realtransforms.py 18.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
"""
Real spectrum transforms (DCT, DST, MDCT)
"""
from __future__ import division, print_function, absolute_import


__all__ = ['dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn']

from scipy.fft import _pocketfft
from .helper import _good_shape

_inverse_typemap = {1: 1, 2: 3, 3: 2, 4: 4}


def dctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
    """
    Return multidimensional Discrete Cosine Transform along the specified axes.

    Parameters
    ----------
    x : array_like
        The input array.
    type : {1, 2, 3, 4}, optional
        Type of the DCT (see Notes). Default type is 2.
    shape : int or array_like of ints or None, optional
        The shape of the result.  If both `shape` and `axes` (see below) are
        None, `shape` is ``x.shape``; if `shape` is None but `axes` is
        not None, then `shape` is ``scipy.take(x.shape, axes, axis=0)``.
        If ``shape[i] > x.shape[i]``, the i-th dimension is padded with zeros.
        If ``shape[i] < x.shape[i]``, the i-th dimension is truncated to
        length ``shape[i]``.
        If any element of `shape` is -1, the size of the corresponding
        dimension of `x` is used.
    axes : int or array_like of ints or None, optional
        Axes along which the DCT is computed.
        The default is over all axes.
    norm : {None, 'ortho'}, optional
        Normalization mode (see Notes). Default is None.
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    y : ndarray of real
        The transformed input array.

    See Also
    --------
    idctn : Inverse multidimensional DCT

    Notes
    -----
    For full details of the DCT types and normalization modes, as well as
    references, see `dct`.

    Examples
    --------
    >>> from scipy.fftpack import dctn, idctn
    >>> y = np.random.randn(16, 16)
    >>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
    True

    """
    shape = _good_shape(x, shape, axes)
    return _pocketfft.dctn(x, type, shape, axes, norm, overwrite_x)


def idctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
    """
    Return multidimensional Discrete Cosine Transform along the specified axes.

    Parameters
    ----------
    x : array_like
        The input array.
    type : {1, 2, 3, 4}, optional
        Type of the DCT (see Notes). Default type is 2.
    shape : int or array_like of ints or None, optional
        The shape of the result.  If both `shape` and `axes` (see below) are
        None, `shape` is ``x.shape``; if `shape` is None but `axes` is
        not None, then `shape` is ``scipy.take(x.shape, axes, axis=0)``.
        If ``shape[i] > x.shape[i]``, the i-th dimension is padded with zeros.
        If ``shape[i] < x.shape[i]``, the i-th dimension is truncated to
        length ``shape[i]``.
        If any element of `shape` is -1, the size of the corresponding
        dimension of `x` is used.
    axes : int or array_like of ints or None, optional
        Axes along which the IDCT is computed.
        The default is over all axes.
    norm : {None, 'ortho'}, optional
        Normalization mode (see Notes). Default is None.
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    y : ndarray of real
        The transformed input array.

    See Also
    --------
    dctn : multidimensional DCT

    Notes
    -----
    For full details of the IDCT types and normalization modes, as well as
    references, see `idct`.

    Examples
    --------
    >>> from scipy.fftpack import dctn, idctn
    >>> y = np.random.randn(16, 16)
    >>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
    True

    """
    type = _inverse_typemap[type]
    shape = _good_shape(x, shape, axes)
    return _pocketfft.dctn(x, type, shape, axes, norm, overwrite_x)


def dstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
    """
    Return multidimensional Discrete Sine Transform along the specified axes.

    Parameters
    ----------
    x : array_like
        The input array.
    type : {1, 2, 3, 4}, optional
        Type of the DST (see Notes). Default type is 2.
    shape : int or array_like of ints or None, optional
        The shape of the result.  If both `shape` and `axes` (see below) are
        None, `shape` is ``x.shape``; if `shape` is None but `axes` is
        not None, then `shape` is ``scipy.take(x.shape, axes, axis=0)``.
        If ``shape[i] > x.shape[i]``, the i-th dimension is padded with zeros.
        If ``shape[i] < x.shape[i]``, the i-th dimension is truncated to
        length ``shape[i]``.
        If any element of `shape` is -1, the size of the corresponding
        dimension of `x` is used.
    axes : int or array_like of ints or None, optional
        Axes along which the DCT is computed.
        The default is over all axes.
    norm : {None, 'ortho'}, optional
        Normalization mode (see Notes). Default is None.
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    y : ndarray of real
        The transformed input array.

    See Also
    --------
    idstn : Inverse multidimensional DST

    Notes
    -----
    For full details of the DST types and normalization modes, as well as
    references, see `dst`.

    Examples
    --------
    >>> from scipy.fftpack import dstn, idstn
    >>> y = np.random.randn(16, 16)
    >>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
    True

    """
    shape = _good_shape(x, shape, axes)
    return _pocketfft.dstn(x, type, shape, axes, norm, overwrite_x)


def idstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
    """
    Return multidimensional Discrete Sine Transform along the specified axes.

    Parameters
    ----------
    x : array_like
        The input array.
    type : {1, 2, 3, 4}, optional
        Type of the DST (see Notes). Default type is 2.
    shape : int or array_like of ints or None, optional
        The shape of the result.  If both `shape` and `axes` (see below) are
        None, `shape` is ``x.shape``; if `shape` is None but `axes` is
        not None, then `shape` is ``scipy.take(x.shape, axes, axis=0)``.
        If ``shape[i] > x.shape[i]``, the i-th dimension is padded with zeros.
        If ``shape[i] < x.shape[i]``, the i-th dimension is truncated to
        length ``shape[i]``.
        If any element of `shape` is -1, the size of the corresponding
        dimension of `x` is used.
    axes : int or array_like of ints or None, optional
        Axes along which the IDST is computed.
        The default is over all axes.
    norm : {None, 'ortho'}, optional
        Normalization mode (see Notes). Default is None.
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    y : ndarray of real
        The transformed input array.

    See Also
    --------
    dstn : multidimensional DST

    Notes
    -----
    For full details of the IDST types and normalization modes, as well as
    references, see `idst`.

    Examples
    --------
    >>> from scipy.fftpack import dstn, idstn
    >>> y = np.random.randn(16, 16)
    >>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
    True

    """
    type = _inverse_typemap[type]
    shape = _good_shape(x, shape, axes)
    return _pocketfft.dstn(x, type, shape, axes, norm, overwrite_x)


def dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
    r"""
    Return the Discrete Cosine Transform of arbitrary type sequence x.

    Parameters
    ----------
    x : array_like
        The input array.
    type : {1, 2, 3, 4}, optional
        Type of the DCT (see Notes). Default type is 2.
    n : int, optional
        Length of the transform.  If ``n < x.shape[axis]``, `x` is
        truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
        default results in ``n = x.shape[axis]``.
    axis : int, optional
        Axis along which the dct is computed; the default is over the
        last axis (i.e., ``axis=-1``).
    norm : {None, 'ortho'}, optional
        Normalization mode (see Notes). Default is None.
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    y : ndarray of real
        The transformed input array.

    See Also
    --------
    idct : Inverse DCT

    Notes
    -----
    For a single dimension array ``x``, ``dct(x, norm='ortho')`` is equal to
    MATLAB ``dct(x)``.

    There are theoretically 8 types of the DCT, only the first 4 types are
    implemented in scipy. 'The' DCT generally refers to DCT type 2, and 'the'
    Inverse DCT generally refers to DCT type 3.

    **Type I**

    There are several definitions of the DCT-I; we use the following
    (for ``norm=None``)

    .. math::

       y_k = x_0 + (-1)^k x_{N-1} + 2 \sum_{n=1}^{N-2} x_n \cos\left(
       \frac{\pi k n}{N-1} \right)

    If ``norm='ortho'``, ``x[0]`` and ``x[N-1]`` are multiplied by a scaling
    factor of :math:`\sqrt{2}`, and ``y[k]`` is multiplied by a scaling factor
    ``f``

    .. math::

        f = \begin{cases}
         \frac{1}{2}\sqrt{\frac{1}{N-1}} & \text{if }k=0\text{ or }N-1, \\
         \frac{1}{2}\sqrt{\frac{2}{N-1}} & \text{otherwise} \end{cases}

    .. versionadded:: 1.2.0
       Orthonormalization in DCT-I.

    .. note::
       The DCT-I is only supported for input size > 1.

    **Type II**

    There are several definitions of the DCT-II; we use the following
    (for ``norm=None``)

    .. math::

       y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi k(2n+1)}{2N} \right)

    If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``

    .. math::
       f = \begin{cases}
       \sqrt{\frac{1}{4N}} & \text{if }k=0, \\
       \sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases}

    Which makes the corresponding matrix of coefficients orthonormal
    (``O @ O.T = np.eye(N)``).

    **Type III**

    There are several definitions, we use the following (for ``norm=None``)

    .. math::

       y_k = x_0 + 2 \sum_{n=1}^{N-1} x_n \cos\left(\frac{\pi(2k+1)n}{2N}\right)

    or, for ``norm='ortho'``

    .. math::

       y_k = \frac{x_0}{\sqrt{N}} + \sqrt{\frac{2}{N}} \sum_{n=1}^{N-1} x_n
       \cos\left(\frac{\pi(2k+1)n}{2N}\right)

    The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up
    to a factor `2N`. The orthonormalized DCT-III is exactly the inverse of
    the orthonormalized DCT-II.

    **Type IV**

    There are several definitions of the DCT-IV; we use the following
    (for ``norm=None``)

    .. math::

       y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi(2k+1)(2n+1)}{4N} \right)

    If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``

    .. math::

        f = \frac{1}{\sqrt{2N}}

    .. versionadded:: 1.2.0
       Support for DCT-IV.

    References
    ----------
    .. [1] 'A Fast Cosine Transform in One and Two Dimensions', by J.
           Makhoul, `IEEE Transactions on acoustics, speech and signal
           processing` vol. 28(1), pp. 27-34,
           :doi:`10.1109/TASSP.1980.1163351` (1980).
    .. [2] Wikipedia, "Discrete cosine transform",
           https://en.wikipedia.org/wiki/Discrete_cosine_transform

    Examples
    --------
    The Type 1 DCT is equivalent to the FFT (though faster) for real,
    even-symmetrical inputs.  The output is also real and even-symmetrical.
    Half of the FFT input is used to generate half of the FFT output:

    >>> from scipy.fftpack import fft, dct
    >>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
    array([ 30.,  -8.,   6.,  -2.,   6.,  -8.])
    >>> dct(np.array([4., 3., 5., 10.]), 1)
    array([ 30.,  -8.,   6.,  -2.])

    """
    return _pocketfft.dct(x, type, n, axis, norm, overwrite_x)


def idct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
    """
    Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.

    Parameters
    ----------
    x : array_like
        The input array.
    type : {1, 2, 3, 4}, optional
        Type of the DCT (see Notes). Default type is 2.
    n : int, optional
        Length of the transform.  If ``n < x.shape[axis]``, `x` is
        truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
        default results in ``n = x.shape[axis]``.
    axis : int, optional
        Axis along which the idct is computed; the default is over the
        last axis (i.e., ``axis=-1``).
    norm : {None, 'ortho'}, optional
        Normalization mode (see Notes). Default is None.
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    idct : ndarray of real
        The transformed input array.

    See Also
    --------
    dct : Forward DCT

    Notes
    -----
    For a single dimension array `x`, ``idct(x, norm='ortho')`` is equal to
    MATLAB ``idct(x)``.

    'The' IDCT is the IDCT of type 2, which is the same as DCT of type 3.

    IDCT of type 1 is the DCT of type 1, IDCT of type 2 is the DCT of type
    3, and IDCT of type 3 is the DCT of type 2. IDCT of type 4 is the DCT
    of type 4. For the definition of these types, see `dct`.

    Examples
    --------
    The Type 1 DCT is equivalent to the DFT for real, even-symmetrical
    inputs.  The output is also real and even-symmetrical.  Half of the IFFT
    input is used to generate half of the IFFT output:

    >>> from scipy.fftpack import ifft, idct
    >>> ifft(np.array([ 30.,  -8.,   6.,  -2.,   6.,  -8.])).real
    array([  4.,   3.,   5.,  10.,   5.,   3.])
    >>> idct(np.array([ 30.,  -8.,   6.,  -2.]), 1) / 6
    array([  4.,   3.,   5.,  10.])

    """
    type = _inverse_typemap[type]
    return _pocketfft.dct(x, type, n, axis, norm, overwrite_x)


def dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
    r"""
    Return the Discrete Sine Transform of arbitrary type sequence x.

    Parameters
    ----------
    x : array_like
        The input array.
    type : {1, 2, 3, 4}, optional
        Type of the DST (see Notes). Default type is 2.
    n : int, optional
        Length of the transform.  If ``n < x.shape[axis]``, `x` is
        truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
        default results in ``n = x.shape[axis]``.
    axis : int, optional
        Axis along which the dst is computed; the default is over the
        last axis (i.e., ``axis=-1``).
    norm : {None, 'ortho'}, optional
        Normalization mode (see Notes). Default is None.
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    dst : ndarray of reals
        The transformed input array.

    See Also
    --------
    idst : Inverse DST

    Notes
    -----
    For a single dimension array ``x``.

    There are theoretically 8 types of the DST for different combinations of
    even/odd boundary conditions and boundary off sets [1]_, only the first
    4 types are implemented in scipy.

    **Type I**

    There are several definitions of the DST-I; we use the following
    for ``norm=None``. DST-I assumes the input is odd around `n=-1` and `n=N`.

    .. math::

        y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(n+1)}{N+1}\right)

    Note that the DST-I is only supported for input size > 1.
    The (unnormalized) DST-I is its own inverse, up to a factor `2(N+1)`.
    The orthonormalized DST-I is exactly its own inverse.

    **Type II**

    There are several definitions of the DST-II; we use the following for
    ``norm=None``. DST-II assumes the input is odd around `n=-1/2` and
    `n=N-1/2`; the output is odd around :math:`k=-1` and even around `k=N-1`

    .. math::

        y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(2n+1)}{2N}\right)

    if ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``

    .. math::

        f = \begin{cases}
        \sqrt{\frac{1}{4N}} & \text{if }k = 0, \\
        \sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases}

    **Type III**

    There are several definitions of the DST-III, we use the following (for
    ``norm=None``). DST-III assumes the input is odd around `n=-1` and even
    around `n=N-1`

    .. math::

        y_k = (-1)^k x_{N-1} + 2 \sum_{n=0}^{N-2} x_n \sin\left(
        \frac{\pi(2k+1)(n+1)}{2N}\right)

    The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up
    to a factor `2N`. The orthonormalized DST-III is exactly the inverse of the
    orthonormalized DST-II.

    .. versionadded:: 0.11.0

    **Type IV**

    There are several definitions of the DST-IV, we use the following (for
    ``norm=None``). DST-IV assumes the input is odd around `n=-0.5` and even
    around `n=N-0.5`

    .. math::

        y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(2k+1)(2n+1)}{4N}\right)

    The (unnormalized) DST-IV is its own inverse, up to a factor `2N`. The
    orthonormalized DST-IV is exactly its own inverse.

    .. versionadded:: 1.2.0
       Support for DST-IV.

    References
    ----------
    .. [1] Wikipedia, "Discrete sine transform",
           https://en.wikipedia.org/wiki/Discrete_sine_transform

    """
    return _pocketfft.dst(x, type, n, axis, norm, overwrite_x)


def idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
    """
    Return the Inverse Discrete Sine Transform of an arbitrary type sequence.

    Parameters
    ----------
    x : array_like
        The input array.
    type : {1, 2, 3, 4}, optional
        Type of the DST (see Notes). Default type is 2.
    n : int, optional
        Length of the transform.  If ``n < x.shape[axis]``, `x` is
        truncated.  If ``n > x.shape[axis]``, `x` is zero-padded. The
        default results in ``n = x.shape[axis]``.
    axis : int, optional
        Axis along which the idst is computed; the default is over the
        last axis (i.e., ``axis=-1``).
    norm : {None, 'ortho'}, optional
        Normalization mode (see Notes). Default is None.
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    idst : ndarray of real
        The transformed input array.

    See Also
    --------
    dst : Forward DST

    Notes
    -----
    'The' IDST is the IDST of type 2, which is the same as DST of type 3.

    IDST of type 1 is the DST of type 1, IDST of type 2 is the DST of type
    3, and IDST of type 3 is the DST of type 2. For the definition of these
    types, see `dst`.

    .. versionadded:: 0.11.0

    """
    type = _inverse_typemap[type]
    return _pocketfft.dst(x, type, n, axis, norm, overwrite_x)