squared_test

    Examples
    --------
    When just `f_obs` is given, it is assumed that the expected frequencies
    are uniform and given by the mean of the observed frequencies.

    >>> from scipy.stats import chisquare
    >>> chisquare([16, 18, 16, 14, 12, 12])
    (2.0, 0.84914503608460956)

    With `f_exp` the expected frequencies can be given.

    >>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8])
    (3.5, 0.62338762774958223)

    When `f_obs` is 2-D, by default the test is applied to each column.

    >>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
    >>> obs.shape
    (6, 2)
    >>> chisquare(obs)
    (array([ 2.        ,  6.66666667]), array([ 0.84914504,  0.24663415]))

    By setting ``axis=None``, the test is applied to all data in the array,
    which is equivalent to applying the test to the flattened array.

    >>> chisquare(obs, axis=None)
    (23.31034482758621, 0.015975692534127565)
    >>> chisquare(obs.ravel())
    (23.31034482758621, 0.015975692534127565)

    `ddof` is the change to make to the default degrees of freedom.

    >>> chisquare([16, 18, 16, 14, 12, 12], ddof=1)
    (2.0, 0.73575888234288467)

    The calculation of the p-values is done by broadcasting the
    chi-squared statistic with `ddof`.

    >>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
    (2.0, array([ 0.84914504,  0.73575888,  0.5724067 ]))

    `f_obs` and `f_exp` are also broadcast.  In the following, `f_obs` has
    shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting
    `f_obs` and `f_exp` has shape (2, 6).  To compute the desired chi-squared
    statistics, we use ``axis=1``:

    >>> chisquare([16, 18, 16, 14, 12, 12],
    ...           f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]],
    ...           axis=1)
    (array([ 3.5 ,  9.25]), array([ 0.62338763,  0.09949846]))

    """
    return power_divergence(f_obs, f_exp=f_exp, ddof=ddof, axis=axis,
                            lambda_="pearson")


Ks_2sampResult = namedtuple('Ks_2sampResult', ('statistic', 'pvalue'))


def _compute_prob_inside_method(m, n, g, h):
    """
    Count the proportion of paths that stay strictly inside two diagonal lines.

    Parameters
    ----------
    m : integer
        m > 0
    n : integer
        n > 0
    g : integer
        g is greatest common divisor of m and n
    h : integer
        0 <= h <= lcm(m,n)

    Returns
    -------
    p : float
        The proportion of paths that stay inside the two lines.


    Count the integer lattice paths from (0, 0) to (m, n) which satisfy
    |x/m - y/n| < h / lcm(m, n).
    The paths make steps of size +1 in either positive x or positive y directions.

    We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk.
    Hodges, J.L. Jr.,
    "The Significance Probability of the Smirnov Two-Sample Test,"
    Arkiv fiur Matematik, 3, No. 43 (1958), 469-86.
    
    """
    # Probability is symmetrical in m, n.  Computation below uses m >= n.
    if m < n:
        m, n = n, m
    mg = m // g
    ng = n // g

    # Count the integer lattice paths from (0, 0) to (m, n) which satisfy
    # |nx/g - my/g| < h.
    # Compute matrix A such that:
    #  A(x, 0) = A(0, y) = 1
    #  A(x, y) = A(x, y-1) + A(x-1, y), for x,y>=1, except that
    #  A(x, y) = 0 if |x/m - y/n|>= h
    # Probability is A(m, n)/binom(m+n, n)
    # Optimizations exist for m==n, m==n*p.
    # Only need to preserve a single column of A, and only a sliding window of it.
    # minj keeps track of the slide.
    minj, maxj = 0, min(int(np.ceil(h / mg)), n + 1)
    curlen = maxj - minj
    # Make a vector long enough to hold maximum window needed.
    lenA = min(2 * maxj + 2, n + 1)
    # This is an integer calculation, but the entries are essentially
    # binomial coefficients, hence grow quickly.
    # Scaling after each column is computed avoids dividing by a
    # large binomial coefficent at the end. Instead it is incorporated
    # one factor at a time during the computation.
    dtype = np.float64
    A = np.zeros(lenA, dtype=dtype)
    # Initialize the first column
    A[minj:maxj] = 1
    for i in range(1, m + 1):
        # Generate the next column.
        # First calculate the sliding window
        lastminj, lastmaxj, lastlen = minj, maxj, curlen
        minj = max(int(np.floor((ng * i - h) / mg)) + 1, 0)
        minj = min(minj, n)
        maxj = min(int(np.ceil((ng * i + h) / mg)), n + 1)
        if maxj <= minj:
            return 0
        # Now fill in the values
        A[0:maxj - minj] = np.cumsum(A[minj - lastminj:maxj - lastminj])
        curlen = maxj - minj
        if lastlen > curlen:
            # Set some carried-over elements to 0
            A[maxj - minj:maxj - minj + (lastlen - curlen)] = 0
        # Peel off one term from each of top and bottom of the binomial coefficient.
        scaling_factor = i * 1.0 / (n + i)
        A *= scaling_factor
    return A[maxj - minj - 1]


def _compute_prob_outside_square(n, h):
    """
    Compute the proportion of paths that pass outside the two diagonal lines.

    Parameters
    ----------
    n : integer
        n > 0
    h : integer
        0 <= h <= n

    Returns
    -------
    p : float
        The proportion of paths that pass outside the lines x-y = +/-h.

    """
    # Compute Pr(D_{n,n} >= h/n)
    # Prob = 2 * ( binom(2n, n-h) - binom(2n, n-2a) + binom(2n, n-3a) - ... )  / binom(2n, n)
    # This formulation exhibits subtractive cancellation.
    # Instead divide each term by binom(2n, n), then factor common terms
    # and use a Horner-like algorithm
    # P = 2 * A0 * (1 - A1*(1 - A2*(1 - A3*(1 - A4*(...)))))

    P = 0.0
    k = int(np.floor(n / h))
    while k >= 0:
        p1 = 1.0
        # Each of the Ai terms has numerator and denominator with h simple terms.
        for j in range(h):
            p1 = (n - k * h - j) * p1 / (n + k * h + j + 1)
        P = p1 * (1.0 - P)
        k -= 1
    return 2 * P


def _count_paths_outside_method(m, n, g, h):
    """
    Count the number of paths that pass outside the specified diagonal.

    Parameters
    ----------
    m : integer
        m > 0
    n : integer
        n > 0
    g : integer
        g is greatest common divisor of m and n
    h : integer
        0 <= h <= lcm(m,n)

    Returns
    -------
    p : float
        The number of paths that go low.
        The calculation may overflow - check for a finite answer.

    Exceptions
    ----------
    FloatingPointError: Raised if the intermediate computation goes outside
    the range of a float.

    Notes
    -----
    Count the integer lattice paths from (0, 0) to (m, n), which at some
    point (x, y) along the path, satisfy:
      m*y <= n*x - h*g
    The paths make steps of size +1 in either positive x or positive y directions.

    We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk.
    Hodges, J.L. Jr.,
    "The Significance Probability of the Smirnov Two-Sample Test,"
    Arkiv fiur Matematik, 3, No. 43 (1958), 469-86.

    """
    # Compute #paths which stay lower than x/m-y/n = h/lcm(m,n)
    # B(x, y) = #{paths from (0,0) to (x,y) without previously crossing the boundary}
    #         = binom(x, y) - #{paths which already reached the boundary}
    # Multiply by the number of path extensions going from (x, y) to (m, n)
    # Sum.

    # Probability is symmetrical in m, n.  Computation below assumes m >= n.
    if m < n:
        m, n = n, m
    mg = m // g
    ng = n // g

    #  0 <= x_j <= m is the smallest integer for which n*x_j - m*j < g*h
    xj = [int(np.ceil((h + mg * j)/ng)) for j in range(n+1)]
    xj = [_ for _ in xj if _ <= m]
    lxj = len(xj)
    # B is an array just holding a few values of B(x,y), the ones needed.
    # B[j] == B(x_j, j)
    if lxj == 0:
        return np.round(special.binom(m + n, n))
    B = np.zeros(lxj)
    B[0] = 1
    # Compute the B(x, y) terms
    # The binomial coefficient is an integer, but special.binom() may return a float.
    # Round it to the nearest integer.
    for j in range(1, lxj):
        Bj = np.round(special.binom(xj[j] + j, j))
        if not np.isfinite(Bj):
            raise FloatingPointError()
        for i in range(j):
            bin = np.round(special.binom(xj[j] - xj[i] + j - i, j-i))
            dec = bin * B[i]
            Bj -= dec
        B[j] = Bj
        if not np.isfinite(Bj):
            raise FloatingPointError()
    # Compute the number of path extensions...
    num_paths = 0
    for j in range(lxj):
        bin = np.round(special.binom((m-xj[j]) + (n - j), n-j))
        term = B[j] * bin
        if not np.isfinite(term):
            raise FloatingPointError()
        num_paths += term
    return np.round(num_paths)


def ks_2samp(data1, data2, alternative='two-sided', mode='auto'):
    """
    Compute the Kolmogorov-Smirnov statistic on 2 samples.

    This is a two-sided test for the null hypothesis that 2 independent samples
    are drawn from the same continuous distribution.  The alternative hypothesis
    can be either 'two-sided' (default), 'less' or 'greater'.

    Parameters
    ----------
    data1, data2 : sequence of 1-D ndarrays
        Two arrays of sample observations assumed to be drawn from a continuous
        distribution, sample sizes can be different.
    alternative : {'two-sided', 'less', 'greater'}, optional
        Defines the alternative hypothesis.
        The following options are available (default is 'two-sided'):

          * 'two-sided'
          * 'less': one-sided, see explanation in Notes
          * 'greater': one-sided, see explanation in Notes
    mode : {'auto', 'exact', 'asymp'}, optional
        Defines the method used for calculating the p-value.
        The following options are available (default is 'auto'):

          * 'auto' : use 'exact' for small size arrays, 'asymp' for large
          * 'exact' : use approximation to exact distribution of test statistic
          * 'asymp' : use asymptotic distribution of test statistic

    Returns
    -------
    statistic : float
        KS statistic.
    pvalue : float
        Two-tailed p-value.

    See Also
    --------
    kstest

    Notes
    -----
    This tests whether 2 samples are drawn from the same distribution. Note
    that, like in the case of the one-sample KS test, the distribution is
    assumed to be continuous.

    In the one-sided test, the alternative is that the empirical
    cumulative distribution function F(x) of the data1 variable is "less"
    or "greater" than the empirical cumulative distribution function G(x)
    of the data2 variable, ``F(x)<=G(x)``, resp. ``F(x)>=G(x)``.

    If the KS statistic is small or the p-value is high, then we cannot
    reject the hypothesis that the distributions of the two samples
    are the same.

    If the mode is 'auto', the computation is exact if the sample sizes are
    less than 10000.  For larger sizes, the computation uses the
    Kolmogorov-Smirnov distributions to compute an approximate value.

    We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk [1]_.

    References
    ----------
    .. [1] Hodges, J.L. Jr.,  "The Significance Probability of the Smirnov
           Two-Sample Test," Arkiv fiur Matematik, 3, No. 43 (1958), 469-86.


    Examples
    --------
    >>> from scipy import stats
    >>> np.random.seed(12345678)  #fix random seed to get the same result
    >>> n1 = 200  # size of first sample
    >>> n2 = 300  # size of second sample

    For a different distribution, we can reject the null hypothesis since the
    pvalue is below 1%:

    >>> rvs1 = stats.norm.rvs(size=n1, loc=0., scale=1)
    >>> rvs2 = stats.norm.rvs(size=n2, loc=0.5, scale=1.5)
    >>> stats.ks_2samp(rvs1, rvs2)
    (0.20833333333333334, 5.129279597781977e-05)

    For a slightly different distribution, we cannot reject the null hypothesis
    at a 10% or lower alpha since the p-value at 0.144 is higher than 10%

    >>> rvs3 = stats.norm.rvs(size=n2, loc=0.01, scale=1.0)
    >>> stats.ks_2samp(rvs1, rvs3)
    (0.10333333333333333, 0.14691437867433876)

    For an identical distribution, we cannot reject the null hypothesis since
    the p-value is high, 41%:

    >>> rvs4 = stats.norm.rvs(size=n2, loc=0.0, scale=1.0)
    >>> stats.ks_2samp(rvs1, rvs4)
    (0.07999999999999996, 0.41126949729859719)

    """
    LARGE_N = 10000  # 'auto' will attempt to be exact if n1,n2 <= LARGE_N
    data1 = np.sort(data1)
    data2 = np.sort(data2)
    n1 = data1.shape[0]
    n2 = data2.shape[0]
    if min(n1, n2) == 0:
        raise ValueError('Data passed to ks_2samp must not be empty')

    data_all = np.concatenate([data1, data2])
    # using searchsorted solves equal data problem
    cdf1 = np.searchsorted(data1, data_all, side='right') / n1
    cdf2 = np.searchsorted(data2, data_all, side='right') / n2
    cddiffs = cdf1 - cdf2
    minS = -np.min(cddiffs)
    maxS = np.max(cddiffs)
    alt2Dvalue = {'less': minS, 'greater': maxS, 'two-sided': max(minS, maxS)}
    d = alt2Dvalue[alternative]
    g = gcd(n1, n2)
    n1g = n1 // g
    n2g = n2 // g
    prob = -np.inf
    original_mode = mode
    if mode == 'auto':
        if max(n1, n2) <= LARGE_N:
            mode = 'exact'
        else:
            mode = 'asymp'
    elif mode == 'exact':
        # If lcm(n1, n2) is too big, switch from exact to asymp
        if n1g >= np.iinfo(np.int).max / n2g:
            mode = 'asymp'
            warnings.warn(
                "Exact ks_2samp calculation not possible with samples sizes "
                "%d and %d. Switching to 'asymp' " % (n1, n2), RuntimeWarning)

    saw_fp_error = False
    if mode == 'exact':
        lcm = (n1 // g) * n2
        h = int(np.round(d * lcm))
        d = h * 1.0 / lcm
        if h == 0:
            prob = 1.0
        else:
            try:
                if alternative == 'two-sided':
                    if n1 == n2:
                        prob = _compute_prob_outside_square(n1, h)
                    else:
                        prob = 1 - _compute_prob_inside_method(n1, n2, g, h)
                else:
                    if n1 == n2:
                        # prob = binom(2n, n-h) / binom(2n, n)
                        # Evaluating in that form incurs roundoff errors
                        # from special.binom. Instead calculate directly
                        prob = 1.0
                        for j in range(h):
                            prob = (n1 - j) * prob / (n1 + j + 1)
                    else:
                        num_paths = _count_paths_outside_method(n1, n2, g, h)
                        bin = special.binom(n1 + n2, n1)
                        if not np.isfinite(bin) or not np.isfinite(num_paths) or num_paths > bin:
                            raise FloatingPointError()
                        prob = num_paths / bin

            except FloatingPointError:
                # Switch mode
                mode = 'asymp'
                saw_fp_error = True
                # Can't raise warning here, inside the try
            finally:
                if saw_fp_error:
                    if original_mode == 'exact':
                        warnings.warn(
                            "ks_2samp: Exact calculation overflowed. "
                            "Switching to mode=%s" % mode, RuntimeWarning)
                else:
                    if prob > 1 or prob < 0:
                        mode = 'asymp'
                        if original_mode == 'exact':
                            warnings.warn(
                                "ks_2samp: Exact calculation incurred large"
                                " rounding error. Switching to mode=%s" % mode,
                                RuntimeWarning)

    if mode == 'asymp':
        # The product n1*n2 is large.  Use Smirnov's asymptoptic formula.
        if alternative == 'two-sided':
            en = np.sqrt(n1 * n2 / (n1 + n2))
            # Switch to using kstwo.sf() when it becomes available.
            # prob = distributions.kstwo.sf(d, int(np.round(en)))
            prob = distributions.kstwobign.sf(en * d)
        else:
            m, n = max(n1, n2), min(n1, n2)
            z = np.sqrt(m*n/(m+n)) * d
            # Use Hodges' suggested approximation Eqn 5.3
            expt = -2 * z**2 - 2 * z * (m + 2*n)/np.sqrt(m*n*(m+n))/3.0
            prob = np.exp(expt)

    prob = (0 if prob < 0 else (1 if prob > 1 else prob))
    return Ks_2sampResult(d, prob)


def tiecorrect(rankvals):
    """
    Tie correction factor for Mann-Whitney U and Kruskal-Wallis H tests.

    Parameters
    ----------
    rankvals : array_like
        A 1-D sequence of ranks.  Typically this will be the array
        returned by `~scipy.stats.rankdata`.

    Returns
    -------
    factor : float
        Correction factor for U or H.

    See Also
    --------
    rankdata : Assign ranks to the data
    mannwhitneyu : Mann-Whitney rank test
    kruskal : Kruskal-Wallis H test

    References
    ----------
    .. [1] Siegel, S. (1956) Nonparametric Statistics for the Behavioral
           Sciences.  New York: McGraw-Hill.

    Examples
    --------
    >>> from scipy.stats import tiecorrect, rankdata
    >>> tiecorrect([1, 2.5, 2.5, 4])
    0.9
    >>> ranks = rankdata([1, 3, 2, 4, 5, 7, 2, 8, 4])
    >>> ranks
    array([ 1. ,  4. ,  2.5,  5.5,  7. ,  8. ,  2.5,  9. ,  5.5])
    >>> tiecorrect(ranks)
    0.9833333333333333

    """
    arr = np.sort(rankvals)
    idx = np.nonzero(np.r_[True, arr[1:] != arr[:-1], True])[0]
    cnt = np.diff(idx).astype(np.float64)

    size = np.float64(arr.size)
    return 1.0 if size < 2 else 1.0 - (cnt**3 - cnt).sum() / (size**3 - size)


MannwhitneyuResult = namedtuple('MannwhitneyuResult', ('statistic', 'pvalue'))


def mannwhitneyu(x, y, use_continuity=True, alternative=None):
    """
    Compute the Mann-Whitney rank test on samples x and y.

    Parameters
    ----------
    x, y : array_like
        Array of samples, should be one-dimensional.
    use_continuity : bool, optional
            Whether a continuity correction (1/2.) should be taken into
            account. Default is True.
    alternative : {None, 'two-sided', 'less', 'greater'}, optional
        Defines the alternative hypothesis.
        The following options are available (default is None):

          * None: computes p-value half the size of the 'two-sided' p-value and
            a different U statistic. The default behavior is not the same as
            using 'less' or 'greater'; it only exists for backward compatibility
            and is deprecated.
          * 'two-sided'
          * 'less': one-sided
          * 'greater': one-sided

        Use of the None option is deprecated.

    Returns
    -------
    statistic : float
        The Mann-Whitney U statistic, equal to min(U for x, U for y) if
        `alternative` is equal to None (deprecated; exists for backward
        compatibility), and U for y otherwise.
    pvalue : float
        p-value assuming an asymptotic normal distribution. One-sided or
        two-sided, depending on the choice of `alternative`.

    Notes
    -----
    Use only when the number of observation in each sample is > 20 and
    you have 2 independent samples of ranks. Mann-Whitney U is
    significant if the u-obtained is LESS THAN or equal to the critical
    value of U.

    This test corrects for ties and by default uses a continuity correction.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Mann-Whitney_U_test

    .. [2] H.B. Mann and D.R. Whitney, "On a Test of Whether one of Two Random
           Variables is Stochastically Larger than the Other," The Annals of
           Mathematical Statistics, vol. 18, no. 1, pp. 50-60, 1947.

    """
    if alternative is None:
        warnings.warn("Calling `mannwhitneyu` without specifying "
                      "`alternative` is deprecated.", DeprecationWarning)

    x = np.asarray(x)
    y = np.asarray(y)
    n1 = len(x)
    n2 = len(y)
    ranked = rankdata(np.concatenate((x, y)))
    rankx = ranked[0:n1]  # get the x-ranks
    u1 = n1*n2 + (n1*(n1+1))/2.0 - np.sum(rankx, axis=0)  # calc U for x
    u2 = n1*n2 - u1  # remainder is U for y
    T = tiecorrect(ranked)
    if T == 0:
        raise ValueError('All numbers are identical in mannwhitneyu')
    sd = np.sqrt(T * n1 * n2 * (n1+n2+1) / 12.0)

    meanrank = n1*n2/2.0 + 0.5 * use_continuity
    if alternative is None or alternative == 'two-sided':
        bigu = max(u1, u2)
    elif alternative == 'less':
        bigu = u1
    elif alternative == 'greater':
        bigu = u2
    else:
        raise ValueError("alternative should be None, 'less', 'greater' "
                         "or 'two-sided'")

    z = (bigu - meanrank) / sd
    if alternative is None:
        # This behavior, equal to half the size of the two-sided
        # p-value, is deprecated.
        p = distributions.norm.sf(abs(z))
    elif alternative == 'two-sided':
        p = 2 * distributions.norm.sf(abs(z))
    else:
        p = distributions.norm.sf(z)

    u = u2
    # This behavior is deprecated.
    if alternative is None:
        u = min(u1, u2)
    return MannwhitneyuResult(u, p)


RanksumsResult = namedtuple('RanksumsResult', ('statistic', 'pvalue'))


def ranksums(x, y):
    """
    Compute the Wilcoxon rank-sum statistic for two samples.

    The Wilcoxon rank-sum test tests the null hypothesis that two sets
    of measurements are drawn from the same distribution.  The alternative
    hypothesis is that values in one sample are more likely to be
    larger than the values in the other sample.

    This test should be used to compare two samples from continuous
    distributions.  It does not handle ties between measurements
    in x and y.  For tie-handling and an optional continuity correction
    see `scipy.stats.mannwhitneyu`.

    Parameters
    ----------
    x,y : array_like
        The data from the two samples.

    Returns
    -------
    statistic : float
        The test statistic under the large-sample approximation that the
        rank sum statistic is normally distributed.
    pvalue : float
        The two-sided p-value of the test.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test

    """
    x, y = map(np.asarray, (x, y))
    n1 = len(x)
    n2 = len(y)
    alldata = np.concatenate((x, y))
    ranked = rankdata(alldata)
    x = ranked[:n1]
    s = np.sum(x, axis=0)
    expected = n1 * (n1+n2+1) / 2.0
    z = (s - expected) / np.sqrt(n1*n2*(n1+n2+1)/12.0)
    prob = 2 * distributions.norm.sf(abs(z))

    return RanksumsResult(z, prob)


KruskalResult = namedtuple('KruskalResult', ('statistic', 'pvalue'))


def kruskal(*args, **kwargs):
    """
    Compute the Kruskal-Wallis H-test for independent samples.

    The Kruskal-Wallis H-test tests the null hypothesis that the population
    median of all of the groups are equal.  It is a non-parametric version of
    ANOVA.  The test works on 2 or more independent samples, which may have
    different sizes.  Note that rejecting the null hypothesis does not
    indicate which of the groups differs.  Post hoc comparisons between
    groups are required to determine which groups are different.

    Parameters
    ----------
    sample1, sample2, ... : array_like
       Two or more arrays with the sample measurements can be given as
       arguments.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    statistic : float
       The Kruskal-Wallis H statistic, corrected for ties.
    pvalue : float
       The p-value for the test using the assumption that H has a chi
       square distribution.

    See Also
    --------
    f_oneway : 1-way ANOVA.
    mannwhitneyu : Mann-Whitney rank test on two samples.
    friedmanchisquare : Friedman test for repeated measurements.

    Notes
    -----
    Due to the assumption that H has a chi square distribution, the number
    of samples in each group must not be too small.  A typical rule is
    that each sample must have at least 5 measurements.

    References
    ----------
    .. [1] W. H. Kruskal & W. W. Wallis, "Use of Ranks in
       One-Criterion Variance Analysis", Journal of the American Statistical
       Association, Vol. 47, Issue 260, pp. 583-621, 1952.
    .. [2] https://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance

    Examples
    --------
    >>> from scipy import stats
    >>> x = [1, 3, 5, 7, 9]
    >>> y = [2, 4, 6, 8, 10]
    >>> stats.kruskal(x, y)
    KruskalResult(statistic=0.2727272727272734, pvalue=0.6015081344405895)

    >>> x = [1, 1, 1]
    >>> y = [2, 2, 2]
    >>> z = [2, 2]
    >>> stats.kruskal(x, y, z)
    KruskalResult(statistic=7.0, pvalue=0.0301973834223185)

    """
    args = list(map(np.asarray, args))
    num_groups = len(args)
    if num_groups < 2:
        raise ValueError("Need at least two groups in stats.kruskal()")

    for arg in args:
        if arg.size == 0:
            return KruskalResult(np.nan, np.nan)
    n = np.asarray(list(map(len, args)))

    if 'nan_policy' in kwargs.keys():
        if kwargs['nan_policy'] not in ('propagate', 'raise', 'omit'):
            raise ValueError("nan_policy must be 'propagate', "
                             "'raise' or'omit'")
        else:
            nan_policy = kwargs['nan_policy']
    else:
        nan_policy = 'propagate'

    contains_nan = False
    for arg in args:
        cn = _contains_nan(arg, nan_policy)
        if cn[0]:
            contains_nan = True
            break

    if contains_nan and nan_policy == 'omit':
        for a in args:
            a = ma.masked_invalid(a)
        return mstats_basic.kruskal(*args)

    if contains_nan and nan_policy == 'propagate':
        return KruskalResult(np.nan, np.nan)

    alldata = np.concatenate(args)
    ranked = rankdata(alldata)
    ties = tiecorrect(ranked)
    if ties == 0:
        raise ValueError('All numbers are identical in kruskal')

    # Compute sum^2/n for each group and sum
    j = np.insert(np.cumsum(n), 0, 0)
    ssbn = 0
    for i in range(num_groups):
        ssbn += _square_of_sums(ranked[j[i]:j[i+1]]) / n[i]

    totaln = np.sum(n, dtype=float)
    h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1)
    df = num_groups - 1
    h /= ties

    return KruskalResult(h, distributions.chi2.sf(h, df))


FriedmanchisquareResult = namedtuple('FriedmanchisquareResult',
                                     ('statistic', 'pvalue'))


def friedmanchisquare(*args):
    """
    Compute the Friedman test for repeated measurements.

    The Friedman test tests the null hypothesis that repeated measurements of
    the same individuals have the same distribution.  It is often used
    to test for consistency among measurements obtained in different ways.
    For example, if two measurement techniques are used on the same set of
    individuals, the Friedman test can be used to determine if the two
    measurement techniques are consistent.

    Parameters
    ----------
    measurements1, measurements2, measurements3... : array_like
        Arrays of measurements.  All of the arrays must have the same number
        of elements.  At least 3 sets of measurements must be given.

    Returns
    -------
    statistic : float
        The test statistic, correcting for ties.
    pvalue : float
        The associated p-value assuming that the test statistic has a chi
        squared distribution.

    Notes
    -----
    Due to the assumption that the test statistic has a chi squared
    distribution, the p-value is only reliable for n > 10 and more than
    6 repeated measurements.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Friedman_test

    """
    k = len(args)
    if k < 3:
        raise ValueError('Less than 3 levels.  Friedman test not appropriate.')

    n = len(args[0])
    for i in range(1, k):
        if len(args[i]) != n:
            raise ValueError('Unequal N in friedmanchisquare.  Aborting.')

    # Rank data
    data = np.vstack(args).T
    data = data.astype(float)
    for i in range(len(data)):
        data[i] = rankdata(data[i])

    # Handle ties
    ties = 0
    for i in range(len(data)):
        replist, repnum = find_repeats(array(data[i]))
        for t in repnum:
            ties += t * (t*t - 1)
    c = 1 - ties / (k*(k*k - 1)*n)

    ssbn = np.sum(data.sum(axis=0)**2)
    chisq = (12.0 / (k*n*(k+1)) * ssbn - 3*n*(k+1)) / c

    return FriedmanchisquareResult(chisq, distributions.chi2.sf(chisq, k - 1))


BrunnerMunzelResult = namedtuple('BrunnerMunzelResult',
                                 ('statistic', 'pvalue'))


def brunnermunzel(x, y, alternative="two-sided", distribution="t",
                  nan_policy='propagate'):
    """
    Compute the Brunner-Munzel test on samples x and y.

    The Brunner-Munzel test is a nonparametric test of the null hypothesis that
    when values are taken one by one from each group, the probabilities of
    getting large values in both groups are equal.
    Unlike the Wilcoxon-Mann-Whitney's U test, this does not require the
    assumption of equivariance of two groups. Note that this does not assume
    the distributions are same. This test works on two independent samples,
    which may have different sizes.

    Parameters
    ----------
    x, y : array_like
        Array of samples, should be one-dimensional.
    alternative : {'two-sided', 'less', 'greater'}, optional
        Defines the alternative hypothesis.
        The following options are available (default is 'two-sided'):

          * 'two-sided'
          * 'less': one-sided
          * 'greater': one-sided
    distribution : {'t', 'normal'}, optional
        Defines how to get the p-value.
        The following options are available (default is 't'):

          * 't': get the p-value by t-distribution
          * 'normal': get the p-value by standard normal distribution.
    nan_policy : {'propagate', 'raise', 'omit'}, optional
        Defines how to handle when input contains nan.
        The following options are available (default is 'propagate'):

          * 'propagate': returns nan
          * 'raise': throws an error
          * 'omit': performs the calculations ignoring nan values

    Returns
    -------
    statistic : float
        The Brunner-Munzer W statistic.
    pvalue : float
        p-value assuming an t distribution. One-sided or
        two-sided, depending on the choice of `alternative` and `distribution`.

    See Also
    --------
    mannwhitneyu : Mann-Whitney rank test on two samples.

    Notes
    -----
    Brunner and Munzel recommended to estimate the p-value by t-distribution
    when the size of data is 50 or less. If the size is lower than 10, it would
    be better to use permuted Brunner Munzel test (see [2]_).

    References
    ----------
    .. [1] Brunner, E. and Munzel, U. "The nonparametric Benhrens-Fisher
           problem: Asymptotic theory and a small-sample approximation".
           Biometrical Journal. Vol. 42(2000): 17-25.
    .. [2] Neubert, K. and Brunner, E. "A studentized permutation test for the
           non-parametric Behrens-Fisher problem". Computational Statistics and
           Data Analysis. Vol. 51(2007): 5192-5204.

    Examples
    --------
    >>> from scipy import stats
    >>> x1 = [1,2,1,1,1,1,1,1,1,1,2,4,1,1]
    >>> x2 = [3,3,4,3,1,2,3,1,1,5,4]
    >>> w, p_value = stats.brunnermunzel(x1, x2)
    >>> w
    3.1374674823029505
    >>> p_value
    0.0057862086661515377

    """
    x = np.asarray(x)
    y = np.asarray(y)

    # check both x and y
    cnx, npx = _contains_nan(x, nan_policy)
    cny, npy = _contains_nan(y, nan_policy)
    contains_nan = cnx or cny
    if npx == "omit" or npy == "omit":
        nan_policy = "omit"

    if contains_nan and nan_policy == "propagate":
        return BrunnerMunzelResult(np.nan, np.nan)
    elif contains_nan and nan_policy == "omit":
        x = ma.masked_invalid(x)
        y = ma.masked_invalid(y)
        return mstats_basic.brunnermunzel(x, y, alternative, distribution)

    nx = len(x)
    ny = len(y)
    if nx == 0 or ny == 0:
        return BrunnerMunzelResult(np.nan, np.nan)
    rankc = rankdata(np.concatenate((x, y)))
    rankcx = rankc[0:nx]
    rankcy = rankc[nx:nx+ny]
    rankcx_mean = np.mean(rankcx)
    rankcy_mean = np.mean(rankcy)
    rankx = rankdata(x)
    ranky = rankdata(y)
    rankx_mean = np.mean(rankx)
    ranky_mean = np.mean(ranky)

    Sx = np.sum(np.power(rankcx - rankx - rankcx_mean + rankx_mean, 2.0))
    Sx /= nx - 1
    Sy = np.sum(np.power(rankcy - ranky - rankcy_mean + ranky_mean, 2.0))
    Sy /= ny - 1

    wbfn = nx * ny * (rankcy_mean - rankcx_mean)
    wbfn /= (nx + ny) * np.sqrt(nx * Sx + ny * Sy)

    if distribution == "t":
        df_numer = np.power(nx * Sx + ny * Sy, 2.0)
        df_denom = np.power(nx * Sx, 2.0) / (nx - 1)
        df_denom += np.power(ny * Sy, 2.0) / (ny - 1)
        df = df_numer / df_denom
        p = distributions.t.cdf(wbfn, df)
    elif distribution == "normal":
        p = distributions.norm.cdf(wbfn)
    else:
        raise ValueError(
            "distribution should be 't' or 'normal'")

    if alternative == "greater":
        pass
    elif alternative == "less":
        p = 1 - p
    elif alternative == "two-sided":
        p = 2 * np.min([p, 1-p])
    else:
        raise ValueError(
            "alternative should be 'less', 'greater' or 'two-sided'")

    return BrunnerMunzelResult(wbfn, p)


def combine_pvalues(pvalues, method='fisher', weights=None):
    """
    Combine p-values from independent tests bearing upon the same hypothesis.

    Parameters
    ----------
    pvalues : array_like, 1-D
        Array of p-values assumed to come from independent tests.
    method : {'fisher', 'pearson', 'tippett', 'stouffer', 'mudholkar_george'}, optional
        Name of method to use to combine p-values.
        The following methods are available (default is 'fisher'):

          * 'fisher': Fisher's method (Fisher's combined probability test), the
            sum of the logarithm of the p-values
          * 'pearson': Pearson's method (similar to Fisher's but uses sum of the
            complement of the p-values inside the logarithms)
          * 'tippett': Tippett's method (minimum of p-values)
          * 'stouffer': Stouffer's Z-score method
          * 'mudholkar_george': the difference of Fisher's and Pearson's methods
            divided by 2
    weights : array_like, 1-D, optional
        Optional array of weights used only for Stouffer's Z-score method.

    Returns
    -------
    statistic: float
        The statistic calculated by the specified method.
    pval: float
        The combined p-value.

    Notes
    -----
    Fisher's method (also known as Fisher's combined probability test) [1]_ uses
    a chi-squared statistic to compute a combined p-value. The closely related
    Stouffer's Z-score method [2]_ uses Z-scores rather than p-values. The
    advantage of Stouffer's method is that it is straightforward to introduce
    weights, which can make Stouffer's method more powerful than Fisher's
    method when the p-values are from studies of different size [6]_ [7]_.
    The Pearson's method uses :math:`log(1-p_i)` inside the sum whereas Fisher's
    method uses :math:`log(p_i)` [4]_. For Fisher's and Pearson's method, the
    sum of the logarithms is multiplied by -2 in the implementation. This
    quantity has a chi-square distribution that determines the p-value. The
    `mudholkar_george` method is the difference of the Fisher's and Pearson's
    test statistics, each of which include the -2 factor [4]_. However, the
    `mudholkar_george` method does not include these -2 factors. The test
    statistic of `mudholkar_george` is the sum of logisitic random variables and
    equation 3.6 in [3]_ is used to approximate the p-value based on Student's
    t-distribution.

    Fisher's method may be extended to combine p-values from dependent tests
    [5]_. Extensions such as Brown's method and Kost's method are not currently
    implemented.

    .. versionadded:: 0.15.0

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Fisher%27s_method
    .. [2] https://en.wikipedia.org/wiki/Fisher%27s_method#Relation_to_Stouffer.27s_Z-score_method
    .. [3] George, E. O., and G. S. Mudholkar. "On the convolution of logistic
           random variables." Metrika 30.1 (1983): 1-13.
    .. [4] Heard, N. and Rubin-Delanchey, P. "Choosing between methods of
           combining p-values."  Biometrika 105.1 (2018): 239-246.
    .. [5] Whitlock, M. C. "Combining probability from independent tests: the
           weighted Z-method is superior to Fisher's approach." Journal of
           Evolutionary Biology 18, no. 5 (2005): 1368-1373.
    .. [6] Zaykin, Dmitri V. "Optimally weighted Z-test is a powerful method
           for combining probabilities in meta-analysis." Journal of
           Evolutionary Biology 24, no. 8 (2011): 1836-1841.
    .. [7] https://en.wikipedia.org/wiki/Extensions_of_Fisher%27s_method

    """
    pvalues = np.asarray(pvalues)
    if pvalues.ndim != 1:
        raise ValueError("pvalues is not 1-D")

    if method == 'fisher':
        statistic = -2 * np.sum(np.log(pvalues))
        pval = distributions.chi2.sf(statistic, 2 * len(pvalues))
    elif method == 'pearson':
        statistic = -2 * np.sum(np.log1p(-pvalues))
        pval = distributions.chi2.sf(statistic, 2 * len(pvalues))
    elif method == 'mudholkar_george':
        statistic = -np.sum(np.log(pvalues)) + np.sum(np.log1p(-pvalues))
        nu = 5 * len(pvalues) + 4
        approx_factor = np.sqrt(nu / (nu - 2))
        pval = distributions.t.sf(statistic * approx_factor, nu)
    elif method == 'tippett':
        statistic = np.min(pvalues)
        pval = distributions.beta.sf(statistic, 1, len(pvalues))
    elif method == 'stouffer':
        if weights is None:
            weights = np.ones_like(pvalues)
        elif len(weights) != len(pvalues):
            raise ValueError("pvalues and weights must be of the same size.")

        weights = np.asarray(weights)
        if weights.ndim != 1:
            raise ValueError("weights is not 1-D")

        Zi = distributions.norm.isf(pvalues)
        statistic = np.dot(weights, Zi) / np.linalg.norm(weights)
        pval = distributions.norm.sf(statistic)

    else:
        raise ValueError(
            "Invalid method '%s'. Options are 'fisher', 'pearson', \
            'mudholkar_george', 'tippett', 'or 'stouffer'", method)

    return (statistic, pval)


#####################################
#       STATISTICAL DISTANCES       #
#####################################

def wasserstein_distance(u_values, v_values, u_weights=None, v_weights=None):
    r"""
    Compute the first Wasserstein distance between two 1D distributions.

    This distance is also known as the earth mover's distance, since it can be
    seen as the minimum amount of "work" required to transform :math:`u` into
    :math:`v`, where "work" is measured as the amount of distribution weight
    that must be moved, multiplied by the distance it has to be moved.

    .. versionadded:: 1.0.0

    Parameters
    ----------
    u_values, v_values : array_like
        Values observed in the (empirical) distribution.
    u_weights, v_weights : array_like, optional
        Weight for each value. If unspecified, each value is assigned the same
        weight.
        `u_weights` (resp. `v_weights`) must have the same length as
        `u_values` (resp. `v_values`). If the weight sum differs from 1, it
        must still be positive and finite so that the weights can be normalized
        to sum to 1.

    Returns
    -------
    distance : float
        The computed distance between the distributions.

    Notes
    -----
    The first Wasserstein distance between the distributions :math:`u` and
    :math:`v` is:

    .. math::

        l_1 (u, v) = \inf_{\pi \in \Gamma (u, v)} \int_{\mathbb{R} \times
        \mathbb{R}} |x-y| \mathrm{d} \pi (x, y)

    where :math:`\Gamma (u, v)` is the set of (probability) distributions on
    :math:`\mathbb{R} \times \mathbb{R}` whose marginals are :math:`u` and
    :math:`v` on the first and second factors respectively.

    If :math:`U` and :math:`V` are the respective CDFs of :math:`u` and
    :math:`v`, this distance also equals to:

    .. math::

        l_1(u, v) = \int_{-\infty}^{+\infty} |U-V|

    See [2]_ for a proof of the equivalence of both definitions.

    The input distributions can be empirical, therefore coming from samples
    whose values are effectively inputs of the function, or they can be seen as
    generalized functions, in which case they are weighted sums of Dirac delta
    functions located at the specified values.

    References
    ----------
    .. [1] "Wasserstein metric", https://en.wikipedia.org/wiki/Wasserstein_metric
    .. [2] Ramdas, Garcia, Cuturi "On Wasserstein Two Sample Testing and Related
           Families of Nonparametric Tests" (2015). :arXiv:`1509.02237`.

    Examples
    --------
    >>> from scipy.stats import wasserstein_distance
    >>> wasserstein_distance([0, 1, 3], [5, 6, 8])
    5.0
    >>> wasserstein_distance([0, 1], [0, 1], [3, 1], [2, 2])
    0.25
    >>> wasserstein_distance([3.4, 3.9, 7.5, 7.8], [4.5, 1.4],
    ...                      [1.4, 0.9, 3.1, 7.2], [3.2, 3.5])
    4.0781331438047861

    """
    return _cdf_distance(1, u_values, v_values, u_weights, v_weights)


def energy_distance(u_values, v_values, u_weights=None, v_weights=None):
    r"""
    Compute the energy distance between two 1D distributions.

    .. versionadded:: 1.0.0

    Parameters
    ----------
    u_values, v_values : array_like
        Values observed in the (empirical) distribution.
    u_weights, v_weights : array_like, optional
        Weight for each value. If unspecified, each value is assigned the same
        weight.
        `u_weights` (resp. `v_weights`) must have the same length as
        `u_values` (resp. `v_values`). If the weight sum differs from 1, it
        must still be positive and finite so that the weights can be normalized
        to sum to 1.

    Returns
    -------
    distance : float
        The computed distance between the distributions.

    Notes
    -----
    The energy distance between two distributions :math:`u` and :math:`v`, whose
    respective CDFs are :math:`U` and :math:`V`, equals to:

    .. math::

        D(u, v) = \left( 2\mathbb E|X - Y| - \mathbb E|X - X'| -
        \mathbb E|Y - Y'| \right)^{1/2}

    where :math:`X` and :math:`X'` (resp. :math:`Y` and :math:`Y'`) are
    independent random variables whose probability distribution is :math:`u`
    (resp. :math:`v`).

    As shown in [2]_, for one-dimensional real-valued variables, the energy
    distance is linked to the non-distribution-free version of the Cramer-von
    Mises distance:

    .. math::

        D(u, v) = \sqrt{2} l_2(u, v) = \left( 2 \int_{-\infty}^{+\infty} (U-V)^2
        \right)^{1/2}

    Note that the common Cramer-von Mises criterion uses the distribution-free
    version of the distance. See [2]_ (section 2), for more details about both
    versions of the distance.

    The input distributions can be empirical, therefore coming from samples
    whose values are effectively inputs of the function, or they can be seen as
    generalized functions, in which case they are weighted sums of Dirac delta
    functions located at the specified values.

    References
    ----------
    .. [1] "Energy distance", https://en.wikipedia.org/wiki/Energy_distance
    .. [2] Szekely "E-statistics: The energy of statistical samples." Bowling
           Green State University, Department of Mathematics and Statistics,
           Technical Report 02-16 (2002).
    .. [3] Rizzo, Szekely "Energy distance." Wiley Interdisciplinary Reviews:
           Computational Statistics, 8(1):27-38 (2015).
    .. [4] Bellemare, Danihelka, Dabney, Mohamed, Lakshminarayanan, Hoyer,
           Munos "The Cramer Distance as a Solution to Biased Wasserstein
           Gradients" (2017). :arXiv:`1705.10743`.

    Examples
    --------
    >>> from scipy.stats import energy_distance
    >>> energy_distance([0], [2])
    2.0000000000000004
    >>> energy_distance([0, 8], [0, 8], [3, 1], [2, 2])
    1.0000000000000002
    >>> energy_distance([0.7, 7.4, 2.4, 6.8], [1.4, 8. ],
    ...                 [2.1, 4.2, 7.4, 8. ], [7.6, 8.8])
    0.88003340976158217

    """
    return np.sqrt(2) * _cdf_distance(2, u_values, v_values,
                                      u_weights, v_weights)


def _cdf_distance(p, u_values, v_values, u_weights=None, v_weights=None):
    r"""
    Compute, between two one-dimensional distributions :math:`u` and
    :math:`v`, whose respective CDFs are :math:`U` and :math:`V`, the
    statistical distance that is defined as:

    .. math::

        l_p(u, v) = \left( \int_{-\infty}^{+\infty} |U-V|^p \right)^{1/p}

    p is a positive parameter; p = 1 gives the Wasserstein distance, p = 2
    gives the energy distance.

    Parameters
    ----------
    u_values, v_values : array_like
        Values observed in the (empirical) distribution.
    u_weights, v_weights : array_like, optional
        Weight for each value. If unspecified, each value is assigned the same
        weight.
        `u_weights` (resp. `v_weights`) must have the same length as
        `u_values` (resp. `v_values`). If the weight sum differs from 1, it
        must still be positive and finite so that the weights can be normalized
        to sum to 1.

    Returns
    -------
    distance : float
        The computed distance between the distributions.

    Notes
    -----
    The input distributions can be empirical, therefore coming from samples
    whose values are effectively inputs of the function, or they can be seen as
    generalized functions, in which case they are weighted sums of Dirac delta
    functions located at the specified values.

    References
    ----------
    .. [1] Bellemare, Danihelka, Dabney, Mohamed, Lakshminarayanan, Hoyer,
           Munos "The Cramer Distance as a Solution to Biased Wasserstein
           Gradients" (2017). :arXiv:`1705.10743`.
    
    """
    u_values, u_weights = _validate_distribution(u_values, u_weights)
    v_values, v_weights = _validate_distribution(v_values, v_weights)

    u_sorter = np.argsort(u_values)
    v_sorter = np.argsort(v_values)

    all_values = np.concatenate((u_values, v_values))
    all_values.sort(kind='mergesort')

    # Compute the differences between pairs of successive values of u and v.
    deltas = np.diff(all_values)

    # Get the respective positions of the values of u and v among the values of
    # both distributions.
    u_cdf_indices = u_values[u_sorter].searchsorted(all_values[:-1], 'right')
    v_cdf_indices = v_values[v_sorter].searchsorted(all_values[:-1], 'right')

    # Calculate the CDFs of u and v using their weights, if specified.
    if u_weights is None:
        u_cdf = u_cdf_indices / u_values.size
    else:
        u_sorted_cumweights = np.concatenate(([0],
                                              np.cumsum(u_weights[u_sorter])))
        u_cdf = u_sorted_cumweights[u_cdf_indices] / u_sorted_cumweights[-1]

    if v_weights is None:
        v_cdf = v_cdf_indices / v_values.size
    else:
        v_sorted_cumweights = np.concatenate(([0],
                                              np.cumsum(v_weights[v_sorter])))
        v_cdf = v_sorted_cumweights[v_cdf_indices] / v_sorted_cumweights[-1]

    # Compute the value of the integral based on the CDFs.
    # If p = 1 or p = 2, we avoid using np.power, which introduces an overhead
    # of about 15%.
    if p == 1:
        return np.sum(np.multiply(np.abs(u_cdf - v_cdf), deltas))
    if p == 2:
        return np.sqrt(np.sum(np.multiply(np.square(u_cdf - v_cdf), deltas)))
    return np.power(np.sum(np.multiply(np.power(np.abs(u_cdf - v_cdf), p),
                                       deltas)), 1/p)


def _validate_distribution(values, weights):
    """
    Validate the values and weights from a distribution input of `cdf_distance`
    and return them as ndarray objects.

    Parameters
    ----------
    values : array_like
        Values observed in the (empirical) distribution.
    weights : array_like
        Weight for each value.

    Returns
    -------
    values : ndarray
        Values as ndarray.
    weights : ndarray
        Weights as ndarray.
    
    """
    # Validate the value array.
    values = np.asarray(values, dtype=float)
    if len(values) == 0:
        raise ValueError("Distribution can't be empty.")

    # Validate the weight array, if specified.
    if weights is not None:
        weights = np.asarray(weights, dtype=float)
        if len(weights) != len(values):
            raise ValueError('Value and weight array-likes for the same '
                             'empirical distribution must be of the same size.')
        if np.any(weights < 0):
            raise ValueError('All weights must be non-negative.')
        if not 0 < np.sum(weights) < np.inf:
            raise ValueError('Weight array-like sum must be positive and '
                             'finite. Set as None for an equal distribution of '
                             'weight.')

        return values, weights

    return values, None


#####################################
#         SUPPORT FUNCTIONS         #
#####################################

RepeatedResults = namedtuple('RepeatedResults', ('values', 'counts'))


def find_repeats(arr):
    """
    Find repeats and repeat counts.

    Parameters
    ----------
    arr : array_like
        Input array. This is cast to float64.

    Returns
    -------
    values : ndarray
        The unique values from the (flattened) input that are repeated.

    counts : ndarray
        Number of times the corresponding 'value' is repeated.

    Notes
    -----
    In numpy >= 1.9 `numpy.unique` provides similar functionality. The main
    difference is that `find_repeats` only returns repeated values.

    Examples
    --------
    >>> from scipy import stats
    >>> stats.find_repeats([2, 1, 2, 3, 2, 2, 5])
    RepeatedResults(values=array([2.]), counts=array([4]))

    >>> stats.find_repeats([[10, 20, 1, 2], [5, 5, 4, 4]])
    RepeatedResults(values=array([4.,  5.]), counts=array([2, 2]))

    """
    # Note: always copies.
    return RepeatedResults(*_find_repeats(np.array(arr, dtype=np.float64)))


def _sum_of_squares(a, axis=0):
    """
    Square each element of the input array, and return the sum(s) of that.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int or None, optional
        Axis along which to calculate. Default is 0. If None, compute over
        the whole array `a`.

    Returns
    -------
    sum_of_squares : ndarray
        The sum along the given axis for (a**2).

    See Also
    --------
    _square_of_sums : The square(s) of the sum(s) (the opposite of
    `_sum_of_squares`).
    
    """
    a, axis = _chk_asarray(a, axis)
    return np.sum(a*a, axis)


def _square_of_sums(a, axis=0):
    """
    Sum elements of the input array, and return the square(s) of that sum.

    Parameters
    ----------
    a : array_like
        Input array.
    axis : int or None, optional
        Axis along which to calculate. Default is 0. If None, compute over
        the whole array `a`.

    Returns
    -------
    square_of_sums : float or ndarray
        The square of the sum over `axis`.

    See Also
    --------
    _sum_of_squares : The sum of squares (the opposite of `square_of_sums`).
    
    """
    a, axis = _chk_asarray(a, axis)
    s = np.sum(a, axis)
    if not np.isscalar(s):
        return s.astype(float) * s
    else:
        return float(s) * s


def rankdata(a, method='average'):
    """
    Assign ranks to data, dealing with ties appropriately.

    Ranks begin at 1.  The `method` argument controls how ranks are assigned
    to equal values.  See [1]_ for further discussion of ranking methods.

    Parameters
    ----------
    a : array_like
        The array of values to be ranked.  The array is first flattened.
    method : {'average', 'min', 'max', 'dense', 'ordinal'}, optional
        The method used to assign ranks to tied elements.
        The following methods are available (default is 'average'):

          * 'average': The average of the ranks that would have been assigned to
            all the tied values is assigned to each value.
          * 'min': The minimum of the ranks that would have been assigned to all
            the tied values is assigned to each value.  (This is also
            referred to as "competition" ranking.)
          * 'max': The maximum of the ranks that would have been assigned to all
            the tied values is assigned to each value.
          * 'dense': Like 'min', but the rank of the next highest element is
            assigned the rank immediately after those assigned to the tied
            elements.
          * 'ordinal': All values are given a distinct rank, corresponding to
            the order that the values occur in `a`.

    Returns
    -------
    ranks : ndarray
         An array of length equal to the size of `a`, containing rank
         scores.

    References
    ----------
    .. [1] "Ranking", https://en.wikipedia.org/wiki/Ranking

    Examples
    --------
    >>> from scipy.stats import rankdata
    >>> rankdata([0, 2, 3, 2])
    array([ 1. ,  2.5,  4. ,  2.5])
    >>> rankdata([0, 2, 3, 2], method='min')
    array([ 1,  2,  4,  2])
    >>> rankdata([0, 2, 3, 2], method='max')
    array([ 1,  3,  4,  3])
    >>> rankdata([0, 2, 3, 2], method='dense')
    array([ 1,  2,  3,  2])
    >>> rankdata([0, 2, 3, 2], method='ordinal')
    array([ 1,  2,  4,  3])
    
    """
    if method not in ('average', 'min', 'max', 'dense', 'ordinal'):
        raise ValueError('unknown method "{0}"'.format(method))

    arr = np.ravel(np.asarray(a))
    algo = 'mergesort' if method == 'ordinal' else 'quicksort'
    sorter = np.argsort(arr, kind=algo)

    inv = np.empty(sorter.size, dtype=np.intp)
    inv[sorter] = np.arange(sorter.size, dtype=np.intp)

    if method == 'ordinal':
        return inv + 1

    arr = arr[sorter]
    obs = np.r_[True, arr[1:] != arr[:-1]]
    dense = obs.cumsum()[inv]

    if method == 'dense':
        return dense

    # cumulative counts of each unique value
    count = np.r_[np.nonzero(obs)[0], len(obs)]

    if method == 'max':
        return count[dense]

    if method == 'min':
        return count[dense - 1] + 1

    # average method
    return .5 * (count[dense] + count[dense - 1] + 1)