hierarchy.py 143 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
"""
Hierarchical clustering (:mod:`scipy.cluster.hierarchy`)
========================================================

.. currentmodule:: scipy.cluster.hierarchy

These functions cut hierarchical clusterings into flat clusterings
or find the roots of the forest formed by a cut by providing the flat
cluster ids of each observation.

.. autosummary::
   :toctree: generated/

   fcluster
   fclusterdata
   leaders

These are routines for agglomerative clustering.

.. autosummary::
   :toctree: generated/

   linkage
   single
   complete
   average
   weighted
   centroid
   median
   ward

These routines compute statistics on hierarchies.

.. autosummary::
   :toctree: generated/

   cophenet
   from_mlab_linkage
   inconsistent
   maxinconsts
   maxdists
   maxRstat
   to_mlab_linkage

Routines for visualizing flat clusters.

.. autosummary::
   :toctree: generated/

   dendrogram

These are data structures and routines for representing hierarchies as
tree objects.

.. autosummary::
   :toctree: generated/

   ClusterNode
   leaves_list
   to_tree
   cut_tree
   optimal_leaf_ordering

These are predicates for checking the validity of linkage and
inconsistency matrices as well as for checking isomorphism of two
flat cluster assignments.

.. autosummary::
   :toctree: generated/

   is_valid_im
   is_valid_linkage
   is_isomorphic
   is_monotonic
   correspond
   num_obs_linkage

Utility routines for plotting:

.. autosummary::
   :toctree: generated/

   set_link_color_palette

"""
from __future__ import division, print_function, absolute_import

# Copyright (C) Damian Eads, 2007-2008. New BSD License.

# hierarchy.py (derived from cluster.py, http://scipy-cluster.googlecode.com)
#
# Author: Damian Eads
# Date:   September 22, 2007
#
# Copyright (c) 2007, 2008, Damian Eads
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#   - Redistributions of source code must retain the above
#     copyright notice, this list of conditions and the
#     following disclaimer.
#   - Redistributions in binary form must reproduce the above copyright
#     notice, this list of conditions and the following disclaimer
#     in the documentation and/or other materials provided with the
#     distribution.
#   - Neither the name of the author nor the names of its
#     contributors may be used to endorse or promote products derived
#     from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import warnings
import bisect
from collections import deque

import numpy as np
from . import _hierarchy, _optimal_leaf_ordering
import scipy.spatial.distance as distance

from scipy._lib.six import string_types
from scipy._lib.six import xrange

_LINKAGE_METHODS = {'single': 0, 'complete': 1, 'average': 2, 'centroid': 3,
                    'median': 4, 'ward': 5, 'weighted': 6}
_EUCLIDEAN_METHODS = ('centroid', 'median', 'ward')

__all__ = ['ClusterNode', 'average', 'centroid', 'complete', 'cophenet',
           'correspond', 'cut_tree', 'dendrogram', 'fcluster', 'fclusterdata',
           'from_mlab_linkage', 'inconsistent', 'is_isomorphic',
           'is_monotonic', 'is_valid_im', 'is_valid_linkage', 'leaders',
           'leaves_list', 'linkage', 'maxRstat', 'maxdists', 'maxinconsts',
           'median', 'num_obs_linkage', 'optimal_leaf_ordering',
           'set_link_color_palette', 'single', 'to_mlab_linkage', 'to_tree',
           'ward', 'weighted', 'distance']


class ClusterWarning(UserWarning):
    pass


def _warning(s):
    warnings.warn('scipy.cluster: %s' % s, ClusterWarning, stacklevel=3)


def _copy_array_if_base_present(a):
    """
    Copy the array if its base points to a parent array.
    """
    if a.base is not None:
        return a.copy()
    elif np.issubsctype(a, np.float32):
        return np.array(a, dtype=np.double)
    else:
        return a


def _copy_arrays_if_base_present(T):
    """
    Accept a tuple of arrays T. Copies the array T[i] if its base array
    points to an actual array. Otherwise, the reference is just copied.
    This is useful if the arrays are being passed to a C function that
    does not do proper striding.
    """
    l = [_copy_array_if_base_present(a) for a in T]
    return l


def _randdm(pnts):
    """
    Generate a random distance matrix stored in condensed form.

    Parameters
    ----------
    pnts : int
        The number of points in the distance matrix. Has to be at least 2.

    Returns
    -------
    D : ndarray
        A ``pnts * (pnts - 1) / 2`` sized vector is returned.
    """
    if pnts >= 2:
        D = np.random.rand(pnts * (pnts - 1) / 2)
    else:
        raise ValueError("The number of points in the distance matrix "
                         "must be at least 2.")
    return D


def single(y):
    """
    Perform single/min/nearest linkage on the condensed distance matrix ``y``.

    Parameters
    ----------
    y : ndarray
        The upper triangular of the distance matrix. The result of
        ``pdist`` is returned in this form.

    Returns
    -------
    Z : ndarray
        The linkage matrix.

    See Also
    --------
    linkage: for advanced creation of hierarchical clusterings.
    scipy.spatial.distance.pdist : pairwise distance metrics

    Examples
    --------
    >>> from scipy.cluster.hierarchy import single, fcluster
    >>> from scipy.spatial.distance import pdist

    First we need a toy dataset to play with::

        x x    x x
        x        x

        x        x
        x x    x x

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    Then we get a condensed distance matrix from this dataset:

    >>> y = pdist(X)

    Finally, we can perform the clustering:

    >>> Z = single(y)
    >>> Z
    array([[ 0.,  1.,  1.,  2.],
           [ 2., 12.,  1.,  3.],
           [ 3.,  4.,  1.,  2.],
           [ 5., 14.,  1.,  3.],
           [ 6.,  7.,  1.,  2.],
           [ 8., 16.,  1.,  3.],
           [ 9., 10.,  1.,  2.],
           [11., 18.,  1.,  3.],
           [13., 15.,  2.,  6.],
           [17., 20.,  2.,  9.],
           [19., 21.,  2., 12.]])

    The linkage matrix ``Z`` represents a dendrogram - see
    `scipy.cluster.hierarchy.linkage` for a detailed explanation of its
    contents.

    We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster
    each initial point would belong given a distance threshold:

    >>> fcluster(Z, 0.9, criterion='distance')
    array([ 7,  8,  9, 10, 11, 12,  4,  5,  6,  1,  2,  3], dtype=int32)
    >>> fcluster(Z, 1, criterion='distance')
    array([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32)
    >>> fcluster(Z, 2, criterion='distance')
    array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

    Also `scipy.cluster.hierarchy.dendrogram` can be used to generate a
    plot of the dendrogram.
    """
    return linkage(y, method='single', metric='euclidean')


def complete(y):
    """
    Perform complete/max/farthest point linkage on a condensed distance matrix.

    Parameters
    ----------
    y : ndarray
        The upper triangular of the distance matrix. The result of
        ``pdist`` is returned in this form.

    Returns
    -------
    Z : ndarray
        A linkage matrix containing the hierarchical clustering. See
        the `linkage` function documentation for more information
        on its structure.

    See Also
    --------
    linkage: for advanced creation of hierarchical clusterings.
    scipy.spatial.distance.pdist : pairwise distance metrics

    Examples
    --------
    >>> from scipy.cluster.hierarchy import complete, fcluster
    >>> from scipy.spatial.distance import pdist

    First we need a toy dataset to play with::

        x x    x x
        x        x

        x        x
        x x    x x

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    Then we get a condensed distance matrix from this dataset:

    >>> y = pdist(X)

    Finally, we can perform the clustering:

    >>> Z = complete(y)
    >>> Z
    array([[ 0.        ,  1.        ,  1.        ,  2.        ],
           [ 3.        ,  4.        ,  1.        ,  2.        ],
           [ 6.        ,  7.        ,  1.        ,  2.        ],
           [ 9.        , 10.        ,  1.        ,  2.        ],
           [ 2.        , 12.        ,  1.41421356,  3.        ],
           [ 5.        , 13.        ,  1.41421356,  3.        ],
           [ 8.        , 14.        ,  1.41421356,  3.        ],
           [11.        , 15.        ,  1.41421356,  3.        ],
           [16.        , 17.        ,  4.12310563,  6.        ],
           [18.        , 19.        ,  4.12310563,  6.        ],
           [20.        , 21.        ,  5.65685425, 12.        ]])

    The linkage matrix ``Z`` represents a dendrogram - see
    `scipy.cluster.hierarchy.linkage` for a detailed explanation of its
    contents.

    We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster
    each initial point would belong given a distance threshold:

    >>> fcluster(Z, 0.9, criterion='distance')
    array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12], dtype=int32)
    >>> fcluster(Z, 1.5, criterion='distance')
    array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
    >>> fcluster(Z, 4.5, criterion='distance')
    array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2], dtype=int32)
    >>> fcluster(Z, 6, criterion='distance')
    array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

    Also `scipy.cluster.hierarchy.dendrogram` can be used to generate a
    plot of the dendrogram.
    """
    return linkage(y, method='complete', metric='euclidean')


def average(y):
    """
    Perform average/UPGMA linkage on a condensed distance matrix.

    Parameters
    ----------
    y : ndarray
        The upper triangular of the distance matrix. The result of
        ``pdist`` is returned in this form.

    Returns
    -------
    Z : ndarray
        A linkage matrix containing the hierarchical clustering. See
        `linkage` for more information on its structure.

    See Also
    --------
    linkage: for advanced creation of hierarchical clusterings.
    scipy.spatial.distance.pdist : pairwise distance metrics

    Examples
    --------
    >>> from scipy.cluster.hierarchy import average, fcluster
    >>> from scipy.spatial.distance import pdist

    First we need a toy dataset to play with::

        x x    x x
        x        x

        x        x
        x x    x x

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    Then we get a condensed distance matrix from this dataset:

    >>> y = pdist(X)

    Finally, we can perform the clustering:

    >>> Z = average(y)
    >>> Z
    array([[ 0.        ,  1.        ,  1.        ,  2.        ],
           [ 3.        ,  4.        ,  1.        ,  2.        ],
           [ 6.        ,  7.        ,  1.        ,  2.        ],
           [ 9.        , 10.        ,  1.        ,  2.        ],
           [ 2.        , 12.        ,  1.20710678,  3.        ],
           [ 5.        , 13.        ,  1.20710678,  3.        ],
           [ 8.        , 14.        ,  1.20710678,  3.        ],
           [11.        , 15.        ,  1.20710678,  3.        ],
           [16.        , 17.        ,  3.39675184,  6.        ],
           [18.        , 19.        ,  3.39675184,  6.        ],
           [20.        , 21.        ,  4.09206523, 12.        ]])

    The linkage matrix ``Z`` represents a dendrogram - see
    `scipy.cluster.hierarchy.linkage` for a detailed explanation of its
    contents.

    We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster
    each initial point would belong given a distance threshold:

    >>> fcluster(Z, 0.9, criterion='distance')
    array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12], dtype=int32)
    >>> fcluster(Z, 1.5, criterion='distance')
    array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
    >>> fcluster(Z, 4, criterion='distance')
    array([1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2], dtype=int32)
    >>> fcluster(Z, 6, criterion='distance')
    array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

    Also `scipy.cluster.hierarchy.dendrogram` can be used to generate a
    plot of the dendrogram.

    """
    return linkage(y, method='average', metric='euclidean')


def weighted(y):
    """
    Perform weighted/WPGMA linkage on the condensed distance matrix.

    See `linkage` for more information on the return
    structure and algorithm.

    Parameters
    ----------
    y : ndarray
        The upper triangular of the distance matrix. The result of
        ``pdist`` is returned in this form.

    Returns
    -------
    Z : ndarray
        A linkage matrix containing the hierarchical clustering. See
        `linkage` for more information on its structure.

    See Also
    --------
    linkage : for advanced creation of hierarchical clusterings.
    scipy.spatial.distance.pdist : pairwise distance metrics

    Examples
    --------
    >>> from scipy.cluster.hierarchy import weighted, fcluster
    >>> from scipy.spatial.distance import pdist

    First we need a toy dataset to play with::

        x x    x x
        x        x

        x        x
        x x    x x

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    Then we get a condensed distance matrix from this dataset:

    >>> y = pdist(X)

    Finally, we can perform the clustering:

    >>> Z = weighted(y)
    >>> Z
    array([[ 0.        ,  1.        ,  1.        ,  2.        ],
           [ 6.        ,  7.        ,  1.        ,  2.        ],
           [ 3.        ,  4.        ,  1.        ,  2.        ],
           [ 9.        , 11.        ,  1.        ,  2.        ],
           [ 2.        , 12.        ,  1.20710678,  3.        ],
           [ 8.        , 13.        ,  1.20710678,  3.        ],
           [ 5.        , 14.        ,  1.20710678,  3.        ],
           [10.        , 15.        ,  1.20710678,  3.        ],
           [18.        , 19.        ,  3.05595762,  6.        ],
           [16.        , 17.        ,  3.32379407,  6.        ],
           [20.        , 21.        ,  4.06357713, 12.        ]])

    The linkage matrix ``Z`` represents a dendrogram - see
    `scipy.cluster.hierarchy.linkage` for a detailed explanation of its
    contents.

    We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster
    each initial point would belong given a distance threshold:

    >>> fcluster(Z, 0.9, criterion='distance')
    array([ 7,  8,  9,  1,  2,  3, 10, 11, 12,  4,  6,  5], dtype=int32)
    >>> fcluster(Z, 1.5, criterion='distance')
    array([3, 3, 3, 1, 1, 1, 4, 4, 4, 2, 2, 2], dtype=int32)
    >>> fcluster(Z, 4, criterion='distance')
    array([2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1], dtype=int32)
    >>> fcluster(Z, 6, criterion='distance')
    array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

    Also `scipy.cluster.hierarchy.dendrogram` can be used to generate a
    plot of the dendrogram.

    """
    return linkage(y, method='weighted', metric='euclidean')


def centroid(y):
    """
    Perform centroid/UPGMC linkage.

    See `linkage` for more information on the input matrix,
    return structure, and algorithm.

    The following are common calling conventions:

    1. ``Z = centroid(y)``

       Performs centroid/UPGMC linkage on the condensed distance
       matrix ``y``.

    2. ``Z = centroid(X)``

       Performs centroid/UPGMC linkage on the observation matrix ``X``
       using Euclidean distance as the distance metric.

    Parameters
    ----------
    y : ndarray
        A condensed distance matrix. A condensed
        distance matrix is a flat array containing the upper
        triangular of the distance matrix. This is the form that
        ``pdist`` returns. Alternatively, a collection of
        m observation vectors in n dimensions may be passed as
        a m by n array.

    Returns
    -------
    Z : ndarray
        A linkage matrix containing the hierarchical clustering. See
        the `linkage` function documentation for more information
        on its structure.

    See Also
    --------
    linkage: for advanced creation of hierarchical clusterings.
    scipy.spatial.distance.pdist : pairwise distance metrics

    Examples
    --------
    >>> from scipy.cluster.hierarchy import centroid, fcluster
    >>> from scipy.spatial.distance import pdist

    First we need a toy dataset to play with::

        x x    x x
        x        x

        x        x
        x x    x x

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    Then we get a condensed distance matrix from this dataset:

    >>> y = pdist(X)

    Finally, we can perform the clustering:

    >>> Z = centroid(y)
    >>> Z
    array([[ 0.        ,  1.        ,  1.        ,  2.        ],
           [ 3.        ,  4.        ,  1.        ,  2.        ],
           [ 9.        , 10.        ,  1.        ,  2.        ],
           [ 6.        ,  7.        ,  1.        ,  2.        ],
           [ 2.        , 12.        ,  1.11803399,  3.        ],
           [ 5.        , 13.        ,  1.11803399,  3.        ],
           [ 8.        , 15.        ,  1.11803399,  3.        ],
           [11.        , 14.        ,  1.11803399,  3.        ],
           [18.        , 19.        ,  3.33333333,  6.        ],
           [16.        , 17.        ,  3.33333333,  6.        ],
           [20.        , 21.        ,  3.33333333, 12.        ]])

    The linkage matrix ``Z`` represents a dendrogram - see
    `scipy.cluster.hierarchy.linkage` for a detailed explanation of its
    contents.

    We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster
    each initial point would belong given a distance threshold:

    >>> fcluster(Z, 0.9, criterion='distance')
    array([ 7,  8,  9, 10, 11, 12,  1,  2,  3,  4,  5,  6], dtype=int32)
    >>> fcluster(Z, 1.1, criterion='distance')
    array([5, 5, 6, 7, 7, 8, 1, 1, 2, 3, 3, 4], dtype=int32)
    >>> fcluster(Z, 2, criterion='distance')
    array([3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2], dtype=int32)
    >>> fcluster(Z, 4, criterion='distance')
    array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

    Also `scipy.cluster.hierarchy.dendrogram` can be used to generate a
    plot of the dendrogram.

    """
    return linkage(y, method='centroid', metric='euclidean')


def median(y):
    """
    Perform median/WPGMC linkage.

    See `linkage` for more information on the return structure
    and algorithm.

     The following are common calling conventions:

     1. ``Z = median(y)``

        Performs median/WPGMC linkage on the condensed distance matrix
        ``y``.  See ``linkage`` for more information on the return
        structure and algorithm.

     2. ``Z = median(X)``

        Performs median/WPGMC linkage on the observation matrix ``X``
        using Euclidean distance as the distance metric. See `linkage`
        for more information on the return structure and algorithm.

    Parameters
    ----------
    y : ndarray
        A condensed distance matrix. A condensed
        distance matrix is a flat array containing the upper
        triangular of the distance matrix. This is the form that
        ``pdist`` returns.  Alternatively, a collection of
        m observation vectors in n dimensions may be passed as
        a m by n array.

    Returns
    -------
    Z : ndarray
        The hierarchical clustering encoded as a linkage matrix.

    See Also
    --------
    linkage: for advanced creation of hierarchical clusterings.
    scipy.spatial.distance.pdist : pairwise distance metrics

    Examples
    --------
    >>> from scipy.cluster.hierarchy import median, fcluster
    >>> from scipy.spatial.distance import pdist

    First we need a toy dataset to play with::

        x x    x x
        x        x

        x        x
        x x    x x

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    Then we get a condensed distance matrix from this dataset:

    >>> y = pdist(X)

    Finally, we can perform the clustering:

    >>> Z = median(y)
    >>> Z
    array([[ 0.        ,  1.        ,  1.        ,  2.        ],
           [ 3.        ,  4.        ,  1.        ,  2.        ],
           [ 9.        , 10.        ,  1.        ,  2.        ],
           [ 6.        ,  7.        ,  1.        ,  2.        ],
           [ 2.        , 12.        ,  1.11803399,  3.        ],
           [ 5.        , 13.        ,  1.11803399,  3.        ],
           [ 8.        , 15.        ,  1.11803399,  3.        ],
           [11.        , 14.        ,  1.11803399,  3.        ],
           [18.        , 19.        ,  3.        ,  6.        ],
           [16.        , 17.        ,  3.5       ,  6.        ],
           [20.        , 21.        ,  3.25      , 12.        ]])

    The linkage matrix ``Z`` represents a dendrogram - see
    `scipy.cluster.hierarchy.linkage` for a detailed explanation of its
    contents.

    We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster
    each initial point would belong given a distance threshold:

    >>> fcluster(Z, 0.9, criterion='distance')
    array([ 7,  8,  9, 10, 11, 12,  1,  2,  3,  4,  5,  6], dtype=int32)
    >>> fcluster(Z, 1.1, criterion='distance')
    array([5, 5, 6, 7, 7, 8, 1, 1, 2, 3, 3, 4], dtype=int32)
    >>> fcluster(Z, 2, criterion='distance')
    array([3, 3, 3, 4, 4, 4, 1, 1, 1, 2, 2, 2], dtype=int32)
    >>> fcluster(Z, 4, criterion='distance')
    array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

    Also `scipy.cluster.hierarchy.dendrogram` can be used to generate a
    plot of the dendrogram.

    """
    return linkage(y, method='median', metric='euclidean')


def ward(y):
    """
    Perform Ward's linkage on a condensed distance matrix.

    See `linkage` for more information on the return structure
    and algorithm.

    The following are common calling conventions:

    1. ``Z = ward(y)``
       Performs Ward's linkage on the condensed distance matrix ``y``.

    2. ``Z = ward(X)``
       Performs Ward's linkage on the observation matrix ``X`` using
       Euclidean distance as the distance metric.

    Parameters
    ----------
    y : ndarray
        A condensed distance matrix. A condensed
        distance matrix is a flat array containing the upper
        triangular of the distance matrix. This is the form that
        ``pdist`` returns.  Alternatively, a collection of
        m observation vectors in n dimensions may be passed as
        a m by n array.

    Returns
    -------
    Z : ndarray
        The hierarchical clustering encoded as a linkage matrix. See
        `linkage` for more information on the return structure and
        algorithm.

    See Also
    --------
    linkage: for advanced creation of hierarchical clusterings.
    scipy.spatial.distance.pdist : pairwise distance metrics

    Examples
    --------
    >>> from scipy.cluster.hierarchy import ward, fcluster
    >>> from scipy.spatial.distance import pdist

    First we need a toy dataset to play with::

        x x    x x
        x        x

        x        x
        x x    x x

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    Then we get a condensed distance matrix from this dataset:

    >>> y = pdist(X)

    Finally, we can perform the clustering:

    >>> Z = ward(y)
    >>> Z
    array([[ 0.        ,  1.        ,  1.        ,  2.        ],
           [ 3.        ,  4.        ,  1.        ,  2.        ],
           [ 6.        ,  7.        ,  1.        ,  2.        ],
           [ 9.        , 10.        ,  1.        ,  2.        ],
           [ 2.        , 12.        ,  1.29099445,  3.        ],
           [ 5.        , 13.        ,  1.29099445,  3.        ],
           [ 8.        , 14.        ,  1.29099445,  3.        ],
           [11.        , 15.        ,  1.29099445,  3.        ],
           [16.        , 17.        ,  5.77350269,  6.        ],
           [18.        , 19.        ,  5.77350269,  6.        ],
           [20.        , 21.        ,  8.16496581, 12.        ]])

    The linkage matrix ``Z`` represents a dendrogram - see
    `scipy.cluster.hierarchy.linkage` for a detailed explanation of its
    contents.

    We can use `scipy.cluster.hierarchy.fcluster` to see to which cluster
    each initial point would belong given a distance threshold:

    >>> fcluster(Z, 0.9, criterion='distance')
    array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12], dtype=int32)
    >>> fcluster(Z, 1.1, criterion='distance')
    array([1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8], dtype=int32)
    >>> fcluster(Z, 3, criterion='distance')
    array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)
    >>> fcluster(Z, 9, criterion='distance')
    array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

    Also `scipy.cluster.hierarchy.dendrogram` can be used to generate a
    plot of the dendrogram.

    """
    return linkage(y, method='ward', metric='euclidean')


def linkage(y, method='single', metric='euclidean', optimal_ordering=False):
    """
    Perform hierarchical/agglomerative clustering.

    The input y may be either a 1d condensed distance matrix
    or a 2d array of observation vectors.

    If y is a 1d condensed distance matrix,
    then y must be a :math:`\\binom{n}{2}` sized
    vector where n is the number of original observations paired
    in the distance matrix. The behavior of this function is very
    similar to the MATLAB linkage function.

    A :math:`(n-1)` by 4 matrix ``Z`` is returned. At the
    :math:`i`-th iteration, clusters with indices ``Z[i, 0]`` and
    ``Z[i, 1]`` are combined to form cluster :math:`n + i`. A
    cluster with an index less than :math:`n` corresponds to one of
    the :math:`n` original observations. The distance between
    clusters ``Z[i, 0]`` and ``Z[i, 1]`` is given by ``Z[i, 2]``. The
    fourth value ``Z[i, 3]`` represents the number of original
    observations in the newly formed cluster.

    The following linkage methods are used to compute the distance
    :math:`d(s, t)` between two clusters :math:`s` and
    :math:`t`. The algorithm begins with a forest of clusters that
    have yet to be used in the hierarchy being formed. When two
    clusters :math:`s` and :math:`t` from this forest are combined
    into a single cluster :math:`u`, :math:`s` and :math:`t` are
    removed from the forest, and :math:`u` is added to the
    forest. When only one cluster remains in the forest, the algorithm
    stops, and this cluster becomes the root.

    A distance matrix is maintained at each iteration. The ``d[i,j]``
    entry corresponds to the distance between cluster :math:`i` and
    :math:`j` in the original forest.

    At each iteration, the algorithm must update the distance matrix
    to reflect the distance of the newly formed cluster u with the
    remaining clusters in the forest.

    Suppose there are :math:`|u|` original observations
    :math:`u[0], \\ldots, u[|u|-1]` in cluster :math:`u` and
    :math:`|v|` original objects :math:`v[0], \\ldots, v[|v|-1]` in
    cluster :math:`v`. Recall :math:`s` and :math:`t` are
    combined to form cluster :math:`u`. Let :math:`v` be any
    remaining cluster in the forest that is not :math:`u`.

    The following are methods for calculating the distance between the
    newly formed cluster :math:`u` and each :math:`v`.

      * method='single' assigns

        .. math::
           d(u,v) = \\min(dist(u[i],v[j]))

        for all points :math:`i` in cluster :math:`u` and
        :math:`j` in cluster :math:`v`. This is also known as the
        Nearest Point Algorithm.

      * method='complete' assigns

        .. math::
           d(u, v) = \\max(dist(u[i],v[j]))

        for all points :math:`i` in cluster u and :math:`j` in
        cluster :math:`v`. This is also known by the Farthest Point
        Algorithm or Voor Hees Algorithm.

      * method='average' assigns

        .. math::
           d(u,v) = \\sum_{ij} \\frac{d(u[i], v[j])}
                                   {(|u|*|v|)}

        for all points :math:`i` and :math:`j` where :math:`|u|`
        and :math:`|v|` are the cardinalities of clusters :math:`u`
        and :math:`v`, respectively. This is also called the UPGMA
        algorithm.

      * method='weighted' assigns

        .. math::
           d(u,v) = (dist(s,v) + dist(t,v))/2

        where cluster u was formed with cluster s and t and v
        is a remaining cluster in the forest. (also called WPGMA)

      * method='centroid' assigns

        .. math::
           dist(s,t) = ||c_s-c_t||_2

        where :math:`c_s` and :math:`c_t` are the centroids of
        clusters :math:`s` and :math:`t`, respectively. When two
        clusters :math:`s` and :math:`t` are combined into a new
        cluster :math:`u`, the new centroid is computed over all the
        original objects in clusters :math:`s` and :math:`t`. The
        distance then becomes the Euclidean distance between the
        centroid of :math:`u` and the centroid of a remaining cluster
        :math:`v` in the forest. This is also known as the UPGMC
        algorithm.

      * method='median' assigns :math:`d(s,t)` like the ``centroid``
        method. When two clusters :math:`s` and :math:`t` are combined
        into a new cluster :math:`u`, the average of centroids s and t
        give the new centroid :math:`u`. This is also known as the
        WPGMC algorithm.

      * method='ward' uses the Ward variance minimization algorithm.
        The new entry :math:`d(u,v)` is computed as follows,

        .. math::

           d(u,v) = \\sqrt{\\frac{|v|+|s|}
                               {T}d(v,s)^2
                        + \\frac{|v|+|t|}
                               {T}d(v,t)^2
                        - \\frac{|v|}
                               {T}d(s,t)^2}

        where :math:`u` is the newly joined cluster consisting of
        clusters :math:`s` and :math:`t`, :math:`v` is an unused
        cluster in the forest, :math:`T=|v|+|s|+|t|`, and
        :math:`|*|` is the cardinality of its argument. This is also
        known as the incremental algorithm.

    Warning: When the minimum distance pair in the forest is chosen, there
    may be two or more pairs with the same minimum distance. This
    implementation may choose a different minimum than the MATLAB
    version.

    Parameters
    ----------
    y : ndarray
        A condensed distance matrix. A condensed distance matrix
        is a flat array containing the upper triangular of the distance matrix.
        This is the form that ``pdist`` returns. Alternatively, a collection of
        :math:`m` observation vectors in :math:`n` dimensions may be passed as
        an :math:`m` by :math:`n` array. All elements of the condensed distance
        matrix must be finite, i.e. no NaNs or infs.
    method : str, optional
        The linkage algorithm to use. See the ``Linkage Methods`` section below
        for full descriptions.
    metric : str or function, optional
        The distance metric to use in the case that y is a collection of
        observation vectors; ignored otherwise. See the ``pdist``
        function for a list of valid distance metrics. A custom distance
        function can also be used.
    optimal_ordering : bool, optional
        If True, the linkage matrix will be reordered so that the distance
        between successive leaves is minimal. This results in a more intuitive
        tree structure when the data are visualized. defaults to False, because
        this algorithm can be slow, particularly on large datasets [2]_. See
        also the `optimal_leaf_ordering` function.

        .. versionadded:: 1.0.0

    Returns
    -------
    Z : ndarray
        The hierarchical clustering encoded as a linkage matrix.

    Notes
    -----
    1. For method 'single' an optimized algorithm based on minimum spanning
       tree is implemented. It has time complexity :math:`O(n^2)`.
       For methods 'complete', 'average', 'weighted' and 'ward' an algorithm
       called nearest-neighbors chain is implemented. It also has time
       complexity :math:`O(n^2)`.
       For other methods a naive algorithm is implemented with :math:`O(n^3)`
       time complexity.
       All algorithms use :math:`O(n^2)` memory.
       Refer to [1]_ for details about the algorithms.
    2. Methods 'centroid', 'median' and 'ward' are correctly defined only if
       Euclidean pairwise metric is used. If `y` is passed as precomputed
       pairwise distances, then it is a user responsibility to assure that
       these distances are in fact Euclidean, otherwise the produced result
       will be incorrect.

    See Also
    --------
    scipy.spatial.distance.pdist : pairwise distance metrics

    References
    ----------
    .. [1] Daniel Mullner, "Modern hierarchical, agglomerative clustering
           algorithms", :arXiv:`1109.2378v1`.
    .. [2] Ziv Bar-Joseph, David K. Gifford, Tommi S. Jaakkola, "Fast optimal
           leaf ordering for hierarchical clustering", 2001. Bioinformatics
           :doi:`10.1093/bioinformatics/17.suppl_1.S22`

    Examples
    --------
    >>> from scipy.cluster.hierarchy import dendrogram, linkage
    >>> from matplotlib import pyplot as plt
    >>> X = [[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]]

    >>> Z = linkage(X, 'ward')
    >>> fig = plt.figure(figsize=(25, 10))
    >>> dn = dendrogram(Z)

    >>> Z = linkage(X, 'single')
    >>> fig = plt.figure(figsize=(25, 10))
    >>> dn = dendrogram(Z)
    >>> plt.show()
    """
    if method not in _LINKAGE_METHODS:
        raise ValueError("Invalid method: {0}".format(method))

    y = _convert_to_double(np.asarray(y, order='c'))

    if y.ndim == 1:
        distance.is_valid_y(y, throw=True, name='y')
        [y] = _copy_arrays_if_base_present([y])
    elif y.ndim == 2:
        if method in _EUCLIDEAN_METHODS and metric != 'euclidean':
            raise ValueError("Method '{0}' requires the distance metric "
                             "to be Euclidean".format(method))
        if y.shape[0] == y.shape[1] and np.allclose(np.diag(y), 0):
            if np.all(y >= 0) and np.allclose(y, y.T):
                _warning('The symmetric non-negative hollow observation '
                         'matrix looks suspiciously like an uncondensed '
                         'distance matrix')
        y = distance.pdist(y, metric)
    else:
        raise ValueError("`y` must be 1 or 2 dimensional.")

    if not np.all(np.isfinite(y)):
        raise ValueError("The condensed distance matrix must contain only "
                         "finite values.")

    n = int(distance.num_obs_y(y))
    method_code = _LINKAGE_METHODS[method]

    if method == 'single':
        result = _hierarchy.mst_single_linkage(y, n)
    elif method in ['complete', 'average', 'weighted', 'ward']:
        result = _hierarchy.nn_chain(y, n, method_code)
    else:
        result = _hierarchy.fast_linkage(y, n, method_code)

    if optimal_ordering:
        return optimal_leaf_ordering(result, y)
    else:
        return result


class ClusterNode(object):
    """
    A tree node class for representing a cluster.

    Leaf nodes correspond to original observations, while non-leaf nodes
    correspond to non-singleton clusters.

    The `to_tree` function converts a matrix returned by the linkage
    function into an easy-to-use tree representation.

    All parameter names are also attributes.

    Parameters
    ----------
    id : int
        The node id.
    left : ClusterNode instance, optional
        The left child tree node.
    right : ClusterNode instance, optional
        The right child tree node.
    dist : float, optional
        Distance for this cluster in the linkage matrix.
    count : int, optional
        The number of samples in this cluster.

    See Also
    --------
    to_tree : for converting a linkage matrix ``Z`` into a tree object.

    """

    def __init__(self, id, left=None, right=None, dist=0, count=1):
        if id < 0:
            raise ValueError('The id must be non-negative.')
        if dist < 0:
            raise ValueError('The distance must be non-negative.')
        if (left is None and right is not None) or \
           (left is not None and right is None):
            raise ValueError('Only full or proper binary trees are permitted.'
                             '  This node has one child.')
        if count < 1:
            raise ValueError('A cluster must contain at least one original '
                             'observation.')
        self.id = id
        self.left = left
        self.right = right
        self.dist = dist
        if self.left is None:
            self.count = count
        else:
            self.count = left.count + right.count

    def __lt__(self, node):
        if not isinstance(node, ClusterNode):
            raise ValueError("Can't compare ClusterNode "
                             "to type {}".format(type(node)))
        return self.dist < node.dist

    def __gt__(self, node):
        if not isinstance(node, ClusterNode):
            raise ValueError("Can't compare ClusterNode "
                             "to type {}".format(type(node)))
        return self.dist > node.dist

    def __eq__(self, node):
        if not isinstance(node, ClusterNode):
            raise ValueError("Can't compare ClusterNode "
                             "to type {}".format(type(node)))
        return self.dist == node.dist

    def get_id(self):
        """
        The identifier of the target node.

        For ``0 <= i < n``, `i` corresponds to original observation i.
        For ``n <= i < 2n-1``, `i` corresponds to non-singleton cluster formed
        at iteration ``i-n``.

        Returns
        -------
        id : int
            The identifier of the target node.

        """
        return self.id

    def get_count(self):
        """
        The number of leaf nodes (original observations) belonging to
        the cluster node nd. If the target node is a leaf, 1 is
        returned.

        Returns
        -------
        get_count : int
            The number of leaf nodes below the target node.

        """
        return self.count

    def get_left(self):
        """
        Return a reference to the left child tree object.

        Returns
        -------
        left : ClusterNode
            The left child of the target node.  If the node is a leaf,
            None is returned.

        """
        return self.left

    def get_right(self):
        """
        Return a reference to the right child tree object.

        Returns
        -------
        right : ClusterNode
            The left child of the target node.  If the node is a leaf,
            None is returned.

        """
        return self.right

    def is_leaf(self):
        """
        Return True if the target node is a leaf.

        Returns
        -------
        leafness : bool
            True if the target node is a leaf node.

        """
        return self.left is None

    def pre_order(self, func=(lambda x: x.id)):
        """
        Perform pre-order traversal without recursive function calls.

        When a leaf node is first encountered, ``func`` is called with
        the leaf node as its argument, and its result is appended to
        the list.

        For example, the statement::

           ids = root.pre_order(lambda x: x.id)

        returns a list of the node ids corresponding to the leaf nodes
        of the tree as they appear from left to right.

        Parameters
        ----------
        func : function
            Applied to each leaf ClusterNode object in the pre-order traversal.
            Given the ``i``-th leaf node in the pre-order traversal ``n[i]``,
            the result of ``func(n[i])`` is stored in ``L[i]``. If not
            provided, the index of the original observation to which the node
            corresponds is used.

        Returns
        -------
        L : list
            The pre-order traversal.

        """
        # Do a preorder traversal, caching the result. To avoid having to do
        # recursion, we'll store the previous index we've visited in a vector.
        n = self.count

        curNode = [None] * (2 * n)
        lvisited = set()
        rvisited = set()
        curNode[0] = self
        k = 0
        preorder = []
        while k >= 0:
            nd = curNode[k]
            ndid = nd.id
            if nd.is_leaf():
                preorder.append(func(nd))
                k = k - 1
            else:
                if ndid not in lvisited:
                    curNode[k + 1] = nd.left
                    lvisited.add(ndid)
                    k = k + 1
                elif ndid not in rvisited:
                    curNode[k + 1] = nd.right
                    rvisited.add(ndid)
                    k = k + 1
                # If we've visited the left and right of this non-leaf
                # node already, go up in the tree.
                else:
                    k = k - 1

        return preorder


_cnode_bare = ClusterNode(0)
_cnode_type = type(ClusterNode)


def _order_cluster_tree(Z):
    """
    Return clustering nodes in bottom-up order by distance.

    Parameters
    ----------
    Z : scipy.cluster.linkage array
        The linkage matrix.

    Returns
    -------
    nodes : list
        A list of ClusterNode objects.
    """
    q = deque()
    tree = to_tree(Z)
    q.append(tree)
    nodes = []

    while q:
        node = q.popleft()
        if not node.is_leaf():
            bisect.insort_left(nodes, node)
            q.append(node.get_right())
            q.append(node.get_left())
    return nodes


def cut_tree(Z, n_clusters=None, height=None):
    """
    Given a linkage matrix Z, return the cut tree.

    Parameters
    ----------
    Z : scipy.cluster.linkage array
        The linkage matrix.
    n_clusters : array_like, optional
        Number of clusters in the tree at the cut point.
    height : array_like, optional
        The height at which to cut the tree.  Only possible for ultrametric
        trees.

    Returns
    -------
    cutree : array
        An array indicating group membership at each agglomeration step.  I.e.,
        for a full cut tree, in the first column each data point is in its own
        cluster.  At the next step, two nodes are merged.  Finally all
        singleton and non-singleton clusters are in one group.  If `n_clusters`
        or `height` is given, the columns correspond to the columns of
        `n_clusters` or `height`.

    Examples
    --------
    >>> from scipy import cluster
    >>> np.random.seed(23)
    >>> X = np.random.randn(50, 4)
    >>> Z = cluster.hierarchy.ward(X)
    >>> cutree = cluster.hierarchy.cut_tree(Z, n_clusters=[5, 10])
    >>> cutree[:10]
    array([[0, 0],
           [1, 1],
           [2, 2],
           [3, 3],
           [3, 4],
           [2, 2],
           [0, 0],
           [1, 5],
           [3, 6],
           [4, 7]])

    """
    nobs = num_obs_linkage(Z)
    nodes = _order_cluster_tree(Z)

    if height is not None and n_clusters is not None:
        raise ValueError("At least one of either height or n_clusters "
                         "must be None")
    elif height is None and n_clusters is None:  # return the full cut tree
        cols_idx = np.arange(nobs)
    elif height is not None:
        heights = np.array([x.dist for x in nodes])
        cols_idx = np.searchsorted(heights, height)
    else:
        cols_idx = nobs - np.searchsorted(np.arange(nobs), n_clusters)

    try:
        n_cols = len(cols_idx)
    except TypeError:  # scalar
        n_cols = 1
        cols_idx = np.array([cols_idx])

    groups = np.zeros((n_cols, nobs), dtype=int)
    last_group = np.arange(nobs)
    if 0 in cols_idx:
        groups[0] = last_group

    for i, node in enumerate(nodes):
        idx = node.pre_order()
        this_group = last_group.copy()
        this_group[idx] = last_group[idx].min()
        this_group[this_group > last_group[idx].max()] -= 1
        if i + 1 in cols_idx:
            groups[np.nonzero(i + 1 == cols_idx)[0]] = this_group
        last_group = this_group

    return groups.T


def to_tree(Z, rd=False):
    """
    Convert a linkage matrix into an easy-to-use tree object.

    The reference to the root `ClusterNode` object is returned (by default).

    Each `ClusterNode` object has a ``left``, ``right``, ``dist``, ``id``,
    and ``count`` attribute. The left and right attributes point to
    ClusterNode objects that were combined to generate the cluster.
    If both are None then the `ClusterNode` object is a leaf node, its count
    must be 1, and its distance is meaningless but set to 0.

    *Note: This function is provided for the convenience of the library
    user. ClusterNodes are not used as input to any of the functions in this
    library.*

    Parameters
    ----------
    Z : ndarray
        The linkage matrix in proper form (see the `linkage`
        function documentation).
    rd : bool, optional
        When False (default), a reference to the root `ClusterNode` object is
        returned.  Otherwise, a tuple ``(r, d)`` is returned. ``r`` is a
        reference to the root node while ``d`` is a list of `ClusterNode`
        objects - one per original entry in the linkage matrix plus entries
        for all clustering steps.  If a cluster id is
        less than the number of samples ``n`` in the data that the linkage
        matrix describes, then it corresponds to a singleton cluster (leaf
        node).
        See `linkage` for more information on the assignment of cluster ids
        to clusters.

    Returns
    -------
    tree : ClusterNode or tuple (ClusterNode, list of ClusterNode)
        If ``rd`` is False, a `ClusterNode`.
        If ``rd`` is True, a list of length ``2*n - 1``, with ``n`` the number
        of samples.  See the description of `rd` above for more details.

    See Also
    --------
    linkage, is_valid_linkage, ClusterNode

    Examples
    --------
    >>> from scipy.cluster import hierarchy
    >>> x = np.random.rand(10).reshape(5, 2)
    >>> Z = hierarchy.linkage(x)
    >>> hierarchy.to_tree(Z)
    <scipy.cluster.hierarchy.ClusterNode object at ...
    >>> rootnode, nodelist = hierarchy.to_tree(Z, rd=True)
    >>> rootnode
    <scipy.cluster.hierarchy.ClusterNode object at ...
    >>> len(nodelist)
    9

    """
    Z = np.asarray(Z, order='c')
    is_valid_linkage(Z, throw=True, name='Z')

    # Number of original objects is equal to the number of rows minus 1.
    n = Z.shape[0] + 1

    # Create a list full of None's to store the node objects
    d = [None] * (n * 2 - 1)

    # Create the nodes corresponding to the n original objects.
    for i in xrange(0, n):
        d[i] = ClusterNode(i)

    nd = None

    for i in xrange(0, n - 1):
        fi = int(Z[i, 0])
        fj = int(Z[i, 1])
        if fi > i + n:
            raise ValueError(('Corrupt matrix Z. Index to derivative cluster '
                              'is used before it is formed. See row %d, '
                              'column 0') % fi)
        if fj > i + n:
            raise ValueError(('Corrupt matrix Z. Index to derivative cluster '
                              'is used before it is formed. See row %d, '
                              'column 1') % fj)
        nd = ClusterNode(i + n, d[fi], d[fj], Z[i, 2])
        #                 ^ id   ^ left ^ right ^ dist
        if Z[i, 3] != nd.count:
            raise ValueError(('Corrupt matrix Z. The count Z[%d,3] is '
                              'incorrect.') % i)
        d[n + i] = nd

    if rd:
        return (nd, d)
    else:
        return nd


def optimal_leaf_ordering(Z, y, metric='euclidean'):
    """
    Given a linkage matrix Z and distance, reorder the cut tree.

    Parameters
    ----------
    Z : ndarray
        The hierarchical clustering encoded as a linkage matrix. See
        `linkage` for more information on the return structure and
        algorithm.
    y : ndarray
        The condensed distance matrix from which Z was generated.
        Alternatively, a collection of m observation vectors in n
        dimensions may be passed as a m by n array.
    metric : str or function, optional
        The distance metric to use in the case that y is a collection of
        observation vectors; ignored otherwise. See the ``pdist``
        function for a list of valid distance metrics. A custom distance
        function can also be used.

    Returns
    -------
    Z_ordered : ndarray
        A copy of the linkage matrix Z, reordered to minimize the distance
        between adjacent leaves.

    Examples
    --------
    >>> from scipy.cluster import hierarchy
    >>> np.random.seed(23)
    >>> X = np.random.randn(10,10)
    >>> Z = hierarchy.ward(X)
    >>> hierarchy.leaves_list(Z)
    array([0, 5, 3, 9, 6, 8, 1, 4, 2, 7], dtype=int32)
    >>> hierarchy.leaves_list(hierarchy.optimal_leaf_ordering(Z, X))
    array([3, 9, 0, 5, 8, 2, 7, 4, 1, 6], dtype=int32)

    """
    Z = np.asarray(Z, order='c')
    is_valid_linkage(Z, throw=True, name='Z')

    y = _convert_to_double(np.asarray(y, order='c'))

    if y.ndim == 1:
        distance.is_valid_y(y, throw=True, name='y')
        [y] = _copy_arrays_if_base_present([y])
    elif y.ndim == 2:
        if y.shape[0] == y.shape[1] and np.allclose(np.diag(y), 0):
            if np.all(y >= 0) and np.allclose(y, y.T):
                _warning('The symmetric non-negative hollow observation '
                         'matrix looks suspiciously like an uncondensed '
                         'distance matrix')
        y = distance.pdist(y, metric)
    else:
        raise ValueError("`y` must be 1 or 2 dimensional.")

    if not np.all(np.isfinite(y)):
        raise ValueError("The condensed distance matrix must contain only "
                         "finite values.")

    return _optimal_leaf_ordering.optimal_leaf_ordering(Z, y)


def _convert_to_bool(X):
    if X.dtype != bool:
        X = X.astype(bool)
    if not X.flags.contiguous:
        X = X.copy()
    return X


def _convert_to_double(X):
    if X.dtype != np.double:
        X = X.astype(np.double)
    if not X.flags.contiguous:
        X = X.copy()
    return X


def cophenet(Z, Y=None):
    """
    Calculate the cophenetic distances between each observation in
    the hierarchical clustering defined by the linkage ``Z``.

    Suppose ``p`` and ``q`` are original observations in
    disjoint clusters ``s`` and ``t``, respectively and
    ``s`` and ``t`` are joined by a direct parent cluster
    ``u``. The cophenetic distance between observations
    ``i`` and ``j`` is simply the distance between
    clusters ``s`` and ``t``.

    Parameters
    ----------
    Z : ndarray
        The hierarchical clustering encoded as an array
        (see `linkage` function).
    Y : ndarray (optional)
        Calculates the cophenetic correlation coefficient ``c`` of a
        hierarchical clustering defined by the linkage matrix `Z`
        of a set of :math:`n` observations in :math:`m`
        dimensions. `Y` is the condensed distance matrix from which
        `Z` was generated.

    Returns
    -------
    c : ndarray
        The cophentic correlation distance (if ``Y`` is passed).
    d : ndarray
        The cophenetic distance matrix in condensed form. The
        :math:`ij` th entry is the cophenetic distance between
        original observations :math:`i` and :math:`j`.

    See Also
    --------
    linkage: for a description of what a linkage matrix is.
    scipy.spatial.distance.squareform: transforming condensed matrices into square ones.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import single, cophenet
    >>> from scipy.spatial.distance import pdist, squareform

    Given a dataset ``X`` and a linkage matrix ``Z``, the cophenetic distance
    between two points of ``X`` is the distance between the largest two
    distinct clusters that each of the points:

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    ``X`` corresponds to this dataset ::

        x x    x x
        x        x

        x        x
        x x    x x

    >>> Z = single(pdist(X))
    >>> Z
    array([[ 0.,  1.,  1.,  2.],
           [ 2., 12.,  1.,  3.],
           [ 3.,  4.,  1.,  2.],
           [ 5., 14.,  1.,  3.],
           [ 6.,  7.,  1.,  2.],
           [ 8., 16.,  1.,  3.],
           [ 9., 10.,  1.,  2.],
           [11., 18.,  1.,  3.],
           [13., 15.,  2.,  6.],
           [17., 20.,  2.,  9.],
           [19., 21.,  2., 12.]])
    >>> cophenet(Z)
    array([1., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 2., 2., 2., 2., 2.,
           2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 1., 2., 2.,
           2., 2., 2., 2., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,
           1., 1., 2., 2., 2., 1., 2., 2., 2., 2., 2., 2., 1., 1., 1.])

    The output of the `scipy.cluster.hierarchy.cophenet` method is
    represented in condensed form. We can use
    `scipy.spatial.distance.squareform` to see the output as a
    regular matrix (where each element ``ij`` denotes the cophenetic distance
    between each ``i``, ``j`` pair of points in ``X``):

    >>> squareform(cophenet(Z))
    array([[0., 1., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2.],
           [1., 0., 1., 2., 2., 2., 2., 2., 2., 2., 2., 2.],
           [1., 1., 0., 2., 2., 2., 2., 2., 2., 2., 2., 2.],
           [2., 2., 2., 0., 1., 1., 2., 2., 2., 2., 2., 2.],
           [2., 2., 2., 1., 0., 1., 2., 2., 2., 2., 2., 2.],
           [2., 2., 2., 1., 1., 0., 2., 2., 2., 2., 2., 2.],
           [2., 2., 2., 2., 2., 2., 0., 1., 1., 2., 2., 2.],
           [2., 2., 2., 2., 2., 2., 1., 0., 1., 2., 2., 2.],
           [2., 2., 2., 2., 2., 2., 1., 1., 0., 2., 2., 2.],
           [2., 2., 2., 2., 2., 2., 2., 2., 2., 0., 1., 1.],
           [2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 0., 1.],
           [2., 2., 2., 2., 2., 2., 2., 2., 2., 1., 1., 0.]])

    In this example, the cophenetic distance between points on ``X`` that are
    very close (i.e. in the same corner) is 1. For other pairs of points is 2,
    because the points will be located in clusters at different
    corners - thus the distance between these clusters will be larger.

    """
    Z = np.asarray(Z, order='c')
    is_valid_linkage(Z, throw=True, name='Z')
    Zs = Z.shape
    n = Zs[0] + 1

    zz = np.zeros((n * (n-1)) // 2, dtype=np.double)
    # Since the C code does not support striding using strides.
    # The dimensions are used instead.
    Z = _convert_to_double(Z)

    _hierarchy.cophenetic_distances(Z, zz, int(n))
    if Y is None:
        return zz

    Y = np.asarray(Y, order='c')
    distance.is_valid_y(Y, throw=True, name='Y')

    z = zz.mean()
    y = Y.mean()
    Yy = Y - y
    Zz = zz - z
    numerator = (Yy * Zz)
    denomA = Yy**2
    denomB = Zz**2
    c = numerator.sum() / np.sqrt((denomA.sum() * denomB.sum()))
    return (c, zz)


def inconsistent(Z, d=2):
    r"""
    Calculate inconsistency statistics on a linkage matrix.

    Parameters
    ----------
    Z : ndarray
        The :math:`(n-1)` by 4 matrix encoding the linkage (hierarchical
        clustering).  See `linkage` documentation for more information on its
        form.
    d : int, optional
        The number of links up to `d` levels below each non-singleton cluster.

    Returns
    -------
    R : ndarray
        A :math:`(n-1)` by 4 matrix where the ``i``'th row contains the link
        statistics for the non-singleton cluster ``i``. The link statistics are
        computed over the link heights for links :math:`d` levels below the
        cluster ``i``. ``R[i,0]`` and ``R[i,1]`` are the mean and standard
        deviation of the link heights, respectively; ``R[i,2]`` is the number
        of links included in the calculation; and ``R[i,3]`` is the
        inconsistency coefficient,

        .. math:: \frac{\mathtt{Z[i,2]} - \mathtt{R[i,0]}} {R[i,1]}

    Notes
    -----
    This function behaves similarly to the MATLAB(TM) ``inconsistent``
    function.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import inconsistent, linkage
    >>> from matplotlib import pyplot as plt
    >>> X = [[i] for i in [2, 8, 0, 4, 1, 9, 9, 0]]
    >>> Z = linkage(X, 'ward')
    >>> print(Z)
    [[ 5.          6.          0.          2.        ]
     [ 2.          7.          0.          2.        ]
     [ 0.          4.          1.          2.        ]
     [ 1.          8.          1.15470054  3.        ]
     [ 9.         10.          2.12132034  4.        ]
     [ 3.         12.          4.11096096  5.        ]
     [11.         13.         14.07183949  8.        ]]
    >>> inconsistent(Z)
    array([[ 0.        ,  0.        ,  1.        ,  0.        ],
           [ 0.        ,  0.        ,  1.        ,  0.        ],
           [ 1.        ,  0.        ,  1.        ,  0.        ],
           [ 0.57735027,  0.81649658,  2.        ,  0.70710678],
           [ 1.04044011,  1.06123822,  3.        ,  1.01850858],
           [ 3.11614065,  1.40688837,  2.        ,  0.70710678],
           [ 6.44583366,  6.76770586,  3.        ,  1.12682288]])

    """
    Z = np.asarray(Z, order='c')

    Zs = Z.shape
    is_valid_linkage(Z, throw=True, name='Z')
    if (not d == np.floor(d)) or d < 0:
        raise ValueError('The second argument d must be a nonnegative '
                         'integer value.')

    # Since the C code does not support striding using strides.
    # The dimensions are used instead.
    [Z] = _copy_arrays_if_base_present([Z])

    n = Zs[0] + 1
    R = np.zeros((n - 1, 4), dtype=np.double)

    _hierarchy.inconsistent(Z, R, int(n), int(d))
    return R


def from_mlab_linkage(Z):
    """
    Convert a linkage matrix generated by MATLAB(TM) to a new
    linkage matrix compatible with this module.

    The conversion does two things:

     * the indices are converted from ``1..N`` to ``0..(N-1)`` form,
       and

     * a fourth column ``Z[:,3]`` is added where ``Z[i,3]`` represents the
       number of original observations (leaves) in the non-singleton
       cluster ``i``.

    This function is useful when loading in linkages from legacy data
    files generated by MATLAB.

    Parameters
    ----------
    Z : ndarray
        A linkage matrix generated by MATLAB(TM).

    Returns
    -------
    ZS : ndarray
        A linkage matrix compatible with ``scipy.cluster.hierarchy``.

    See Also
    --------
    linkage: for a description of what a linkage matrix is.
    to_mlab_linkage: transform from SciPy to MATLAB format.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.cluster.hierarchy import ward, from_mlab_linkage

    Given a linkage matrix in MATLAB format ``mZ``, we can use
    `scipy.cluster.hierarchy.from_mlab_linkage` to import
    it into SciPy format:

    >>> mZ = np.array([[1, 2, 1], [4, 5, 1], [7, 8, 1],
    ...                [10, 11, 1], [3, 13, 1.29099445],
    ...                [6, 14, 1.29099445],
    ...                [9, 15, 1.29099445],
    ...                [12, 16, 1.29099445],
    ...                [17, 18, 5.77350269],
    ...                [19, 20, 5.77350269],
    ...                [21, 22,  8.16496581]])

    >>> Z = from_mlab_linkage(mZ)
    >>> Z
    array([[  0.        ,   1.        ,   1.        ,   2.        ],
           [  3.        ,   4.        ,   1.        ,   2.        ],
           [  6.        ,   7.        ,   1.        ,   2.        ],
           [  9.        ,  10.        ,   1.        ,   2.        ],
           [  2.        ,  12.        ,   1.29099445,   3.        ],
           [  5.        ,  13.        ,   1.29099445,   3.        ],
           [  8.        ,  14.        ,   1.29099445,   3.        ],
           [ 11.        ,  15.        ,   1.29099445,   3.        ],
           [ 16.        ,  17.        ,   5.77350269,   6.        ],
           [ 18.        ,  19.        ,   5.77350269,   6.        ],
           [ 20.        ,  21.        ,   8.16496581,  12.        ]])

    As expected, the linkage matrix ``Z`` returned includes an
    additional column counting the number of original samples in
    each cluster. Also, all cluster indexes are reduced by 1
    (MATLAB format uses 1-indexing, whereas SciPy uses 0-indexing).

    """
    Z = np.asarray(Z, dtype=np.double, order='c')
    Zs = Z.shape

    # If it's empty, return it.
    if len(Zs) == 0 or (len(Zs) == 1 and Zs[0] == 0):
        return Z.copy()

    if len(Zs) != 2:
        raise ValueError("The linkage array must be rectangular.")

    # If it contains no rows, return it.
    if Zs[0] == 0:
        return Z.copy()

    Zpart = Z.copy()
    if Zpart[:, 0:2].min() != 1.0 and Zpart[:, 0:2].max() != 2 * Zs[0]:
        raise ValueError('The format of the indices is not 1..N')

    Zpart[:, 0:2] -= 1.0
    CS = np.zeros((Zs[0],), dtype=np.double)
    _hierarchy.calculate_cluster_sizes(Zpart, CS, int(Zs[0]) + 1)
    return np.hstack([Zpart, CS.reshape(Zs[0], 1)])


def to_mlab_linkage(Z):
    """
    Convert a linkage matrix to a MATLAB(TM) compatible one.

    Converts a linkage matrix ``Z`` generated by the linkage function
    of this module to a MATLAB(TM) compatible one. The return linkage
    matrix has the last column removed and the cluster indices are
    converted to ``1..N`` indexing.

    Parameters
    ----------
    Z : ndarray
        A linkage matrix generated by ``scipy.cluster.hierarchy``.

    Returns
    -------
    to_mlab_linkage : ndarray
        A linkage matrix compatible with MATLAB(TM)'s hierarchical
        clustering functions.

        The return linkage matrix has the last column removed
        and the cluster indices are converted to ``1..N`` indexing.

    See Also
    --------
    linkage: for a description of what a linkage matrix is.
    from_mlab_linkage: transform from Matlab to SciPy format.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import ward, to_mlab_linkage
    >>> from scipy.spatial.distance import pdist

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    >>> Z = ward(pdist(X))
    >>> Z
    array([[ 0.        ,  1.        ,  1.        ,  2.        ],
           [ 3.        ,  4.        ,  1.        ,  2.        ],
           [ 6.        ,  7.        ,  1.        ,  2.        ],
           [ 9.        , 10.        ,  1.        ,  2.        ],
           [ 2.        , 12.        ,  1.29099445,  3.        ],
           [ 5.        , 13.        ,  1.29099445,  3.        ],
           [ 8.        , 14.        ,  1.29099445,  3.        ],
           [11.        , 15.        ,  1.29099445,  3.        ],
           [16.        , 17.        ,  5.77350269,  6.        ],
           [18.        , 19.        ,  5.77350269,  6.        ],
           [20.        , 21.        ,  8.16496581, 12.        ]])

    After a linkage matrix ``Z`` has been created, we can use
    `scipy.cluster.hierarchy.to_mlab_linkage` to convert it
    into MATLAB format:

    >>> mZ = to_mlab_linkage(Z)
    >>> mZ
    array([[  1.        ,   2.        ,   1.        ],
           [  4.        ,   5.        ,   1.        ],
           [  7.        ,   8.        ,   1.        ],
           [ 10.        ,  11.        ,   1.        ],
           [  3.        ,  13.        ,   1.29099445],
           [  6.        ,  14.        ,   1.29099445],
           [  9.        ,  15.        ,   1.29099445],
           [ 12.        ,  16.        ,   1.29099445],
           [ 17.        ,  18.        ,   5.77350269],
           [ 19.        ,  20.        ,   5.77350269],
           [ 21.        ,  22.        ,   8.16496581]])

    The new linkage matrix ``mZ`` uses 1-indexing for all the
    clusters (instead of 0-indexing). Also, the last column of
    the original linkage matrix has been dropped.

    """
    Z = np.asarray(Z, order='c', dtype=np.double)
    Zs = Z.shape
    if len(Zs) == 0 or (len(Zs) == 1 and Zs[0] == 0):
        return Z.copy()
    is_valid_linkage(Z, throw=True, name='Z')

    ZP = Z[:, 0:3].copy()
    ZP[:, 0:2] += 1.0

    return ZP


def is_monotonic(Z):
    """
    Return True if the linkage passed is monotonic.

    The linkage is monotonic if for every cluster :math:`s` and :math:`t`
    joined, the distance between them is no less than the distance
    between any previously joined clusters.

    Parameters
    ----------
    Z : ndarray
        The linkage matrix to check for monotonicity.

    Returns
    -------
    b : bool
        A boolean indicating whether the linkage is monotonic.

    See Also
    --------
    linkage: for a description of what a linkage matrix is.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import median, ward, is_monotonic
    >>> from scipy.spatial.distance import pdist

    By definition, some hierarchical clustering algorithms - such as
    `scipy.cluster.hierarchy.ward` - produce monotonic assignments of
    samples to clusters; however, this is not always true for other
    hierarchical methods - e.g. `scipy.cluster.hierarchy.median`.

    Given a linkage matrix ``Z`` (as the result of a hierarchical clustering
    method) we can test programmatically whether if is has the monotonicity
    property or not, using `scipy.cluster.hierarchy.is_monotonic`:

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    >>> Z = ward(pdist(X))
    >>> Z
    array([[ 0.        ,  1.        ,  1.        ,  2.        ],
           [ 3.        ,  4.        ,  1.        ,  2.        ],
           [ 6.        ,  7.        ,  1.        ,  2.        ],
           [ 9.        , 10.        ,  1.        ,  2.        ],
           [ 2.        , 12.        ,  1.29099445,  3.        ],
           [ 5.        , 13.        ,  1.29099445,  3.        ],
           [ 8.        , 14.        ,  1.29099445,  3.        ],
           [11.        , 15.        ,  1.29099445,  3.        ],
           [16.        , 17.        ,  5.77350269,  6.        ],
           [18.        , 19.        ,  5.77350269,  6.        ],
           [20.        , 21.        ,  8.16496581, 12.        ]])
    >>> is_monotonic(Z)
    True

    >>> Z = median(pdist(X))
    >>> Z
    array([[ 0.        ,  1.        ,  1.        ,  2.        ],
           [ 3.        ,  4.        ,  1.        ,  2.        ],
           [ 9.        , 10.        ,  1.        ,  2.        ],
           [ 6.        ,  7.        ,  1.        ,  2.        ],
           [ 2.        , 12.        ,  1.11803399,  3.        ],
           [ 5.        , 13.        ,  1.11803399,  3.        ],
           [ 8.        , 15.        ,  1.11803399,  3.        ],
           [11.        , 14.        ,  1.11803399,  3.        ],
           [18.        , 19.        ,  3.        ,  6.        ],
           [16.        , 17.        ,  3.5       ,  6.        ],
           [20.        , 21.        ,  3.25      , 12.        ]])
    >>> is_monotonic(Z)
    False

    Note that this method is equivalent to just verifying that the distances
    in the third column of the linkage matrix appear in a monotonically
    increasing order.

    """
    Z = np.asarray(Z, order='c')
    is_valid_linkage(Z, throw=True, name='Z')

    # We expect the i'th value to be greater than its successor.
    return (Z[1:, 2] >= Z[:-1, 2]).all()


def is_valid_im(R, warning=False, throw=False, name=None):
    """Return True if the inconsistency matrix passed is valid.

    It must be a :math:`n` by 4 array of doubles. The standard
    deviations ``R[:,1]`` must be nonnegative. The link counts
    ``R[:,2]`` must be positive and no greater than :math:`n-1`.

    Parameters
    ----------
    R : ndarray
        The inconsistency matrix to check for validity.
    warning : bool, optional
         When True, issues a Python warning if the linkage
         matrix passed is invalid.
    throw : bool, optional
         When True, throws a Python exception if the linkage
         matrix passed is invalid.
    name : str, optional
         This string refers to the variable name of the invalid
         linkage matrix.

    Returns
    -------
    b : bool
        True if the inconsistency matrix is valid.

    See Also
    --------
    linkage: for a description of what a linkage matrix is.
    inconsistent: for the creation of a inconsistency matrix.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import ward, inconsistent, is_valid_im
    >>> from scipy.spatial.distance import pdist

    Given a data set ``X``, we can apply a clustering method to obtain a
    linkage matrix ``Z``. `scipy.cluster.hierarchy.inconsistent` can
    be also used to obtain the inconsistency matrix ``R`` associated to
    this clustering process:

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    >>> Z = ward(pdist(X))
    >>> R = inconsistent(Z)
    >>> Z
    array([[ 0.        ,  1.        ,  1.        ,  2.        ],
           [ 3.        ,  4.        ,  1.        ,  2.        ],
           [ 6.        ,  7.        ,  1.        ,  2.        ],
           [ 9.        , 10.        ,  1.        ,  2.        ],
           [ 2.        , 12.        ,  1.29099445,  3.        ],
           [ 5.        , 13.        ,  1.29099445,  3.        ],
           [ 8.        , 14.        ,  1.29099445,  3.        ],
           [11.        , 15.        ,  1.29099445,  3.        ],
           [16.        , 17.        ,  5.77350269,  6.        ],
           [18.        , 19.        ,  5.77350269,  6.        ],
           [20.        , 21.        ,  8.16496581, 12.        ]])
    >>> R
    array([[1.        , 0.        , 1.        , 0.        ],
           [1.        , 0.        , 1.        , 0.        ],
           [1.        , 0.        , 1.        , 0.        ],
           [1.        , 0.        , 1.        , 0.        ],
           [1.14549722, 0.20576415, 2.        , 0.70710678],
           [1.14549722, 0.20576415, 2.        , 0.70710678],
           [1.14549722, 0.20576415, 2.        , 0.70710678],
           [1.14549722, 0.20576415, 2.        , 0.70710678],
           [2.78516386, 2.58797734, 3.        , 1.15470054],
           [2.78516386, 2.58797734, 3.        , 1.15470054],
           [6.57065706, 1.38071187, 3.        , 1.15470054]])

    Now we can use `scipy.cluster.hierarchy.is_valid_im` to verify that
    ``R`` is correct:

    >>> is_valid_im(R)
    True

    However, if ``R`` is wrongly constructed (e.g one of the standard
    deviations is set to a negative value) then the check will fail:

    >>> R[-1,1] = R[-1,1] * -1
    >>> is_valid_im(R)
    False

    """
    R = np.asarray(R, order='c')
    valid = True
    name_str = "%r " % name if name else ''
    try:
        if type(R) != np.ndarray:
            raise TypeError('Variable %spassed as inconsistency matrix is not '
                            'a numpy array.' % name_str)
        if R.dtype != np.double:
            raise TypeError('Inconsistency matrix %smust contain doubles '
                            '(double).' % name_str)
        if len(R.shape) != 2:
            raise ValueError('Inconsistency matrix %smust have shape=2 (i.e. '
                             'be two-dimensional).' % name_str)
        if R.shape[1] != 4:
            raise ValueError('Inconsistency matrix %smust have 4 columns.' %
                             name_str)
        if R.shape[0] < 1:
            raise ValueError('Inconsistency matrix %smust have at least one '
                             'row.' % name_str)
        if (R[:, 0] < 0).any():
            raise ValueError('Inconsistency matrix %scontains negative link '
                             'height means.' % name_str)
        if (R[:, 1] < 0).any():
            raise ValueError('Inconsistency matrix %scontains negative link '
                             'height standard deviations.' % name_str)
        if (R[:, 2] < 0).any():
            raise ValueError('Inconsistency matrix %scontains negative link '
                             'counts.' % name_str)
    except Exception as e:
        if throw:
            raise
        if warning:
            _warning(str(e))
        valid = False

    return valid


def is_valid_linkage(Z, warning=False, throw=False, name=None):
    """
    Check the validity of a linkage matrix.

    A linkage matrix is valid if it is a two dimensional array (type double)
    with :math:`n` rows and 4 columns.  The first two columns must contain
    indices between 0 and :math:`2n-1`. For a given row ``i``, the following
    two expressions have to hold:

    .. math::

        0 \\leq \\mathtt{Z[i,0]} \\leq i+n-1
        0 \\leq Z[i,1] \\leq i+n-1

    I.e. a cluster cannot join another cluster unless the cluster being joined
    has been generated.

    Parameters
    ----------
    Z : array_like
        Linkage matrix.
    warning : bool, optional
        When True, issues a Python warning if the linkage
        matrix passed is invalid.
    throw : bool, optional
        When True, throws a Python exception if the linkage
        matrix passed is invalid.
    name : str, optional
        This string refers to the variable name of the invalid
        linkage matrix.

    Returns
    -------
    b : bool
        True if the inconsistency matrix is valid.

    See Also
    --------
    linkage: for a description of what a linkage matrix is.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import ward, is_valid_linkage
    >>> from scipy.spatial.distance import pdist

    All linkage matrices generated by the clustering methods in this module
    will be valid (i.e. they will have the appropriate dimensions and the two
    required expressions will hold for all the rows).

    We can check this using `scipy.cluster.hierarchy.is_valid_linkage`:

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    >>> Z = ward(pdist(X))
    >>> Z
    array([[ 0.        ,  1.        ,  1.        ,  2.        ],
           [ 3.        ,  4.        ,  1.        ,  2.        ],
           [ 6.        ,  7.        ,  1.        ,  2.        ],
           [ 9.        , 10.        ,  1.        ,  2.        ],
           [ 2.        , 12.        ,  1.29099445,  3.        ],
           [ 5.        , 13.        ,  1.29099445,  3.        ],
           [ 8.        , 14.        ,  1.29099445,  3.        ],
           [11.        , 15.        ,  1.29099445,  3.        ],
           [16.        , 17.        ,  5.77350269,  6.        ],
           [18.        , 19.        ,  5.77350269,  6.        ],
           [20.        , 21.        ,  8.16496581, 12.        ]])
    >>> is_valid_linkage(Z)
    True

    However, is we create a linkage matrix in a wrong way - or if we modify
    a valid one in a way that any of the required expressions don't hold
    anymore, then the check will fail:

    >>> Z[3][1] = 20    # the cluster number 20 is not defined at this point
    >>> is_valid_linkage(Z)
    False

    """
    Z = np.asarray(Z, order='c')
    valid = True
    name_str = "%r " % name if name else ''
    try:
        if type(Z) != np.ndarray:
            raise TypeError('Passed linkage argument %sis not a valid array.' %
                            name_str)
        if Z.dtype != np.double:
            raise TypeError('Linkage matrix %smust contain doubles.' % name_str)
        if len(Z.shape) != 2:
            raise ValueError('Linkage matrix %smust have shape=2 (i.e. be '
                             'two-dimensional).' % name_str)
        if Z.shape[1] != 4:
            raise ValueError('Linkage matrix %smust have 4 columns.' % name_str)
        if Z.shape[0] == 0:
            raise ValueError('Linkage must be computed on at least two '
                             'observations.')
        n = Z.shape[0]
        if n > 1:
            if ((Z[:, 0] < 0).any() or (Z[:, 1] < 0).any()):
                raise ValueError('Linkage %scontains negative indices.' %
                                 name_str)
            if (Z[:, 2] < 0).any():
                raise ValueError('Linkage %scontains negative distances.' %
                                 name_str)
            if (Z[:, 3] < 0).any():
                raise ValueError('Linkage %scontains negative counts.' %
                                 name_str)
        if _check_hierarchy_uses_cluster_before_formed(Z):
            raise ValueError('Linkage %suses non-singleton cluster before '
                             'it is formed.' % name_str)
        if _check_hierarchy_uses_cluster_more_than_once(Z):
            raise ValueError('Linkage %suses the same cluster more than once.'
                             % name_str)
    except Exception as e:
        if throw:
            raise
        if warning:
            _warning(str(e))
        valid = False

    return valid


def _check_hierarchy_uses_cluster_before_formed(Z):
    n = Z.shape[0] + 1
    for i in xrange(0, n - 1):
        if Z[i, 0] >= n + i or Z[i, 1] >= n + i:
            return True
    return False


def _check_hierarchy_uses_cluster_more_than_once(Z):
    n = Z.shape[0] + 1
    chosen = set([])
    for i in xrange(0, n - 1):
        if (Z[i, 0] in chosen) or (Z[i, 1] in chosen) or Z[i, 0] == Z[i, 1]:
            return True
        chosen.add(Z[i, 0])
        chosen.add(Z[i, 1])
    return False


def _check_hierarchy_not_all_clusters_used(Z):
    n = Z.shape[0] + 1
    chosen = set([])
    for i in xrange(0, n - 1):
        chosen.add(int(Z[i, 0]))
        chosen.add(int(Z[i, 1]))
    must_chosen = set(range(0, 2 * n - 2))
    return len(must_chosen.difference(chosen)) > 0


def num_obs_linkage(Z):
    """
    Return the number of original observations of the linkage matrix passed.

    Parameters
    ----------
    Z : ndarray
        The linkage matrix on which to perform the operation.

    Returns
    -------
    n : int
        The number of original observations in the linkage.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import ward, num_obs_linkage
    >>> from scipy.spatial.distance import pdist

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    >>> Z = ward(pdist(X))

    ``Z`` is a linkage matrix obtained after using the Ward clustering method
    with ``X``, a dataset with 12 data points.

    >>> num_obs_linkage(Z)
    12

    """
    Z = np.asarray(Z, order='c')
    is_valid_linkage(Z, throw=True, name='Z')
    return (Z.shape[0] + 1)


def correspond(Z, Y):
    """
    Check for correspondence between linkage and condensed distance matrices.

    They must have the same number of original observations for
    the check to succeed.

    This function is useful as a sanity check in algorithms that make
    extensive use of linkage and distance matrices that must
    correspond to the same set of original observations.

    Parameters
    ----------
    Z : array_like
        The linkage matrix to check for correspondence.
    Y : array_like
        The condensed distance matrix to check for correspondence.

    Returns
    -------
    b : bool
        A boolean indicating whether the linkage matrix and distance
        matrix could possibly correspond to one another.

    See Also
    --------
    linkage: for a description of what a linkage matrix is.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import ward, correspond
    >>> from scipy.spatial.distance import pdist

    This method can be used to check if a given linkage matrix ``Z`` has been
    obtained from the application of a cluster method over a dataset ``X``:

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]
    >>> X_condensed = pdist(X)
    >>> Z = ward(X_condensed)

    Here we can compare ``Z`` and ``X`` (in condensed form):

    >>> correspond(Z, X_condensed)
    True

    """
    is_valid_linkage(Z, throw=True)
    distance.is_valid_y(Y, throw=True)
    Z = np.asarray(Z, order='c')
    Y = np.asarray(Y, order='c')
    return distance.num_obs_y(Y) == num_obs_linkage(Z)


def fcluster(Z, t, criterion='inconsistent', depth=2, R=None, monocrit=None):
    """
    Form flat clusters from the hierarchical clustering defined by
    the given linkage matrix.

    Parameters
    ----------
    Z : ndarray
        The hierarchical clustering encoded with the matrix returned
        by the `linkage` function.
    t : scalar
        For criteria 'inconsistent', 'distance' or 'monocrit',
         this is the threshold to apply when forming flat clusters.
        For 'maxclust' or 'maxclust_monocrit' criteria,
         this would be max number of clusters requested.
    criterion : str, optional
        The criterion to use in forming flat clusters. This can
        be any of the following values:

          ``inconsistent`` :
              If a cluster node and all its
              descendants have an inconsistent value less than or equal
              to `t` then all its leaf descendants belong to the
              same flat cluster. When no non-singleton cluster meets
              this criterion, every node is assigned to its own
              cluster. (Default)

          ``distance`` :
              Forms flat clusters so that the original
              observations in each flat cluster have no greater a
              cophenetic distance than `t`.

          ``maxclust`` :
              Finds a minimum threshold ``r`` so that
              the cophenetic distance between any two original
              observations in the same flat cluster is no more than
              ``r`` and no more than `t` flat clusters are formed.

          ``monocrit`` :
              Forms a flat cluster from a cluster node c
              with index i when ``monocrit[j] <= t``.

              For example, to threshold on the maximum mean distance
              as computed in the inconsistency matrix R with a
              threshold of 0.8 do::

                  MR = maxRstat(Z, R, 3)
                  cluster(Z, t=0.8, criterion='monocrit', monocrit=MR)

          ``maxclust_monocrit`` :
              Forms a flat cluster from a
              non-singleton cluster node ``c`` when ``monocrit[i] <=
              r`` for all cluster indices ``i`` below and including
              ``c``. ``r`` is minimized such that no more than ``t``
              flat clusters are formed. monocrit must be
              monotonic. For example, to minimize the threshold t on
              maximum inconsistency values so that no more than 3 flat
              clusters are formed, do::

                  MI = maxinconsts(Z, R)
                  cluster(Z, t=3, criterion='maxclust_monocrit', monocrit=MI)

    depth : int, optional
        The maximum depth to perform the inconsistency calculation.
        It has no meaning for the other criteria. Default is 2.
    R : ndarray, optional
        The inconsistency matrix to use for the 'inconsistent'
        criterion. This matrix is computed if not provided.
    monocrit : ndarray, optional
        An array of length n-1. `monocrit[i]` is the
        statistics upon which non-singleton i is thresholded. The
        monocrit vector must be monotonic, i.e. given a node c with
        index i, for all node indices j corresponding to nodes
        below c, ``monocrit[i] >= monocrit[j]``.

    Returns
    -------
    fcluster : ndarray
        An array of length ``n``. ``T[i]`` is the flat cluster number to
        which original observation ``i`` belongs.

    See Also
    --------
    linkage : for information about hierarchical clustering methods work.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import ward, fcluster
    >>> from scipy.spatial.distance import pdist

    All cluster linkage methods - e.g. `scipy.cluster.hierarchy.ward`
    generate a linkage matrix ``Z`` as their output:

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    >>> Z = ward(pdist(X))

    >>> Z
    array([[ 0.        ,  1.        ,  1.        ,  2.        ],
           [ 3.        ,  4.        ,  1.        ,  2.        ],
           [ 6.        ,  7.        ,  1.        ,  2.        ],
           [ 9.        , 10.        ,  1.        ,  2.        ],
           [ 2.        , 12.        ,  1.29099445,  3.        ],
           [ 5.        , 13.        ,  1.29099445,  3.        ],
           [ 8.        , 14.        ,  1.29099445,  3.        ],
           [11.        , 15.        ,  1.29099445,  3.        ],
           [16.        , 17.        ,  5.77350269,  6.        ],
           [18.        , 19.        ,  5.77350269,  6.        ],
           [20.        , 21.        ,  8.16496581, 12.        ]])

    This matrix represents a dendrogram, where the first and second elements
    are the two clusters merged at each step, the third element is the
    distance between these clusters, and the fourth element is the size of
    the new cluster - the number of original data points included.

    `scipy.cluster.hierarchy.fcluster` can be used to flatten the
    dendrogram, obtaining as a result an assignation of the original data
    points to single clusters.

    This assignation mostly depends on a distance threshold ``t`` - the maximum
    inter-cluster distance allowed:

    >>> fcluster(Z, t=0.9, criterion='distance')
    array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12], dtype=int32)

    >>> fcluster(Z, t=1.1, criterion='distance')
    array([1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8], dtype=int32)

    >>> fcluster(Z, t=3, criterion='distance')
    array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)

    >>> fcluster(Z, t=9, criterion='distance')
    array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], dtype=int32)

    In the first case, the threshold ``t`` is too small to allow any two
    samples in the data to form a cluster, so 12 different clusters are
    returned.

    In the second case, the threshold is large enough to allow the first
    4 points to be merged with their nearest neighbors. So here only 8
    clusters are returned.

    The third case, with a much higher threshold, allows for up to 8 data
    points to be connected - so 4 clusters are returned here.

    Lastly, the threshold of the fourth case is large enough to allow for
    all data points to be merged together - so a single cluster is returned.

    """
    Z = np.asarray(Z, order='c')
    is_valid_linkage(Z, throw=True, name='Z')

    n = Z.shape[0] + 1
    T = np.zeros((n,), dtype='i')

    # Since the C code does not support striding using strides.
    # The dimensions are used instead.
    [Z] = _copy_arrays_if_base_present([Z])

    if criterion == 'inconsistent':
        if R is None:
            R = inconsistent(Z, depth)
        else:
            R = np.asarray(R, order='c')
            is_valid_im(R, throw=True, name='R')
            # Since the C code does not support striding using strides.
            # The dimensions are used instead.
            [R] = _copy_arrays_if_base_present([R])
        _hierarchy.cluster_in(Z, R, T, float(t), int(n))
    elif criterion == 'distance':
        _hierarchy.cluster_dist(Z, T, float(t), int(n))
    elif criterion == 'maxclust':
        _hierarchy.cluster_maxclust_dist(Z, T, int(n), int(t))
    elif criterion == 'monocrit':
        [monocrit] = _copy_arrays_if_base_present([monocrit])
        _hierarchy.cluster_monocrit(Z, monocrit, T, float(t), int(n))
    elif criterion == 'maxclust_monocrit':
        [monocrit] = _copy_arrays_if_base_present([monocrit])
        _hierarchy.cluster_maxclust_monocrit(Z, monocrit, T, int(n), int(t))
    else:
        raise ValueError('Invalid cluster formation criterion: %s'
                         % str(criterion))
    return T


def fclusterdata(X, t, criterion='inconsistent',
                 metric='euclidean', depth=2, method='single', R=None):
    """
    Cluster observation data using a given metric.

    Clusters the original observations in the n-by-m data
    matrix X (n observations in m dimensions), using the euclidean
    distance metric to calculate distances between original observations,
    performs hierarchical clustering using the single linkage algorithm,
    and forms flat clusters using the inconsistency method with `t` as the
    cut-off threshold.

    A one-dimensional array ``T`` of length ``n`` is returned. ``T[i]`` is
    the index of the flat cluster to which the original observation ``i``
    belongs.

    Parameters
    ----------
    X : (N, M) ndarray
        N by M data matrix with N observations in M dimensions.
    t : scalar
        For criteria 'inconsistent', 'distance' or 'monocrit',
         this is the threshold to apply when forming flat clusters.
        For 'maxclust' or 'maxclust_monocrit' criteria,
         this would be max number of clusters requested.
    criterion : str, optional
        Specifies the criterion for forming flat clusters.  Valid
        values are 'inconsistent' (default), 'distance', or 'maxclust'
        cluster formation algorithms. See `fcluster` for descriptions.
    metric : str, optional
        The distance metric for calculating pairwise distances. See
        ``distance.pdist`` for descriptions and linkage to verify
        compatibility with the linkage method.
    depth : int, optional
        The maximum depth for the inconsistency calculation. See
        `inconsistent` for more information.
    method : str, optional
        The linkage method to use (single, complete, average,
        weighted, median centroid, ward). See `linkage` for more
        information. Default is "single".
    R : ndarray, optional
        The inconsistency matrix. It will be computed if necessary
        if it is not passed.

    Returns
    -------
    fclusterdata : ndarray
        A vector of length n. T[i] is the flat cluster number to
        which original observation i belongs.

    See Also
    --------
    scipy.spatial.distance.pdist : pairwise distance metrics

    Notes
    -----
    This function is similar to the MATLAB function ``clusterdata``.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import fclusterdata

    This is a convenience method that abstracts all the steps to perform in a
    typical SciPy's hierarchical clustering workflow.

    * Transform the input data into a condensed matrix with `scipy.spatial.distance.pdist`.

    * Apply a clustering method.

    * Obtain flat clusters at a user defined distance threshold ``t`` using `scipy.cluster.hierarchy.fcluster`.

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    >>> fclusterdata(X, t=1)
    array([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32)

    The output here (for the dataset ``X``, distance threshold ``t``, and the
    default settings) is four clusters with three data points each.

    """
    X = np.asarray(X, order='c', dtype=np.double)

    if type(X) != np.ndarray or len(X.shape) != 2:
        raise TypeError('The observation matrix X must be an n by m numpy '
                        'array.')

    Y = distance.pdist(X, metric=metric)
    Z = linkage(Y, method=method)
    if R is None:
        R = inconsistent(Z, d=depth)
    else:
        R = np.asarray(R, order='c')
    T = fcluster(Z, criterion=criterion, depth=depth, R=R, t=t)
    return T


def leaves_list(Z):
    """
    Return a list of leaf node ids.

    The return corresponds to the observation vector index as it appears
    in the tree from left to right. Z is a linkage matrix.

    Parameters
    ----------
    Z : ndarray
        The hierarchical clustering encoded as a matrix.  `Z` is
        a linkage matrix.  See `linkage` for more information.

    Returns
    -------
    leaves_list : ndarray
        The list of leaf node ids.

    See Also
    --------
    dendrogram: for information about dendrogram structure.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import ward, dendrogram, leaves_list
    >>> from scipy.spatial.distance import pdist
    >>> from matplotlib import pyplot as plt

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    >>> Z = ward(pdist(X))

    The linkage matrix ``Z`` represents a dendrogram, that is, a tree that
    encodes the structure of the clustering performed.
    `scipy.cluster.hierarchy.leaves_list` shows the mapping between
    indexes in the ``X`` dataset and leaves in the dendrogram:

    >>> leaves_list(Z)
    array([ 2,  0,  1,  5,  3,  4,  8,  6,  7, 11,  9, 10], dtype=int32)

    >>> fig = plt.figure(figsize=(25, 10))
    >>> dn = dendrogram(Z)
    >>> plt.show()

    """
    Z = np.asarray(Z, order='c')
    is_valid_linkage(Z, throw=True, name='Z')
    n = Z.shape[0] + 1
    ML = np.zeros((n,), dtype='i')
    [Z] = _copy_arrays_if_base_present([Z])
    _hierarchy.prelist(Z, ML, int(n))
    return ML


# Maps number of leaves to text size.
#
# p <= 20, size="12"
# 20 < p <= 30, size="10"
# 30 < p <= 50, size="8"
# 50 < p <= np.inf, size="6"

_dtextsizes = {20: 12, 30: 10, 50: 8, 85: 6, np.inf: 5}
_drotation = {20: 0, 40: 45, np.inf: 90}
_dtextsortedkeys = list(_dtextsizes.keys())
_dtextsortedkeys.sort()
_drotationsortedkeys = list(_drotation.keys())
_drotationsortedkeys.sort()


def _remove_dups(L):
    """
    Remove duplicates AND preserve the original order of the elements.

    The set class is not guaranteed to do this.
    """
    seen_before = set([])
    L2 = []
    for i in L:
        if i not in seen_before:
            seen_before.add(i)
            L2.append(i)
    return L2


def _get_tick_text_size(p):
    for k in _dtextsortedkeys:
        if p <= k:
            return _dtextsizes[k]


def _get_tick_rotation(p):
    for k in _drotationsortedkeys:
        if p <= k:
            return _drotation[k]


def _plot_dendrogram(icoords, dcoords, ivl, p, n, mh, orientation,
                     no_labels, color_list, leaf_font_size=None,
                     leaf_rotation=None, contraction_marks=None,
                     ax=None, above_threshold_color='b'):
    # Import matplotlib here so that it's not imported unless dendrograms
    # are plotted. Raise an informative error if importing fails.
    try:
        # if an axis is provided, don't use pylab at all
        if ax is None:
            import matplotlib.pylab
        import matplotlib.patches
        import matplotlib.collections
    except ImportError:
        raise ImportError("You must install the matplotlib library to plot "
                          "the dendrogram. Use no_plot=True to calculate the "
                          "dendrogram without plotting.")

    if ax is None:
        ax = matplotlib.pylab.gca()
        # if we're using pylab, we want to trigger a draw at the end
        trigger_redraw = True
    else:
        trigger_redraw = False

    # Independent variable plot width
    ivw = len(ivl) * 10
    # Dependent variable plot height
    dvw = mh + mh * 0.05

    iv_ticks = np.arange(5, len(ivl) * 10 + 5, 10)
    if orientation in ('top', 'bottom'):
        if orientation == 'top':
            ax.set_ylim([0, dvw])
            ax.set_xlim([0, ivw])
        else:
            ax.set_ylim([dvw, 0])
            ax.set_xlim([0, ivw])

        xlines = icoords
        ylines = dcoords
        if no_labels:
            ax.set_xticks([])
            ax.set_xticklabels([])
        else:
            ax.set_xticks(iv_ticks)

            if orientation == 'top':
                ax.xaxis.set_ticks_position('bottom')
            else:
                ax.xaxis.set_ticks_position('top')

            # Make the tick marks invisible because they cover up the links
            for line in ax.get_xticklines():
                line.set_visible(False)

            leaf_rot = (float(_get_tick_rotation(len(ivl)))
                        if (leaf_rotation is None) else leaf_rotation)
            leaf_font = (float(_get_tick_text_size(len(ivl)))
                         if (leaf_font_size is None) else leaf_font_size)
            ax.set_xticklabels(ivl, rotation=leaf_rot, size=leaf_font)

    elif orientation in ('left', 'right'):
        if orientation == 'left':
            ax.set_xlim([dvw, 0])
            ax.set_ylim([0, ivw])
        else:
            ax.set_xlim([0, dvw])
            ax.set_ylim([0, ivw])

        xlines = dcoords
        ylines = icoords
        if no_labels:
            ax.set_yticks([])
            ax.set_yticklabels([])
        else:
            ax.set_yticks(iv_ticks)

            if orientation == 'left':
                ax.yaxis.set_ticks_position('right')
            else:
                ax.yaxis.set_ticks_position('left')

            # Make the tick marks invisible because they cover up the links
            for line in ax.get_yticklines():
                line.set_visible(False)

            leaf_font = (float(_get_tick_text_size(len(ivl)))
                         if (leaf_font_size is None) else leaf_font_size)

            if leaf_rotation is not None:
                ax.set_yticklabels(ivl, rotation=leaf_rotation, size=leaf_font)
            else:
                ax.set_yticklabels(ivl, size=leaf_font)

    # Let's use collections instead. This way there is a separate legend item
    # for each tree grouping, rather than stupidly one for each line segment.
    colors_used = _remove_dups(color_list)
    color_to_lines = {}
    for color in colors_used:
        color_to_lines[color] = []
    for (xline, yline, color) in zip(xlines, ylines, color_list):
        color_to_lines[color].append(list(zip(xline, yline)))

    colors_to_collections = {}
    # Construct the collections.
    for color in colors_used:
        coll = matplotlib.collections.LineCollection(color_to_lines[color],
                                                     colors=(color,))
        colors_to_collections[color] = coll

    # Add all the groupings below the color threshold.
    for color in colors_used:
        if color != above_threshold_color:
            ax.add_collection(colors_to_collections[color])
    # If there's a grouping of links above the color threshold, it goes last.
    if above_threshold_color in colors_to_collections:
        ax.add_collection(colors_to_collections[above_threshold_color])

    if contraction_marks is not None:
        Ellipse = matplotlib.patches.Ellipse
        for (x, y) in contraction_marks:
            if orientation in ('left', 'right'):
                e = Ellipse((y, x), width=dvw / 100, height=1.0)
            else:
                e = Ellipse((x, y), width=1.0, height=dvw / 100)
            ax.add_artist(e)
            e.set_clip_box(ax.bbox)
            e.set_alpha(0.5)
            e.set_facecolor('k')

    if trigger_redraw:
        matplotlib.pylab.draw_if_interactive()


_link_line_colors = ['g', 'r', 'c', 'm', 'y', 'k']


def set_link_color_palette(palette):
    """
    Set list of matplotlib color codes for use by dendrogram.

    Note that this palette is global (i.e. setting it once changes the colors
    for all subsequent calls to `dendrogram`) and that it affects only the
    the colors below ``color_threshold``.

    Note that `dendrogram` also accepts a custom coloring function through its
    ``link_color_func`` keyword, which is more flexible and non-global.

    Parameters
    ----------
    palette : list of str or None
        A list of matplotlib color codes.  The order of the color codes is the
        order in which the colors are cycled through when color thresholding in
        the dendrogram.

        If ``None``, resets the palette to its default (which is
        ``['g', 'r', 'c', 'm', 'y', 'k']``).

    Returns
    -------
    None

    See Also
    --------
    dendrogram

    Notes
    -----
    Ability to reset the palette with ``None`` added in SciPy 0.17.0.

    Examples
    --------
    >>> from scipy.cluster import hierarchy
    >>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268.,
    ...                    400., 754., 564., 138., 219., 869., 669.])
    >>> Z = hierarchy.linkage(ytdist, 'single')
    >>> dn = hierarchy.dendrogram(Z, no_plot=True)
    >>> dn['color_list']
    ['g', 'b', 'b', 'b', 'b']
    >>> hierarchy.set_link_color_palette(['c', 'm', 'y', 'k'])
    >>> dn = hierarchy.dendrogram(Z, no_plot=True)
    >>> dn['color_list']
    ['c', 'b', 'b', 'b', 'b']
    >>> dn = hierarchy.dendrogram(Z, no_plot=True, color_threshold=267,
    ...                           above_threshold_color='k')
    >>> dn['color_list']
    ['c', 'm', 'm', 'k', 'k']

    Now reset the color palette to its default:

    >>> hierarchy.set_link_color_palette(None)

    """
    if palette is None:
        # reset to its default
        palette = ['g', 'r', 'c', 'm', 'y', 'k']
    elif type(palette) not in (list, tuple):
        raise TypeError("palette must be a list or tuple")
    _ptypes = [isinstance(p, string_types) for p in palette]

    if False in _ptypes:
        raise TypeError("all palette list elements must be color strings")

    for i in list(_link_line_colors):
        _link_line_colors.remove(i)
    _link_line_colors.extend(list(palette))


def dendrogram(Z, p=30, truncate_mode=None, color_threshold=None,
               get_leaves=True, orientation='top', labels=None,
               count_sort=False, distance_sort=False, show_leaf_counts=True,
               no_plot=False, no_labels=False, leaf_font_size=None,
               leaf_rotation=None, leaf_label_func=None,
               show_contracted=False, link_color_func=None, ax=None,
               above_threshold_color='b'):
    """
    Plot the hierarchical clustering as a dendrogram.

    The dendrogram illustrates how each cluster is
    composed by drawing a U-shaped link between a non-singleton
    cluster and its children.  The top of the U-link indicates a
    cluster merge.  The two legs of the U-link indicate which clusters
    were merged.  The length of the two legs of the U-link represents
    the distance between the child clusters.  It is also the
    cophenetic distance between original observations in the two
    children clusters.

    Parameters
    ----------
    Z : ndarray
        The linkage matrix encoding the hierarchical clustering to
        render as a dendrogram. See the ``linkage`` function for more
        information on the format of ``Z``.
    p : int, optional
        The ``p`` parameter for ``truncate_mode``.
    truncate_mode : str, optional
        The dendrogram can be hard to read when the original
        observation matrix from which the linkage is derived is
        large. Truncation is used to condense the dendrogram. There
        are several modes:

        ``None``
          No truncation is performed (default).
          Note: ``'none'`` is an alias for ``None`` that's kept for
          backward compatibility.

        ``'lastp'``
          The last ``p`` non-singleton clusters formed in the linkage are the
          only non-leaf nodes in the linkage; they correspond to rows
          ``Z[n-p-2:end]`` in ``Z``. All other non-singleton clusters are
          contracted into leaf nodes.

        ``'level'``
          No more than ``p`` levels of the dendrogram tree are displayed.
          A "level" includes all nodes with ``p`` merges from the last merge.

          Note: ``'mtica'`` is an alias for ``'level'`` that's kept for
          backward compatibility.

    color_threshold : double, optional
        For brevity, let :math:`t` be the ``color_threshold``.
        Colors all the descendent links below a cluster node
        :math:`k` the same color if :math:`k` is the first node below
        the cut threshold :math:`t`. All links connecting nodes with
        distances greater than or equal to the threshold are colored
        blue. If :math:`t` is less than or equal to zero, all nodes
        are colored blue. If ``color_threshold`` is None or
        'default', corresponding with MATLAB(TM) behavior, the
        threshold is set to ``0.7*max(Z[:,2])``.
    get_leaves : bool, optional
        Includes a list ``R['leaves']=H`` in the result
        dictionary. For each :math:`i`, ``H[i] == j``, cluster node
        ``j`` appears in position ``i`` in the left-to-right traversal
        of the leaves, where :math:`j < 2n-1` and :math:`i < n`.
    orientation : str, optional
        The direction to plot the dendrogram, which can be any
        of the following strings:

        ``'top'``
          Plots the root at the top, and plot descendent links going downwards.
          (default).

        ``'bottom'``
          Plots the root at the bottom, and plot descendent links going
          upwards.

        ``'left'``
          Plots the root at the left, and plot descendent links going right.

        ``'right'``
          Plots the root at the right, and plot descendent links going left.

    labels : ndarray, optional
        By default ``labels`` is None so the index of the original observation
        is used to label the leaf nodes.  Otherwise, this is an :math:`n`
        -sized list (or tuple). The ``labels[i]`` value is the text to put
        under the :math:`i` th leaf node only if it corresponds to an original
        observation and not a non-singleton cluster.
    count_sort : str or bool, optional
        For each node n, the order (visually, from left-to-right) n's
        two descendent links are plotted is determined by this
        parameter, which can be any of the following values:

        ``False``
          Nothing is done.

        ``'ascending'`` or ``True``
          The child with the minimum number of original objects in its cluster
          is plotted first.

        ``'descending'``
          The child with the maximum number of original objects in its cluster
          is plotted first.

        Note ``distance_sort`` and ``count_sort`` cannot both be True.
    distance_sort : str or bool, optional
        For each node n, the order (visually, from left-to-right) n's
        two descendent links are plotted is determined by this
        parameter, which can be any of the following values:

        ``False``
          Nothing is done.

        ``'ascending'`` or ``True``
          The child with the minimum distance between its direct descendents is
          plotted first.

        ``'descending'``
          The child with the maximum distance between its direct descendents is
          plotted first.

        Note ``distance_sort`` and ``count_sort`` cannot both be True.
    show_leaf_counts : bool, optional
         When True, leaf nodes representing :math:`k>1` original
         observation are labeled with the number of observations they
         contain in parentheses.
    no_plot : bool, optional
        When True, the final rendering is not performed. This is
        useful if only the data structures computed for the rendering
        are needed or if matplotlib is not available.
    no_labels : bool, optional
        When True, no labels appear next to the leaf nodes in the
        rendering of the dendrogram.
    leaf_rotation : double, optional
        Specifies the angle (in degrees) to rotate the leaf
        labels. When unspecified, the rotation is based on the number of
        nodes in the dendrogram (default is 0).
    leaf_font_size : int, optional
        Specifies the font size (in points) of the leaf labels. When
        unspecified, the size based on the number of nodes in the
        dendrogram.
    leaf_label_func : lambda or function, optional
        When leaf_label_func is a callable function, for each
        leaf with cluster index :math:`k < 2n-1`. The function
        is expected to return a string with the label for the
        leaf.

        Indices :math:`k < n` correspond to original observations
        while indices :math:`k \\geq n` correspond to non-singleton
        clusters.

        For example, to label singletons with their node id and
        non-singletons with their id, count, and inconsistency
        coefficient, simply do::

            # First define the leaf label function.
            def llf(id):
                if id < n:
                    return str(id)
                else:
                    return '[%d %d %1.2f]' % (id, count, R[n-id,3])
            # The text for the leaf nodes is going to be big so force
            # a rotation of 90 degrees.
            dendrogram(Z, leaf_label_func=llf, leaf_rotation=90)

    show_contracted : bool, optional
        When True the heights of non-singleton nodes contracted
        into a leaf node are plotted as crosses along the link
        connecting that leaf node.  This really is only useful when
        truncation is used (see ``truncate_mode`` parameter).
    link_color_func : callable, optional
        If given, `link_color_function` is called with each non-singleton id
        corresponding to each U-shaped link it will paint. The function is
        expected to return the color to paint the link, encoded as a matplotlib
        color string code. For example::

            dendrogram(Z, link_color_func=lambda k: colors[k])

        colors the direct links below each untruncated non-singleton node
        ``k`` using ``colors[k]``.
    ax : matplotlib Axes instance, optional
        If None and `no_plot` is not True, the dendrogram will be plotted
        on the current axes.  Otherwise if `no_plot` is not True the
        dendrogram will be plotted on the given ``Axes`` instance. This can be
        useful if the dendrogram is part of a more complex figure.
    above_threshold_color : str, optional
        This matplotlib color string sets the color of the links above the
        color_threshold. The default is 'b'.

    Returns
    -------
    R : dict
        A dictionary of data structures computed to render the
        dendrogram. Its has the following keys:

        ``'color_list'``
          A list of color names. The k'th element represents the color of the
          k'th link.

        ``'icoord'`` and ``'dcoord'``
          Each of them is a list of lists. Let ``icoord = [I1, I2, ..., Ip]``
          where ``Ik = [xk1, xk2, xk3, xk4]`` and ``dcoord = [D1, D2, ..., Dp]``
          where ``Dk = [yk1, yk2, yk3, yk4]``, then the k'th link painted is
          ``(xk1, yk1)`` - ``(xk2, yk2)`` - ``(xk3, yk3)`` - ``(xk4, yk4)``.

        ``'ivl'``
          A list of labels corresponding to the leaf nodes.

        ``'leaves'``
          For each i, ``H[i] == j``, cluster node ``j`` appears in position
          ``i`` in the left-to-right traversal of the leaves, where
          :math:`j < 2n-1` and :math:`i < n`. If ``j`` is less than ``n``, the
          ``i``-th leaf node corresponds to an original observation.
          Otherwise, it corresponds to a non-singleton cluster.

    See Also
    --------
    linkage, set_link_color_palette

    Notes
    -----
    It is expected that the distances in ``Z[:,2]`` be monotonic, otherwise
    crossings appear in the dendrogram.

    Examples
    --------
    >>> from scipy.cluster import hierarchy
    >>> import matplotlib.pyplot as plt

    A very basic example:

    >>> ytdist = np.array([662., 877., 255., 412., 996., 295., 468., 268.,
    ...                    400., 754., 564., 138., 219., 869., 669.])
    >>> Z = hierarchy.linkage(ytdist, 'single')
    >>> plt.figure()
    >>> dn = hierarchy.dendrogram(Z)

    Now plot in given axes, improve the color scheme and use both vertical and
    horizontal orientations:

    >>> hierarchy.set_link_color_palette(['m', 'c', 'y', 'k'])
    >>> fig, axes = plt.subplots(1, 2, figsize=(8, 3))
    >>> dn1 = hierarchy.dendrogram(Z, ax=axes[0], above_threshold_color='y',
    ...                            orientation='top')
    >>> dn2 = hierarchy.dendrogram(Z, ax=axes[1],
    ...                            above_threshold_color='#bcbddc',
    ...                            orientation='right')
    >>> hierarchy.set_link_color_palette(None)  # reset to default after use
    >>> plt.show()

    """
    # This feature was thought about but never implemented (still useful?):
    #
    #         ... = dendrogram(..., leaves_order=None)
    #
    #         Plots the leaves in the order specified by a vector of
    #         original observation indices. If the vector contains duplicates
    #         or results in a crossing, an exception will be thrown. Passing
    #         None orders leaf nodes based on the order they appear in the
    #         pre-order traversal.
    Z = np.asarray(Z, order='c')

    if orientation not in ["top", "left", "bottom", "right"]:
        raise ValueError("orientation must be one of 'top', 'left', "
                         "'bottom', or 'right'")

    is_valid_linkage(Z, throw=True, name='Z')
    Zs = Z.shape
    n = Zs[0] + 1
    if type(p) in (int, float):
        p = int(p)
    else:
        raise TypeError('The second argument must be a number')

    if truncate_mode not in ('lastp', 'mlab', 'mtica', 'level', 'none', None):
        # 'mlab' and 'mtica' are kept working for backwards compat.
        raise ValueError('Invalid truncation mode.')

    if truncate_mode == 'lastp' or truncate_mode == 'mlab':
        if p > n or p == 0:
            p = n

    if truncate_mode == 'mtica':
        # 'mtica' is an alias
        truncate_mode = 'level'

    if truncate_mode == 'level':
        if p <= 0:
            p = np.inf

    if get_leaves:
        lvs = []
    else:
        lvs = None

    icoord_list = []
    dcoord_list = []
    color_list = []
    current_color = [0]
    currently_below_threshold = [False]
    ivl = []  # list of leaves

    if color_threshold is None or (isinstance(color_threshold, string_types) and
                                   color_threshold == 'default'):
        color_threshold = max(Z[:, 2]) * 0.7

    R = {'icoord': icoord_list, 'dcoord': dcoord_list, 'ivl': ivl,
         'leaves': lvs, 'color_list': color_list}

    # Empty list will be filled in _dendrogram_calculate_info
    contraction_marks = [] if show_contracted else None

    _dendrogram_calculate_info(
        Z=Z, p=p,
        truncate_mode=truncate_mode,
        color_threshold=color_threshold,
        get_leaves=get_leaves,
        orientation=orientation,
        labels=labels,
        count_sort=count_sort,
        distance_sort=distance_sort,
        show_leaf_counts=show_leaf_counts,
        i=2*n - 2,
        iv=0.0,
        ivl=ivl,
        n=n,
        icoord_list=icoord_list,
        dcoord_list=dcoord_list,
        lvs=lvs,
        current_color=current_color,
        color_list=color_list,
        currently_below_threshold=currently_below_threshold,
        leaf_label_func=leaf_label_func,
        contraction_marks=contraction_marks,
        link_color_func=link_color_func,
        above_threshold_color=above_threshold_color)

    if not no_plot:
        mh = max(Z[:, 2])
        _plot_dendrogram(icoord_list, dcoord_list, ivl, p, n, mh, orientation,
                         no_labels, color_list,
                         leaf_font_size=leaf_font_size,
                         leaf_rotation=leaf_rotation,
                         contraction_marks=contraction_marks,
                         ax=ax,
                         above_threshold_color=above_threshold_color)

    return R


def _append_singleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func,
                                i, labels):
    # If the leaf id structure is not None and is a list then the caller
    # to dendrogram has indicated that cluster id's corresponding to the
    # leaf nodes should be recorded.

    if lvs is not None:
        lvs.append(int(i))

    # If leaf node labels are to be displayed...
    if ivl is not None:
        # If a leaf_label_func has been provided, the label comes from the
        # string returned from the leaf_label_func, which is a function
        # passed to dendrogram.
        if leaf_label_func:
            ivl.append(leaf_label_func(int(i)))
        else:
            # Otherwise, if the dendrogram caller has passed a labels list
            # for the leaf nodes, use it.
            if labels is not None:
                ivl.append(labels[int(i - n)])
            else:
                # Otherwise, use the id as the label for the leaf.x
                ivl.append(str(int(i)))


def _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl, leaf_label_func,
                                   i, labels, show_leaf_counts):
    # If the leaf id structure is not None and is a list then the caller
    # to dendrogram has indicated that cluster id's corresponding to the
    # leaf nodes should be recorded.

    if lvs is not None:
        lvs.append(int(i))
    if ivl is not None:
        if leaf_label_func:
            ivl.append(leaf_label_func(int(i)))
        else:
            if show_leaf_counts:
                ivl.append("(" + str(int(Z[i - n, 3])) + ")")
            else:
                ivl.append("")


def _append_contraction_marks(Z, iv, i, n, contraction_marks):
    _append_contraction_marks_sub(Z, iv, int(Z[i - n, 0]), n, contraction_marks)
    _append_contraction_marks_sub(Z, iv, int(Z[i - n, 1]), n, contraction_marks)


def _append_contraction_marks_sub(Z, iv, i, n, contraction_marks):
    if i >= n:
        contraction_marks.append((iv, Z[i - n, 2]))
        _append_contraction_marks_sub(Z, iv, int(Z[i - n, 0]), n, contraction_marks)
        _append_contraction_marks_sub(Z, iv, int(Z[i - n, 1]), n, contraction_marks)


def _dendrogram_calculate_info(Z, p, truncate_mode,
                               color_threshold=np.inf, get_leaves=True,
                               orientation='top', labels=None,
                               count_sort=False, distance_sort=False,
                               show_leaf_counts=False, i=-1, iv=0.0,
                               ivl=[], n=0, icoord_list=[], dcoord_list=[],
                               lvs=None, mhr=False,
                               current_color=[], color_list=[],
                               currently_below_threshold=[],
                               leaf_label_func=None, level=0,
                               contraction_marks=None,
                               link_color_func=None,
                               above_threshold_color='b'):
    """
    Calculate the endpoints of the links as well as the labels for the
    the dendrogram rooted at the node with index i. iv is the independent
    variable value to plot the left-most leaf node below the root node i
    (if orientation='top', this would be the left-most x value where the
    plotting of this root node i and its descendents should begin).

    ivl is a list to store the labels of the leaf nodes. The leaf_label_func
    is called whenever ivl != None, labels == None, and
    leaf_label_func != None. When ivl != None and labels != None, the
    labels list is used only for labeling the leaf nodes. When
    ivl == None, no labels are generated for leaf nodes.

    When get_leaves==True, a list of leaves is built as they are visited
    in the dendrogram.

    Returns a tuple with l being the independent variable coordinate that
    corresponds to the midpoint of cluster to the left of cluster i if
    i is non-singleton, otherwise the independent coordinate of the leaf
    node if i is a leaf node.

    Returns
    -------
    A tuple (left, w, h, md), where:

      * left is the independent variable coordinate of the center of the
        the U of the subtree

      * w is the amount of space used for the subtree (in independent
        variable units)

      * h is the height of the subtree in dependent variable units

      * md is the ``max(Z[*,2]``) for all nodes ``*`` below and including
        the target node.

    """
    if n == 0:
        raise ValueError("Invalid singleton cluster count n.")

    if i == -1:
        raise ValueError("Invalid root cluster index i.")

    if truncate_mode == 'lastp':
        # If the node is a leaf node but corresponds to a non-singleton
        # cluster, its label is either the empty string or the number of
        # original observations belonging to cluster i.
        if 2*n - p > i >= n:
            d = Z[i - n, 2]
            _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl,
                                           leaf_label_func, i, labels,
                                           show_leaf_counts)
            if contraction_marks is not None:
                _append_contraction_marks(Z, iv + 5.0, i, n, contraction_marks)
            return (iv + 5.0, 10.0, 0.0, d)
        elif i < n:
            _append_singleton_leaf_node(Z, p, n, level, lvs, ivl,
                                        leaf_label_func, i, labels)
            return (iv + 5.0, 10.0, 0.0, 0.0)
    elif truncate_mode == 'level':
        if i > n and level > p:
            d = Z[i - n, 2]
            _append_nonsingleton_leaf_node(Z, p, n, level, lvs, ivl,
                                           leaf_label_func, i, labels,
                                           show_leaf_counts)
            if contraction_marks is not None:
                _append_contraction_marks(Z, iv + 5.0, i, n, contraction_marks)
            return (iv + 5.0, 10.0, 0.0, d)
        elif i < n:
            _append_singleton_leaf_node(Z, p, n, level, lvs, ivl,
                                        leaf_label_func, i, labels)
            return (iv + 5.0, 10.0, 0.0, 0.0)
    elif truncate_mode in ('mlab',):
        msg = "Mode 'mlab' is deprecated in scipy 0.19.0 (it never worked)."
        warnings.warn(msg, DeprecationWarning)

    # Otherwise, only truncate if we have a leaf node.
    #
    # Only place leaves if they correspond to original observations.
    if i < n:
        _append_singleton_leaf_node(Z, p, n, level, lvs, ivl,
                                    leaf_label_func, i, labels)
        return (iv + 5.0, 10.0, 0.0, 0.0)

    # !!! Otherwise, we don't have a leaf node, so work on plotting a
    # non-leaf node.
    # Actual indices of a and b
    aa = int(Z[i - n, 0])
    ab = int(Z[i - n, 1])
    if aa > n:
        # The number of singletons below cluster a
        na = Z[aa - n, 3]
        # The distance between a's two direct children.
        da = Z[aa - n, 2]
    else:
        na = 1
        da = 0.0
    if ab > n:
        nb = Z[ab - n, 3]
        db = Z[ab - n, 2]
    else:
        nb = 1
        db = 0.0

    if count_sort == 'ascending' or count_sort:
        # If a has a count greater than b, it and its descendents should
        # be drawn to the right. Otherwise, to the left.
        if na > nb:
            # The cluster index to draw to the left (ua) will be ab
            # and the one to draw to the right (ub) will be aa
            ua = ab
            ub = aa
        else:
            ua = aa
            ub = ab
    elif count_sort == 'descending':
        # If a has a count less than or equal to b, it and its
        # descendents should be drawn to the left. Otherwise, to
        # the right.
        if na > nb:
            ua = aa
            ub = ab
        else:
            ua = ab
            ub = aa
    elif distance_sort == 'ascending' or distance_sort:
        # If a has a distance greater than b, it and its descendents should
        # be drawn to the right. Otherwise, to the left.
        if da > db:
            ua = ab
            ub = aa
        else:
            ua = aa
            ub = ab
    elif distance_sort == 'descending':
        # If a has a distance less than or equal to b, it and its
        # descendents should be drawn to the left. Otherwise, to
        # the right.
        if da > db:
            ua = aa
            ub = ab
        else:
            ua = ab
            ub = aa
    else:
        ua = aa
        ub = ab

    # Updated iv variable and the amount of space used.
    (uiva, uwa, uah, uamd) = \
        _dendrogram_calculate_info(
            Z=Z, p=p,
            truncate_mode=truncate_mode,
            color_threshold=color_threshold,
            get_leaves=get_leaves,
            orientation=orientation,
            labels=labels,
            count_sort=count_sort,
            distance_sort=distance_sort,
            show_leaf_counts=show_leaf_counts,
            i=ua, iv=iv, ivl=ivl, n=n,
            icoord_list=icoord_list,
            dcoord_list=dcoord_list, lvs=lvs,
            current_color=current_color,
            color_list=color_list,
            currently_below_threshold=currently_below_threshold,
            leaf_label_func=leaf_label_func,
            level=level + 1, contraction_marks=contraction_marks,
            link_color_func=link_color_func,
            above_threshold_color=above_threshold_color)

    h = Z[i - n, 2]
    if h >= color_threshold or color_threshold <= 0:
        c = above_threshold_color

        if currently_below_threshold[0]:
            current_color[0] = (current_color[0] + 1) % len(_link_line_colors)
        currently_below_threshold[0] = False
    else:
        currently_below_threshold[0] = True
        c = _link_line_colors[current_color[0]]

    (uivb, uwb, ubh, ubmd) = \
        _dendrogram_calculate_info(
            Z=Z, p=p,
            truncate_mode=truncate_mode,
            color_threshold=color_threshold,
            get_leaves=get_leaves,
            orientation=orientation,
            labels=labels,
            count_sort=count_sort,
            distance_sort=distance_sort,
            show_leaf_counts=show_leaf_counts,
            i=ub, iv=iv + uwa, ivl=ivl, n=n,
            icoord_list=icoord_list,
            dcoord_list=dcoord_list, lvs=lvs,
            current_color=current_color,
            color_list=color_list,
            currently_below_threshold=currently_below_threshold,
            leaf_label_func=leaf_label_func,
            level=level + 1, contraction_marks=contraction_marks,
            link_color_func=link_color_func,
            above_threshold_color=above_threshold_color)

    max_dist = max(uamd, ubmd, h)

    icoord_list.append([uiva, uiva, uivb, uivb])
    dcoord_list.append([uah, h, h, ubh])
    if link_color_func is not None:
        v = link_color_func(int(i))
        if not isinstance(v, string_types):
            raise TypeError("link_color_func must return a matplotlib "
                            "color string!")
        color_list.append(v)
    else:
        color_list.append(c)

    return (((uiva + uivb) / 2), uwa + uwb, h, max_dist)


def is_isomorphic(T1, T2):
    """
    Determine if two different cluster assignments are equivalent.

    Parameters
    ----------
    T1 : array_like
        An assignment of singleton cluster ids to flat cluster ids.
    T2 : array_like
        An assignment of singleton cluster ids to flat cluster ids.

    Returns
    -------
    b : bool
        Whether the flat cluster assignments `T1` and `T2` are
        equivalent.

    See Also
    --------
    linkage: for a description of what a linkage matrix is.
    fcluster: for the creation of flat cluster assignments.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import fcluster, is_isomorphic
    >>> from scipy.cluster.hierarchy import single, complete
    >>> from scipy.spatial.distance import pdist

    Two flat cluster assignments can be isomorphic if they represent the same
    cluster assignment, with different labels.

    For example, we can use the `scipy.cluster.hierarchy.single`: method
    and flatten the output to four clusters:

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    >>> Z = single(pdist(X))
    >>> T = fcluster(Z, 1, criterion='distance')
    >>> T
    array([3, 3, 3, 4, 4, 4, 2, 2, 2, 1, 1, 1], dtype=int32)

    We can then do the same using the
    `scipy.cluster.hierarchy.complete`: method:

    >>> Z = complete(pdist(X))
    >>> T_ = fcluster(Z, 1.5, criterion='distance')
    >>> T_
    array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)

    As we can see, in both cases we obtain four clusters and all the data
    points are distributed in the same way - the only thing that changes
    are the flat cluster labels (3 => 1, 4 =>2, 2 =>3 and 4 =>1), so both
    cluster assignments are isomorphic:

    >>> is_isomorphic(T, T_)
    True

    """
    T1 = np.asarray(T1, order='c')
    T2 = np.asarray(T2, order='c')

    if type(T1) != np.ndarray:
        raise TypeError('T1 must be a numpy array.')
    if type(T2) != np.ndarray:
        raise TypeError('T2 must be a numpy array.')

    T1S = T1.shape
    T2S = T2.shape

    if len(T1S) != 1:
        raise ValueError('T1 must be one-dimensional.')
    if len(T2S) != 1:
        raise ValueError('T2 must be one-dimensional.')
    if T1S[0] != T2S[0]:
        raise ValueError('T1 and T2 must have the same number of elements.')
    n = T1S[0]
    d1 = {}
    d2 = {}
    for i in xrange(0, n):
        if T1[i] in d1:
            if not T2[i] in d2:
                return False
            if d1[T1[i]] != T2[i] or d2[T2[i]] != T1[i]:
                return False
        elif T2[i] in d2:
            return False
        else:
            d1[T1[i]] = T2[i]
            d2[T2[i]] = T1[i]
    return True


def maxdists(Z):
    """
    Return the maximum distance between any non-singleton cluster.

    Parameters
    ----------
    Z : ndarray
        The hierarchical clustering encoded as a matrix. See
        ``linkage`` for more information.

    Returns
    -------
    maxdists : ndarray
        A ``(n-1)`` sized numpy array of doubles; ``MD[i]`` represents
        the maximum distance between any cluster (including
        singletons) below and including the node with index i. More
        specifically, ``MD[i] = Z[Q(i)-n, 2].max()`` where ``Q(i)`` is the
        set of all node indices below and including node i.

    See Also
    --------
    linkage: for a description of what a linkage matrix is.
    is_monotonic: for testing for monotonicity of a linkage matrix.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import median, maxdists
    >>> from scipy.spatial.distance import pdist

    Given a linkage matrix ``Z``, `scipy.cluster.hierarchy.maxdists`
    computes for each new cluster generated (i.e. for each row of the linkage
    matrix) what is the maximum distance between any two child clusters.

    Due to the nature of hierarchical clustering, in many cases this is going
    to be just the distance between the two child clusters that were merged
    to form the current one - that is, Z[:,2].

    However, for non-monotonic cluster assignments such as
    `scipy.cluster.hierarchy.median` clustering this is not always the
    case: There may be cluster formations were the distance between the two
    clusters merged is smaller than the distance between their children.

    We can see this in an example:

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    >>> Z = median(pdist(X))
    >>> Z
    array([[ 0.        ,  1.        ,  1.        ,  2.        ],
           [ 3.        ,  4.        ,  1.        ,  2.        ],
           [ 9.        , 10.        ,  1.        ,  2.        ],
           [ 6.        ,  7.        ,  1.        ,  2.        ],
           [ 2.        , 12.        ,  1.11803399,  3.        ],
           [ 5.        , 13.        ,  1.11803399,  3.        ],
           [ 8.        , 15.        ,  1.11803399,  3.        ],
           [11.        , 14.        ,  1.11803399,  3.        ],
           [18.        , 19.        ,  3.        ,  6.        ],
           [16.        , 17.        ,  3.5       ,  6.        ],
           [20.        , 21.        ,  3.25      , 12.        ]])
    >>> maxdists(Z)
    array([1.        , 1.        , 1.        , 1.        , 1.11803399,
           1.11803399, 1.11803399, 1.11803399, 3.        , 3.5       ,
           3.5       ])

    Note that while the distance between the two clusters merged when creating the
    last cluster is 3.25, there are two children (clusters 16 and 17) whose distance
    is larger (3.5). Thus, `scipy.cluster.hierarchy.maxdists` returns 3.5 in
    this case.

    """
    Z = np.asarray(Z, order='c', dtype=np.double)
    is_valid_linkage(Z, throw=True, name='Z')

    n = Z.shape[0] + 1
    MD = np.zeros((n - 1,))
    [Z] = _copy_arrays_if_base_present([Z])
    _hierarchy.get_max_dist_for_each_cluster(Z, MD, int(n))
    return MD


def maxinconsts(Z, R):
    """
    Return the maximum inconsistency coefficient for each
    non-singleton cluster and its children.

    Parameters
    ----------
    Z : ndarray
        The hierarchical clustering encoded as a matrix. See
        `linkage` for more information.
    R : ndarray
        The inconsistency matrix.

    Returns
    -------
    MI : ndarray
        A monotonic ``(n-1)``-sized numpy array of doubles.

    See Also
    --------
    linkage: for a description of what a linkage matrix is.
    inconsistent: for the creation of a inconsistency matrix.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import median, inconsistent, maxinconsts
    >>> from scipy.spatial.distance import pdist

    Given a data set ``X``, we can apply a clustering method to obtain a
    linkage matrix ``Z``. `scipy.cluster.hierarchy.inconsistent` can
    be also used to obtain the inconsistency matrix ``R`` associated to
    this clustering process:

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    >>> Z = median(pdist(X))
    >>> R = inconsistent(Z)
    >>> Z
    array([[ 0.        ,  1.        ,  1.        ,  2.        ],
           [ 3.        ,  4.        ,  1.        ,  2.        ],
           [ 9.        , 10.        ,  1.        ,  2.        ],
           [ 6.        ,  7.        ,  1.        ,  2.        ],
           [ 2.        , 12.        ,  1.11803399,  3.        ],
           [ 5.        , 13.        ,  1.11803399,  3.        ],
           [ 8.        , 15.        ,  1.11803399,  3.        ],
           [11.        , 14.        ,  1.11803399,  3.        ],
           [18.        , 19.        ,  3.        ,  6.        ],
           [16.        , 17.        ,  3.5       ,  6.        ],
           [20.        , 21.        ,  3.25      , 12.        ]])
    >>> R
    array([[1.        , 0.        , 1.        , 0.        ],
           [1.        , 0.        , 1.        , 0.        ],
           [1.        , 0.        , 1.        , 0.        ],
           [1.        , 0.        , 1.        , 0.        ],
           [1.05901699, 0.08346263, 2.        , 0.70710678],
           [1.05901699, 0.08346263, 2.        , 0.70710678],
           [1.05901699, 0.08346263, 2.        , 0.70710678],
           [1.05901699, 0.08346263, 2.        , 0.70710678],
           [1.74535599, 1.08655358, 3.        , 1.15470054],
           [1.91202266, 1.37522872, 3.        , 1.15470054],
           [3.25      , 0.25      , 3.        , 0.        ]])

    Here `scipy.cluster.hierarchy.maxinconsts` can be used to compute
    the maximum value of the inconsistency statistic (the last column of
    ``R``) for each non-singleton cluster and its children:

    >>> maxinconsts(Z, R)
    array([0.        , 0.        , 0.        , 0.        , 0.70710678,
           0.70710678, 0.70710678, 0.70710678, 1.15470054, 1.15470054,
           1.15470054])

    """
    Z = np.asarray(Z, order='c')
    R = np.asarray(R, order='c')
    is_valid_linkage(Z, throw=True, name='Z')
    is_valid_im(R, throw=True, name='R')

    n = Z.shape[0] + 1
    if Z.shape[0] != R.shape[0]:
        raise ValueError("The inconsistency matrix and linkage matrix each "
                         "have a different number of rows.")
    MI = np.zeros((n - 1,))
    [Z, R] = _copy_arrays_if_base_present([Z, R])
    _hierarchy.get_max_Rfield_for_each_cluster(Z, R, MI, int(n), 3)
    return MI


def maxRstat(Z, R, i):
    """
    Return the maximum statistic for each non-singleton cluster and its
    children.

    Parameters
    ----------
    Z : array_like
        The hierarchical clustering encoded as a matrix. See `linkage` for more
        information.
    R : array_like
        The inconsistency matrix.
    i : int
        The column of `R` to use as the statistic.

    Returns
    -------
    MR : ndarray
        Calculates the maximum statistic for the i'th column of the
        inconsistency matrix `R` for each non-singleton cluster
        node. ``MR[j]`` is the maximum over ``R[Q(j)-n, i]`` where
        ``Q(j)`` the set of all node ids corresponding to nodes below
        and including ``j``.

    See Also
    --------
    linkage: for a description of what a linkage matrix is.
    inconsistent: for the creation of a inconsistency matrix.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import median, inconsistent, maxRstat
    >>> from scipy.spatial.distance import pdist

    Given a data set ``X``, we can apply a clustering method to obtain a
    linkage matrix ``Z``. `scipy.cluster.hierarchy.inconsistent` can
    be also used to obtain the inconsistency matrix ``R`` associated to
    this clustering process:

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    >>> Z = median(pdist(X))
    >>> R = inconsistent(Z)
    >>> R
    array([[1.        , 0.        , 1.        , 0.        ],
           [1.        , 0.        , 1.        , 0.        ],
           [1.        , 0.        , 1.        , 0.        ],
           [1.        , 0.        , 1.        , 0.        ],
           [1.05901699, 0.08346263, 2.        , 0.70710678],
           [1.05901699, 0.08346263, 2.        , 0.70710678],
           [1.05901699, 0.08346263, 2.        , 0.70710678],
           [1.05901699, 0.08346263, 2.        , 0.70710678],
           [1.74535599, 1.08655358, 3.        , 1.15470054],
           [1.91202266, 1.37522872, 3.        , 1.15470054],
           [3.25      , 0.25      , 3.        , 0.        ]])

    `scipy.cluster.hierarchy.maxRstat` can be used to compute
    the maximum value of each column of ``R``, for each non-singleton
    cluster and its children:

    >>> maxRstat(Z, R, 0)
    array([1.        , 1.        , 1.        , 1.        , 1.05901699,
           1.05901699, 1.05901699, 1.05901699, 1.74535599, 1.91202266,
           3.25      ])
    >>> maxRstat(Z, R, 1)
    array([0.        , 0.        , 0.        , 0.        , 0.08346263,
           0.08346263, 0.08346263, 0.08346263, 1.08655358, 1.37522872,
           1.37522872])
    >>> maxRstat(Z, R, 3)
    array([0.        , 0.        , 0.        , 0.        , 0.70710678,
           0.70710678, 0.70710678, 0.70710678, 1.15470054, 1.15470054,
           1.15470054])

    """
    Z = np.asarray(Z, order='c')
    R = np.asarray(R, order='c')
    is_valid_linkage(Z, throw=True, name='Z')
    is_valid_im(R, throw=True, name='R')
    if type(i) is not int:
        raise TypeError('The third argument must be an integer.')
    if i < 0 or i > 3:
        raise ValueError('i must be an integer between 0 and 3 inclusive.')

    if Z.shape[0] != R.shape[0]:
        raise ValueError("The inconsistency matrix and linkage matrix each "
                         "have a different number of rows.")

    n = Z.shape[0] + 1
    MR = np.zeros((n - 1,))
    [Z, R] = _copy_arrays_if_base_present([Z, R])
    _hierarchy.get_max_Rfield_for_each_cluster(Z, R, MR, int(n), i)
    return MR


def leaders(Z, T):
    """
    Return the root nodes in a hierarchical clustering.

    Returns the root nodes in a hierarchical clustering corresponding
    to a cut defined by a flat cluster assignment vector ``T``. See
    the ``fcluster`` function for more information on the format of ``T``.

    For each flat cluster :math:`j` of the :math:`k` flat clusters
    represented in the n-sized flat cluster assignment vector ``T``,
    this function finds the lowest cluster node :math:`i` in the linkage
    tree Z such that:

      * leaf descendants belong only to flat cluster j
        (i.e. ``T[p]==j`` for all :math:`p` in :math:`S(i)` where
        :math:`S(i)` is the set of leaf ids of descendant leaf nodes
        with cluster node :math:`i`)

      * there does not exist a leaf that is not a descendant with
        :math:`i` that also belongs to cluster :math:`j`
        (i.e. ``T[q]!=j`` for all :math:`q` not in :math:`S(i)`).  If
        this condition is violated, ``T`` is not a valid cluster
        assignment vector, and an exception will be thrown.

    Parameters
    ----------
    Z : ndarray
        The hierarchical clustering encoded as a matrix. See
        `linkage` for more information.
    T : ndarray
        The flat cluster assignment vector.

    Returns
    -------
    L : ndarray
        The leader linkage node id's stored as a k-element 1-D array
        where ``k`` is the number of flat clusters found in ``T``.

        ``L[j]=i`` is the linkage cluster node id that is the
        leader of flat cluster with id M[j].  If ``i < n``, ``i``
        corresponds to an original observation, otherwise it
        corresponds to a non-singleton cluster.

    M : ndarray
        The leader linkage node id's stored as a k-element 1-D array where
        ``k`` is the number of flat clusters found in ``T``. This allows the
        set of flat cluster ids to be any arbitrary set of ``k`` integers.

        For example: if ``L[3]=2`` and ``M[3]=8``, the flat cluster with
        id 8's leader is linkage node 2.

    See Also
    --------
    fcluster: for the creation of flat cluster assignments.

    Examples
    --------
    >>> from scipy.cluster.hierarchy import ward, fcluster, leaders
    >>> from scipy.spatial.distance import pdist

    Given a linkage matrix ``Z`` - obtained after apply a clustering method
    to a dataset ``X`` - and a flat cluster assignment array ``T``:

    >>> X = [[0, 0], [0, 1], [1, 0],
    ...      [0, 4], [0, 3], [1, 4],
    ...      [4, 0], [3, 0], [4, 1],
    ...      [4, 4], [3, 4], [4, 3]]

    >>> Z = ward(pdist(X))
    >>> Z
    array([[ 0.        ,  1.        ,  1.        ,  2.        ],
           [ 3.        ,  4.        ,  1.        ,  2.        ],
           [ 6.        ,  7.        ,  1.        ,  2.        ],
           [ 9.        , 10.        ,  1.        ,  2.        ],
           [ 2.        , 12.        ,  1.29099445,  3.        ],
           [ 5.        , 13.        ,  1.29099445,  3.        ],
           [ 8.        , 14.        ,  1.29099445,  3.        ],
           [11.        , 15.        ,  1.29099445,  3.        ],
           [16.        , 17.        ,  5.77350269,  6.        ],
           [18.        , 19.        ,  5.77350269,  6.        ],
           [20.        , 21.        ,  8.16496581, 12.        ]])


    >>> T = fcluster(Z, 3, criterion='distance')
    >>> T
    array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], dtype=int32)

    `scipy.cluster.hierarchy.leaders` returns the indexes of the nodes
    in the dendrogram that are the leaders of each flat cluster:

    >>> L, M = leaders(Z, T)
    >>> L
    array([16, 17, 18, 19], dtype=int32)

    (remember that indexes 0-11 point to the 12 data points in ``X``
    whereas indexes 12-22 point to the 11 rows of ``Z``)

    `scipy.cluster.hierarchy.leaders` also returns the indexes of
    the flat clusters in ``T``:

    >>> M
    array([1, 2, 3, 4], dtype=int32)

    """
    Z = np.asarray(Z, order='c')
    T = np.asarray(T, order='c')
    if type(T) != np.ndarray or T.dtype != 'i':
        raise TypeError('T must be a one-dimensional numpy array of integers.')
    is_valid_linkage(Z, throw=True, name='Z')
    if len(T) != Z.shape[0] + 1:
        raise ValueError('Mismatch: len(T)!=Z.shape[0] + 1.')

    Cl = np.unique(T)
    kk = len(Cl)
    L = np.zeros((kk,), dtype='i')
    M = np.zeros((kk,), dtype='i')
    n = Z.shape[0] + 1
    [Z, T] = _copy_arrays_if_base_present([Z, T])
    s = _hierarchy.leaders(Z, T, L, M, int(kk), int(n))
    if s >= 0:
        raise ValueError(('T is not a valid assignment vector. Error found '
                          'when examining linkage node %d (< 2n-1).') % s)
    return (L, M)