program.py 29.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for TensorBoard command line program.

This is a lightweight module for bringing up a TensorBoard HTTP server
or emulating the `tensorboard` shell command.

Those wishing to create custom builds of TensorBoard can use this module
by swapping out `tensorboard.main` with the custom definition that
modifies the set of plugins and static assets.

This module does not depend on first-party plugins or the default web
server assets. Those are defined in `tensorboard.default`.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from abc import ABCMeta
from abc import abstractmethod
import argparse
import atexit
from collections import defaultdict
import errno
import inspect
import logging
import mimetypes
import os
import signal
import socket
import sys
import threading
import time

from absl import flags as absl_flags
from absl.flags import argparse_flags
import absl.logging
import six
from six.moves import urllib
from six.moves import xrange  # pylint: disable=redefined-builtin
from werkzeug import serving

from tensorboard import manager
from tensorboard import version
from tensorboard.backend import application
from tensorboard.backend.event_processing import event_file_inspector as efi
from tensorboard.plugins import base_plugin
from tensorboard.plugins.core import core_plugin
from tensorboard.util import argparse_util
from tensorboard.util import tb_logging


logger = tb_logging.get_logger()

# Default subcommand name. This is a user-facing CLI and should not change.
_SERVE_SUBCOMMAND_NAME = "serve"
# Internal flag name used to store which subcommand was invoked.
_SUBCOMMAND_FLAG = "__tensorboard_subcommand"


def setup_environment():
    """Makes recommended modifications to the environment.

    This functions changes global state in the Python process. Calling
    this function is a good idea, but it can't appropriately be called
    from library routines.
    """
    absl.logging.set_verbosity(absl.logging.WARNING)

    # The default is HTTP/1.0 for some strange reason. If we don't use
    # HTTP/1.1 then a new TCP socket and Python thread is created for
    # each HTTP request. The tradeoff is we must always specify the
    # Content-Length header, or do chunked encoding for streaming.
    serving.WSGIRequestHandler.protocol_version = "HTTP/1.1"


def get_default_assets_zip_provider():
    """Opens stock TensorBoard web assets collection.

    Returns:
      Returns function that returns a newly opened file handle to zip file
      containing static assets for stock TensorBoard, or None if webfiles.zip
      could not be found. The value the callback returns must be closed. The
      paths inside the zip file are considered absolute paths on the web server.
    """
    path = os.path.join(
        os.path.dirname(inspect.getfile(sys._getframe(1))), "webfiles.zip"
    )
    if not os.path.exists(path):
        logger.warning("webfiles.zip static assets not found: %s", path)
        return None
    return lambda: open(path, "rb")


class TensorBoard(object):
    """Class for running TensorBoard.

    Fields:
      plugin_loaders: Set from plugins passed to constructor.
      assets_zip_provider: Set by constructor.
      server_class: Set by constructor.
      flags: An argparse.Namespace set by the configure() method.
      cache_key: As `manager.cache_key`; set by the configure() method.
    """

    def __init__(
        self,
        plugins=None,
        assets_zip_provider=None,
        server_class=None,
        subcommands=None,
    ):
        """Creates new instance.

        Args:
          plugins: A list of TensorBoard plugins to load, as TBPlugin classes or
            TBLoader instances or classes. If not specified, defaults to first-party
            plugins.
          assets_zip_provider: Delegates to TBContext or uses default if None.
          server_class: An optional factory for a `TensorBoardServer` to use
            for serving the TensorBoard WSGI app. If provided, its callable
            signature should match that of `TensorBoardServer.__init__`.

        :type plugins:
          list[
            base_plugin.TBLoader | Type[base_plugin.TBLoader] |
            Type[base_plugin.TBPlugin]
          ]
        """
        if plugins is None:
            from tensorboard import default

            plugins = default.get_plugins()
        if assets_zip_provider is None:
            assets_zip_provider = get_default_assets_zip_provider()
        if server_class is None:
            server_class = create_port_scanning_werkzeug_server
        if subcommands is None:
            subcommands = []
        self.plugin_loaders = [
            application.make_plugin_loader(p) for p in plugins
        ]
        self.assets_zip_provider = assets_zip_provider
        self.server_class = server_class
        self.subcommands = {}
        for subcommand in subcommands:
            name = subcommand.name()
            if name in self.subcommands or name == _SERVE_SUBCOMMAND_NAME:
                raise ValueError("Duplicate subcommand name: %r" % name)
            self.subcommands[name] = subcommand
        self.flags = None

    def configure(self, argv=("",), **kwargs):
        """Configures TensorBoard behavior via flags.

        This method will populate the "flags" property with an argparse.Namespace
        representing flag values parsed from the provided argv list, overridden by
        explicit flags from remaining keyword arguments.

        Args:
          argv: Can be set to CLI args equivalent to sys.argv; the first arg is
            taken to be the name of the path being executed.
          kwargs: Additional arguments will override what was parsed from
            argv. They must be passed as Python data structures, e.g.
            `foo=1` rather than `foo="1"`.

        Returns:
          Either argv[:1] if argv was non-empty, or [''] otherwise, as a mechanism
          for absl.app.run() compatibility.

        Raises:
          ValueError: If flag values are invalid.
        """

        base_parser = argparse_flags.ArgumentParser(
            prog="tensorboard",
            description=(
                "TensorBoard is a suite of web applications for "
                "inspecting and understanding your TensorFlow runs "
                "and graphs. https://github.com/tensorflow/tensorboard "
            ),
        )
        subparsers = base_parser.add_subparsers(
            help="TensorBoard subcommand (defaults to %r)"
            % _SERVE_SUBCOMMAND_NAME
        )

        serve_subparser = subparsers.add_parser(
            _SERVE_SUBCOMMAND_NAME,
            help="start local TensorBoard server (default subcommand)",
        )
        serve_subparser.set_defaults(
            **{_SUBCOMMAND_FLAG: _SERVE_SUBCOMMAND_NAME}
        )

        if len(argv) < 2 or argv[1].startswith("-"):
            # This invocation, if valid, must not use any subcommands: we
            # don't permit flags before the subcommand name.
            serve_parser = base_parser
        else:
            # This invocation, if valid, must use a subcommand: we don't take
            # any positional arguments to `serve`.
            serve_parser = serve_subparser

        for (name, subcommand) in six.iteritems(self.subcommands):
            subparser = subparsers.add_parser(
                name,
                help=subcommand.help(),
                description=subcommand.description(),
            )
            subparser.set_defaults(**{_SUBCOMMAND_FLAG: name})
            subcommand.define_flags(subparser)

        for loader in self.plugin_loaders:
            loader.define_flags(serve_parser)

        arg0 = argv[0] if argv else ""

        with argparse_util.allow_missing_subcommand():
            flags = base_parser.parse_args(
                argv[1:]
            )  # Strip binary name from argv.
        if getattr(flags, _SUBCOMMAND_FLAG, None) is None:
            # Manually assign default value rather than using `set_defaults`
            # on the base parser to work around Python bug #9351 on old
            # versions of `argparse`: <https://bugs.python.org/issue9351>
            setattr(flags, _SUBCOMMAND_FLAG, _SERVE_SUBCOMMAND_NAME)

        self.cache_key = manager.cache_key(
            working_directory=os.getcwd(),
            arguments=argv[1:],
            configure_kwargs=kwargs,
        )
        if arg0:
            # Only expose main module Abseil flags as TensorBoard native flags.
            # This is the same logic Abseil's ArgumentParser uses for determining
            # which Abseil flags to include in the short helpstring.
            for flag in set(absl_flags.FLAGS.get_key_flags_for_module(arg0)):
                if hasattr(flags, flag.name):
                    raise ValueError("Conflicting Abseil flag: %s" % flag.name)
                setattr(flags, flag.name, flag.value)
        for k, v in kwargs.items():
            if not hasattr(flags, k):
                raise ValueError("Unknown TensorBoard flag: %s" % k)
            setattr(flags, k, v)
        if getattr(flags, _SUBCOMMAND_FLAG) == _SERVE_SUBCOMMAND_NAME:
            for loader in self.plugin_loaders:
                loader.fix_flags(flags)
        self.flags = flags
        return [arg0]

    def main(self, ignored_argv=("",)):
        """Blocking main function for TensorBoard.

        This method is called by `tensorboard.main.run_main`, which is the
        standard entrypoint for the tensorboard command line program. The
        configure() method must be called first.

        Args:
          ignored_argv: Do not pass. Required for Abseil compatibility.

        Returns:
          Process exit code, i.e. 0 if successful or non-zero on failure. In
          practice, an exception will most likely be raised instead of
          returning non-zero.

        :rtype: int
        """
        self._install_signal_handler(signal.SIGTERM, "SIGTERM")
        self._fix_mime_types()
        subcommand_name = getattr(self.flags, _SUBCOMMAND_FLAG)
        if subcommand_name == _SERVE_SUBCOMMAND_NAME:
            runner = self._run_serve_subcommand
        else:
            runner = self.subcommands[subcommand_name].run
        return runner(self.flags) or 0

    def _run_serve_subcommand(self, flags):
        # TODO(#2801): Make `--version` a flag on only the base parser, not `serve`.
        if flags.version_tb:
            print(version.VERSION)
            return 0
        if flags.inspect:
            # TODO(@wchargin): Convert `inspect` to a normal subcommand?
            logger.info(
                "Not bringing up TensorBoard, but inspecting event files."
            )
            event_file = os.path.expanduser(flags.event_file)
            efi.inspect(flags.logdir, event_file, flags.tag)
            return 0
        try:
            server = self._make_server()
            server.print_serving_message()
            self._register_info(server)
            server.serve_forever()
            return 0
        except TensorBoardServerException as e:
            logger.error(e.msg)
            sys.stderr.write("ERROR: %s\n" % e.msg)
            sys.stderr.flush()
            return -1

    def launch(self):
        """Python API for launching TensorBoard.

        This method is the same as main() except it launches TensorBoard in
        a separate permanent thread. The configure() method must be called
        first.

        Returns:
          The URL of the TensorBoard web server.

        :rtype: str
        """
        # Make it easy to run TensorBoard inside other programs, e.g. Colab.
        server = self._make_server()
        thread = threading.Thread(
            target=server.serve_forever, name="TensorBoard"
        )
        thread.daemon = True
        thread.start()
        return server.get_url()

    def _register_info(self, server):
        """Write a TensorBoardInfo file and arrange for its cleanup.

        Args:
          server: The result of `self._make_server()`.
        """
        server_url = urllib.parse.urlparse(server.get_url())
        info = manager.TensorBoardInfo(
            version=version.VERSION,
            start_time=int(time.time()),
            port=server_url.port,
            pid=os.getpid(),
            path_prefix=self.flags.path_prefix,
            logdir=self.flags.logdir or self.flags.logdir_spec,
            db=self.flags.db,
            cache_key=self.cache_key,
        )
        atexit.register(manager.remove_info_file)
        manager.write_info_file(info)

    def _install_signal_handler(self, signal_number, signal_name):
        """Set a signal handler to gracefully exit on the given signal.

        When this process receives the given signal, it will run `atexit`
        handlers and then exit with `0`.

        Args:
          signal_number: The numeric code for the signal to handle, like
            `signal.SIGTERM`.
          signal_name: The human-readable signal name.
        """
        old_signal_handler = None  # set below

        def handler(handled_signal_number, frame):
            # In case we catch this signal again while running atexit
            # handlers, take the hint and actually die.
            signal.signal(signal_number, signal.SIG_DFL)
            sys.stderr.write(
                "TensorBoard caught %s; exiting...\n" % signal_name
            )
            # The main thread is the only non-daemon thread, so it suffices to
            # exit hence.
            if old_signal_handler not in (signal.SIG_IGN, signal.SIG_DFL):
                old_signal_handler(handled_signal_number, frame)
            sys.exit(0)

        old_signal_handler = signal.signal(signal_number, handler)

    def _fix_mime_types(self):
        """Fix incorrect entries in the `mimetypes` registry.

        On Windows, the Python standard library's `mimetypes` reads in
        mappings from file extension to MIME type from the Windows
        registry. Other applications can and do write incorrect values
        to this registry, which causes `mimetypes.guess_type` to return
        incorrect values, which causes TensorBoard to fail to render on
        the frontend.

        This method hard-codes the correct mappings for certain MIME
        types that are known to be either used by TensorBoard or
        problematic in general.
        """
        # Known to be problematic when Visual Studio is installed:
        # <https://github.com/tensorflow/tensorboard/issues/3120>
        mimetypes.add_type("application/javascript", ".js")
        # Not known to be problematic, but used by TensorBoard:
        mimetypes.add_type("font/woff2", ".woff2")
        mimetypes.add_type("text/html", ".html")

    def _make_server(self):
        """Constructs the TensorBoard WSGI app and instantiates the server."""
        app = application.standard_tensorboard_wsgi(
            self.flags, self.plugin_loaders, self.assets_zip_provider
        )
        return self.server_class(app, self.flags)


@six.add_metaclass(ABCMeta)
class TensorBoardSubcommand(object):
    """Experimental private API for defining subcommands to tensorboard(1)."""

    @abstractmethod
    def name(self):
        """Name of this subcommand, as specified on the command line.

        This must be unique across all subcommands.

        Returns:
          A string.
        """
        pass

    @abstractmethod
    def define_flags(self, parser):
        """Configure an argument parser for this subcommand.

        Flags whose names start with two underscores (e.g., `__foo`) are
        reserved for use by the runtime and must not be defined by
        subcommands.

        Args:
          parser: An `argparse.ArgumentParser` scoped to this subcommand,
            which this function should mutate.
        """
        pass

    @abstractmethod
    def run(self, flags):
        """Execute this subcommand with user-provided flags.

        Args:
          flags: An `argparse.Namespace` object with all defined flags.

        Returns:
          An `int` exit code, or `None` as an alias for `0`.
        """
        pass

    def help(self):
        """Short, one-line help text to display on `tensorboard --help`."""
        return None

    def description(self):
        """Description to display on `tensorboard SUBCOMMAND --help`."""
        return None


@six.add_metaclass(ABCMeta)
class TensorBoardServer(object):
    """Class for customizing TensorBoard WSGI app serving."""

    @abstractmethod
    def __init__(self, wsgi_app, flags):
        """Create a flag-configured HTTP server for TensorBoard's WSGI app.

        Args:
          wsgi_app: The TensorBoard WSGI application to create a server for.
          flags: argparse.Namespace instance of TensorBoard flags.
        """
        raise NotImplementedError()

    @abstractmethod
    def serve_forever(self):
        """Blocking call to start serving the TensorBoard server."""
        raise NotImplementedError()

    @abstractmethod
    def get_url(self):
        """Returns a URL at which this server should be reachable."""
        raise NotImplementedError()

    def print_serving_message(self):
        """Prints a user-friendly message prior to server start.

        This will be called just before `serve_forever`.
        """
        sys.stderr.write(
            "TensorBoard %s at %s (Press CTRL+C to quit)\n"
            % (version.VERSION, self.get_url())
        )
        sys.stderr.flush()


class TensorBoardServerException(Exception):
    """Exception raised by TensorBoardServer for user-friendly errors.

    Subclasses of TensorBoardServer can raise this exception in order to
    generate a clean error message for the user rather than a
    stacktrace.
    """

    def __init__(self, msg):
        self.msg = msg


class TensorBoardPortInUseError(TensorBoardServerException):
    """Error raised when attempting to bind to a port that is in use.

    This should be raised when it is expected that binding to another
    similar port would succeed. It is used as a signal to indicate that
    automatic port searching should continue rather than abort.
    """

    pass


def with_port_scanning(cls):
    """Create a server factory that performs port scanning.

    This function returns a callable whose signature matches the
    specification of `TensorBoardServer.__init__`, using `cls` as an
    underlying implementation. It passes through `flags` unchanged except
    in the case that `flags.port is None`, in which case it repeatedly
    instantiates the underlying server with new port suggestions.

    Args:
      cls: A valid implementation of `TensorBoardServer`. This class's
        initializer should raise a `TensorBoardPortInUseError` upon
        failing to bind to a port when it is expected that binding to
        another nearby port might succeed.

        The initializer for `cls` will only ever be invoked with `flags`
        such that `flags.port is not None`.

    Returns:
      A function that implements the `__init__` contract of
      `TensorBoardServer`.
    """

    def init(wsgi_app, flags):
        # base_port: what's the first port to which we should try to bind?
        # should_scan: if that fails, shall we try additional ports?
        # max_attempts: how many ports shall we try?
        should_scan = flags.port is None
        base_port = (
            core_plugin.DEFAULT_PORT if flags.port is None else flags.port
        )
        max_attempts = 10 if should_scan else 1

        if base_port > 0xFFFF:
            raise TensorBoardServerException(
                "TensorBoard cannot bind to port %d > %d" % (base_port, 0xFFFF)
            )
        max_attempts = 10 if should_scan else 1
        base_port = min(base_port + max_attempts, 0x10000) - max_attempts

        for port in xrange(base_port, base_port + max_attempts):
            subflags = argparse.Namespace(**vars(flags))
            subflags.port = port
            try:
                return cls(wsgi_app=wsgi_app, flags=subflags)
            except TensorBoardPortInUseError:
                if not should_scan:
                    raise
        # All attempts failed to bind.
        raise TensorBoardServerException(
            "TensorBoard could not bind to any port around %s "
            "(tried %d times)" % (base_port, max_attempts)
        )

    return init


class WerkzeugServer(serving.ThreadedWSGIServer, TensorBoardServer):
    """Implementation of TensorBoardServer using the Werkzeug dev server."""

    # ThreadedWSGIServer handles this in werkzeug 0.12+ but we allow 0.11.x.
    daemon_threads = True

    def __init__(self, wsgi_app, flags):
        self._flags = flags
        host = flags.host
        port = flags.port

        self._auto_wildcard = flags.bind_all
        if self._auto_wildcard:
            # Serve on all interfaces, and attempt to serve both IPv4 and IPv6
            # traffic through one socket.
            host = self._get_wildcard_address(port)
        elif host is None:
            host = "localhost"

        self._host = host
        self._url = None  # Will be set by get_url() below

        self._fix_werkzeug_logging()
        try:
            super(WerkzeugServer, self).__init__(host, port, wsgi_app)
        except socket.error as e:
            if hasattr(errno, "EACCES") and e.errno == errno.EACCES:
                raise TensorBoardServerException(
                    "TensorBoard must be run as superuser to bind to port %d"
                    % port
                )
            elif hasattr(errno, "EADDRINUSE") and e.errno == errno.EADDRINUSE:
                if port == 0:
                    raise TensorBoardServerException(
                        "TensorBoard unable to find any open port"
                    )
                else:
                    raise TensorBoardPortInUseError(
                        "TensorBoard could not bind to port %d, it was already in use"
                        % port
                    )
            elif (
                hasattr(errno, "EADDRNOTAVAIL")
                and e.errno == errno.EADDRNOTAVAIL
            ):
                raise TensorBoardServerException(
                    "TensorBoard could not bind to unavailable address %s"
                    % host
                )
            elif (
                hasattr(errno, "EAFNOSUPPORT") and e.errno == errno.EAFNOSUPPORT
            ):
                raise TensorBoardServerException(
                    "Tensorboard could not bind to unsupported address family %s"
                    % host
                )
            # Raise the raw exception if it wasn't identifiable as a user error.
            raise

    def _get_wildcard_address(self, port):
        """Returns a wildcard address for the port in question.

        This will attempt to follow the best practice of calling
        getaddrinfo() with a null host and AI_PASSIVE to request a
        server-side socket wildcard address. If that succeeds, this
        returns the first IPv6 address found, or if none, then returns
        the first IPv4 address. If that fails, then this returns the
        hardcoded address "::" if socket.has_ipv6 is True, else
        "0.0.0.0".
        """
        fallback_address = "::" if socket.has_ipv6 else "0.0.0.0"
        if hasattr(socket, "AI_PASSIVE"):
            try:
                addrinfos = socket.getaddrinfo(
                    None,
                    port,
                    socket.AF_UNSPEC,
                    socket.SOCK_STREAM,
                    socket.IPPROTO_TCP,
                    socket.AI_PASSIVE,
                )
            except socket.gaierror as e:
                logger.warn(
                    "Failed to auto-detect wildcard address, assuming %s: %s",
                    fallback_address,
                    str(e),
                )
                return fallback_address
            addrs_by_family = defaultdict(list)
            for family, _, _, _, sockaddr in addrinfos:
                # Format of the "sockaddr" socket address varies by address family,
                # but [0] is always the IP address portion.
                addrs_by_family[family].append(sockaddr[0])
            if hasattr(socket, "AF_INET6") and addrs_by_family[socket.AF_INET6]:
                return addrs_by_family[socket.AF_INET6][0]
            if hasattr(socket, "AF_INET") and addrs_by_family[socket.AF_INET]:
                return addrs_by_family[socket.AF_INET][0]
        logger.warn(
            "Failed to auto-detect wildcard address, assuming %s",
            fallback_address,
        )
        return fallback_address

    def server_bind(self):
        """Override to enable IPV4 mapping for IPV6 sockets when desired.

        The main use case for this is so that when no host is specified,
        TensorBoard can listen on all interfaces for both IPv4 and IPv6
        connections, rather than having to choose v4 or v6 and hope the
        browser didn't choose the other one.
        """
        socket_is_v6 = (
            hasattr(socket, "AF_INET6")
            and self.socket.family == socket.AF_INET6
        )
        has_v6only_option = hasattr(socket, "IPPROTO_IPV6") and hasattr(
            socket, "IPV6_V6ONLY"
        )
        if self._auto_wildcard and socket_is_v6 and has_v6only_option:
            try:
                self.socket.setsockopt(
                    socket.IPPROTO_IPV6, socket.IPV6_V6ONLY, 0
                )
            except socket.error as e:
                # Log a warning on failure to dual-bind, except for EAFNOSUPPORT
                # since that's expected if IPv4 isn't supported at all (IPv6-only).
                if (
                    hasattr(errno, "EAFNOSUPPORT")
                    and e.errno != errno.EAFNOSUPPORT
                ):
                    logger.warn(
                        "Failed to dual-bind to IPv4 wildcard: %s", str(e)
                    )
        super(WerkzeugServer, self).server_bind()

    def handle_error(self, request, client_address):
        """Override to get rid of noisy EPIPE errors."""
        del request  # unused
        # Kludge to override a SocketServer.py method so we can get rid of noisy
        # EPIPE errors. They're kind of a red herring as far as errors go. For
        # example, `curl -N http://localhost:6006/ | head` will cause an EPIPE.
        exc_info = sys.exc_info()
        e = exc_info[1]
        if isinstance(e, IOError) and e.errno == errno.EPIPE:
            logger.warn(
                "EPIPE caused by %s in HTTP serving" % str(client_address)
            )
        else:
            logger.error("HTTP serving error", exc_info=exc_info)

    def get_url(self):
        if not self._url:
            if self._auto_wildcard:
                display_host = socket.getfqdn()
                # Confirm that the connection is open, otherwise change to `localhost`
                try:
                    socket.create_connection(
                        (display_host, self.server_port), timeout=1
                    )
                except socket.error as e:
                    display_host = "localhost"

            else:
                host = self._host
                display_host = (
                    "[%s]" % host
                    if ":" in host and not host.startswith("[")
                    else host
                )
            self._url = "http://%s:%d%s/" % (
                display_host,
                self.server_port,
                self._flags.path_prefix.rstrip("/"),
            )
        return self._url

    def print_serving_message(self):
        if self._flags.host is None and not self._flags.bind_all:
            sys.stderr.write(
                "Serving TensorBoard on localhost; to expose to the network, "
                "use a proxy or pass --bind_all\n"
            )
            sys.stderr.flush()
        super(WerkzeugServer, self).print_serving_message()

    def _fix_werkzeug_logging(self):
        """Fix werkzeug logging setup so it inherits TensorBoard's log level.

        This addresses a change in werkzeug 0.15.0+ [1] that causes it set its own
        log level to INFO regardless of the root logger configuration. We instead
        want werkzeug to inherit TensorBoard's root logger log level (set via absl
        to WARNING by default).

        [1]: https://github.com/pallets/werkzeug/commit/4cf77d25858ff46ac7e9d64ade054bf05b41ce12
        """
        # Log once at DEBUG to force werkzeug to initialize its singleton logger,
        # which sets the logger level to INFO it if is unset, and then access that
        # object via logging.getLogger('werkzeug') to durably revert the level to
        # unset (and thus make messages logged to it inherit the root logger level).
        self.log(
            "debug", "Fixing werkzeug logger to inherit TensorBoard log level"
        )
        logging.getLogger("werkzeug").setLevel(logging.NOTSET)


create_port_scanning_werkzeug_server = with_port_scanning(WerkzeugServer)