test_rdists.py 8.59 KB
from __future__ import print_function
from __future__ import division
from past.utils import old_div
from collections import defaultdict
import unittest
import numpy as np
import numpy.testing as npt
from hyperopt.rdists import (
    loguniform_gen,
    lognorm_gen,
    quniform_gen,
    qloguniform_gen,
    qnormal_gen,
    qlognormal_gen,
)
from scipy import stats

from scipy.stats.tests.test_continuous_basic import (
    check_cdf_logcdf,
    check_pdf_logpdf,
    check_pdf,
    check_cdf_ppf,
)


class TestLogUniform(unittest.TestCase):
    def test_cdf_logcdf(self):
        check_cdf_logcdf(loguniform_gen(0, 1), (0, 1), "")
        check_cdf_logcdf(loguniform_gen(0, 1), (-5, 5), "")

    def test_cdf_ppf(self):
        check_cdf_ppf(loguniform_gen(0, 1), (0, 1), "")
        check_cdf_ppf(loguniform_gen(-2, 1), (-5, 5), "")

    def test_pdf_logpdf(self):
        check_pdf_logpdf(loguniform_gen(0, 1), (0, 1), "")
        check_pdf_logpdf(loguniform_gen(low=-4, high=-0.5), (-2, 1), "")

    def test_pdf(self):
        check_pdf(loguniform_gen(0, 1), (0, 1), "")
        check_pdf(loguniform_gen(low=-4, high=-2), (-3, 2), "")

    def test_distribution_rvs(self):
        alpha = 0.01
        loc = 0
        scale = 1
        arg = (loc, scale)
        distfn = loguniform_gen(0, 1)
        D, pval = stats.kstest(distfn.rvs, distfn.cdf, args=arg, N=1000)
        if pval < alpha:
            npt.assert_(
                pval > alpha,
                "D = %f; pval = %f; alpha = %f; args=%s" % (D, pval, alpha, arg),
            )


class TestLogNormal(unittest.TestCase):
    def test_cdf_logcdf(self):
        check_cdf_logcdf(lognorm_gen(0, 1), (), "")
        check_cdf_logcdf(lognorm_gen(0, 1), (), "")

    def test_cdf_ppf(self):
        check_cdf_ppf(lognorm_gen(0, 1), (), "")
        check_cdf_ppf(lognorm_gen(-2, 1), (), "")

    def test_pdf_logpdf(self):
        check_pdf_logpdf(lognorm_gen(0, 1), args=(), msg="base case")
        check_pdf_logpdf(
            lognorm_gen(mu=-4, sigma=0.5), args=(), msg="non-default mu, sigma"
        )

    def test_pdf(self):
        check_pdf(lognorm_gen(0, 1), (), "")
        check_pdf(lognorm_gen(mu=-4, sigma=2), (), "")

    def test_distribution_rvs(self):
        import warnings

        warnings.warn("test_distribution_rvs is being skipped!")
        return  # XXX
        alpha = 0.01
        loc = 0
        scale = 1
        arg = (loc, scale)
        distfn = lognorm_gen(0, 1)
        D, pval = stats.kstest(distfn.rvs, distfn.cdf, args=arg, N=1000)
        if pval < alpha:
            npt.assert_(
                pval > alpha,
                "D = %f; pval = %f; alpha = %f; args=%s" % (D, pval, alpha, arg),
            )


def check_d_samples(dfn, n, rtol=1e-2, atol=1e-2):
    counts = defaultdict(lambda: 0)
    # print 'sample', dfn.rvs(size=n)
    inc = old_div(1.0, n)
    for s in dfn.rvs(size=n):
        counts[s] += inc
    for ii, p in sorted(counts.items()):
        t = np.allclose(dfn.pmf(ii), p, rtol=rtol, atol=atol)
        if not t:
            print(("Error in sampling frequencies", ii))
            print("value\tpmf\tfreq")
            for jj in sorted(counts):
                print(("%.2f\t%.3f\t%.4f" % (jj, dfn.pmf(jj), counts[jj])))
            npt.assert_(t, "n = %i; pmf = %f; p = %f" % (n, dfn.pmf(ii), p))


class TestQUniform(unittest.TestCase):
    def test_smallq(self):
        low, high, q = (0, 1, 0.1)
        qu = quniform_gen(low, high, q)
        check_d_samples(qu, n=10000)

    def test_bigq(self):
        low, high, q = (-20, -1, 3)
        qu = quniform_gen(low, high, q)
        check_d_samples(qu, n=10000)

    def test_offgrid_int(self):
        qn = quniform_gen(0, 2, 2)
        assert qn.pmf(0) > 0.0
        assert qn.pmf(1) == 0.0
        assert qn.pmf(2) > 0.0
        assert qn.pmf(3) == 0.0
        assert qn.pmf(-1) == 0.0

    def test_offgrid_float(self):
        qn = quniform_gen(0, 1, 0.2)
        assert qn.pmf(0) > 0.0
        assert qn.pmf(0.1) == 0.0
        assert qn.pmf(0.2) > 0.0
        assert qn.pmf(0.4) > 0.0
        assert qn.pmf(0.8) > 0.0
        assert qn.pmf(-0.2) == 0.0
        assert qn.pmf(0.99) == 0.0
        assert qn.pmf(-0.99) == 0.0

    def test_output_type_int(self):
        result = quniform_gen(0, 10, 1).rvs()
        assert int == type(result)

    def test_output_type_float(self):
        assert float == type(quniform_gen(0, 10, 1.0).rvs())


class TestQLogUniform(unittest.TestCase):
    def logp(self, x, low, high, q):
        return qloguniform_gen(low, high, q).logpmf(x)

    def test_smallq(self):
        low, high, q = (0, 1, 0.1)
        qlu = qloguniform_gen(low, high, q)
        check_d_samples(qlu, n=10000)

    def test_bigq(self):
        low, high, q = (-20, 4, 3)
        qlu = qloguniform_gen(low, high, q)
        check_d_samples(qlu, n=10000)

    def test_point(self):
        low, high, q = (np.log(0.05), np.log(0.15), 0.5)
        qlu = qloguniform_gen(low, high, q)
        check_d_samples(qlu, n=10000)

    def test_2points(self):
        low, high, q = (np.log(0.05), np.log(0.75), 0.5)
        qlu = qloguniform_gen(low, high, q)
        check_d_samples(qlu, n=10000)

    def test_point_logpmf(self):
        assert np.allclose(self.logp(0, np.log(0.25), np.log(0.5), 1), 0.0)

    def test_rounding_logpmf(self):
        assert self.logp(0, np.log(0.25), np.log(0.75), 1) > self.logp(
            1, np.log(0.25), np.log(0.75), 1
        )
        assert (
            self.logp(-1, np.log(0.25), np.log(0.75), 1)
            == self.logp(2, np.log(0.25), np.log(0.75), 1)
            == -np.inf
        )

    def test_smallq_logpmf(self):
        assert (
            self.logp(0.2, np.log(0.16), np.log(0.55), 0.1)
            > self.logp(0.3, np.log(0.16), np.log(0.55), 0.1)
            > self.logp(0.4, np.log(0.16), np.log(0.55), 0.1)
            > self.logp(0.5, np.log(0.16), np.log(0.55), 0.1)
            > -10
        )

        assert (
            self.logp(0.1, np.log(0.16), np.log(0.55), 1)
            == self.logp(0.6, np.log(0.16), np.log(0.55), 1)
            == -np.inf
        )

    def test_output_type_int(self):
        result = qloguniform_gen(0, 10, 1).rvs()
        assert int == type(result)

    def test_output_type_float(self):
        assert float == type(qloguniform_gen(0, 10, 1.0).rvs())


class TestQNormal(unittest.TestCase):
    def test_smallq(self):
        mu, sigma, q = (0, 1, 0.1)
        qn = qnormal_gen(mu, sigma, q)
        check_d_samples(qn, n=10000)

    def test_bigq(self):
        mu, sigma, q = (-20, 4, 3)
        qn = qnormal_gen(mu, sigma, q)
        check_d_samples(qn, n=10000)

    def test_offgrid_int(self):
        qn = qnormal_gen(0, 1, 2)
        assert qn.pmf(0) > 0.0
        assert qn.pmf(1) == 0.0
        assert qn.pmf(2) > 0.0

    def test_offgrid_float(self):
        qn = qnormal_gen(0, 1, 0.2)
        assert qn.pmf(0) > 0.0
        assert qn.pmf(0.1) == 0.0
        assert qn.pmf(0.2) > 0.0
        assert qn.pmf(0.4) > 0.0
        assert qn.pmf(-0.2) > 0.0
        assert qn.pmf(-0.4) > 0.0
        assert qn.pmf(0.99) == 0.0
        assert qn.pmf(-0.99) == 0.0

    def test_numeric(self):
        qn = qnormal_gen(0, 1, 1)
        assert qn.pmf(500) > -np.inf

    def test_output_type_int(self):
        result = qnormal_gen(0, 10, 1).rvs()
        assert int == type(result)

    def test_output_type_float(self):
        assert float == type(qnormal_gen(0, 10, 1.0).rvs())


class TestQLogNormal(unittest.TestCase):
    def test_smallq(self):
        mu, sigma, q = (0, 1, 0.1)
        qn = qlognormal_gen(mu, sigma, q)
        check_d_samples(qn, n=10000)

    def test_bigq(self):
        mu, sigma, q = (-20, 4, 3)
        qn = qlognormal_gen(mu, sigma, q)
        check_d_samples(qn, n=10000)

    def test_offgrid_int(self):
        mu, sigma, q = (1, 2, 2)
        qn = qlognormal_gen(mu, sigma, q)
        assert qn.pmf(0) > qn.pmf(2) > qn.pmf(20) > 0
        assert qn.pmf(1) == qn.pmf(2 - 0.001) == qn.pmf(-1) == 0

    def test_offgrid_float(self):
        mu, sigma, q = (-0.5, 2, 0.2)
        qn = qlognormal_gen(mu, sigma, q)
        assert qn.pmf(0) > qn.pmf(0.2) > qn.pmf(2) > 0
        assert qn.pmf(0.1) == qn.pmf(0.2 - 0.001) == qn.pmf(-0.2) == 0

    def test_numeric(self):
        # XXX we don't have a numerically accurate computation for this guy
        # qn = qlognormal_gen(0, 1, 1)
        # assert -np.inf < qn.logpmf(1e-20) < -50
        # assert -np.inf < qn.logpmf(1e20) < -50
        pass

    def test_output_type_int(self):
        result = qlognormal_gen(0, 10, 1).rvs()
        assert int == type(result)

    def test_output_type_float(self):
        assert float == type(qlognormal_gen(0, 10, 1.0).rvs())


# -- non-empty last line for flake8