basic.py 55.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
#
# Author: Pearu Peterson, March 2002
#
# w/ additions by Travis Oliphant, March 2002
#              and Jake Vanderplas, August 2012

from __future__ import division, print_function, absolute_import

from warnings import warn
import numpy as np
from numpy import atleast_1d, atleast_2d
from .flinalg import get_flinalg_funcs
from .lapack import get_lapack_funcs, _compute_lwork
from .misc import LinAlgError, _datacopied, LinAlgWarning
from .decomp import _asarray_validated
from . import decomp, decomp_svd
from ._solve_toeplitz import levinson

__all__ = ['solve', 'solve_triangular', 'solveh_banded', 'solve_banded',
           'solve_toeplitz', 'solve_circulant', 'inv', 'det', 'lstsq',
           'pinv', 'pinv2', 'pinvh', 'matrix_balance']


# Linear equations
def _solve_check(n, info, lamch=None, rcond=None):
    """ Check arguments during the different steps of the solution phase """
    if info < 0:
        raise ValueError('LAPACK reported an illegal value in {}-th argument'
                         '.'.format(-info))
    elif 0 < info:
        raise LinAlgError('Matrix is singular.')

    if lamch is None:
        return
    E = lamch('E')
    if rcond < E:
        warn('Ill-conditioned matrix (rcond={:.6g}): '
             'result may not be accurate.'.format(rcond),
             LinAlgWarning, stacklevel=3)


def solve(a, b, sym_pos=False, lower=False, overwrite_a=False,
          overwrite_b=False, debug=None, check_finite=True, assume_a='gen',
          transposed=False):
    """
    Solves the linear equation set ``a * x = b`` for the unknown ``x``
    for square ``a`` matrix.

    If the data matrix is known to be a particular type then supplying the
    corresponding string to ``assume_a`` key chooses the dedicated solver.
    The available options are

    ===================  ========
     generic matrix       'gen'
     symmetric            'sym'
     hermitian            'her'
     positive definite    'pos'
    ===================  ========

    If omitted, ``'gen'`` is the default structure.

    The datatype of the arrays define which solver is called regardless
    of the values. In other words, even when the complex array entries have
    precisely zero imaginary parts, the complex solver will be called based
    on the data type of the array.

    Parameters
    ----------
    a : (N, N) array_like
        Square input data
    b : (N, NRHS) array_like
        Input data for the right hand side.
    sym_pos : bool, optional
        Assume `a` is symmetric and positive definite. This key is deprecated
        and assume_a = 'pos' keyword is recommended instead. The functionality
        is the same. It will be removed in the future.
    lower : bool, optional
        If True, only the data contained in the lower triangle of `a`. Default
        is to use upper triangle. (ignored for ``'gen'``)
    overwrite_a : bool, optional
        Allow overwriting data in `a` (may enhance performance).
        Default is False.
    overwrite_b : bool, optional
        Allow overwriting data in `b` (may enhance performance).
        Default is False.
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
    assume_a : str, optional
        Valid entries are explained above.
    transposed: bool, optional
        If True, ``a^T x = b`` for real matrices, raises `NotImplementedError`
        for complex matrices (only for True).

    Returns
    -------
    x : (N, NRHS) ndarray
        The solution array.

    Raises
    ------
    ValueError
        If size mismatches detected or input a is not square.
    LinAlgError
        If the matrix is singular.
    LinAlgWarning
        If an ill-conditioned input a is detected.
    NotImplementedError
        If transposed is True and input a is a complex matrix.

    Examples
    --------
    Given `a` and `b`, solve for `x`:

    >>> a = np.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]])
    >>> b = np.array([2, 4, -1])
    >>> from scipy import linalg
    >>> x = linalg.solve(a, b)
    >>> x
    array([ 2., -2.,  9.])
    >>> np.dot(a, x) == b
    array([ True,  True,  True], dtype=bool)

    Notes
    -----
    If the input b matrix is a 1D array with N elements, when supplied
    together with an NxN input a, it is assumed as a valid column vector
    despite the apparent size mismatch. This is compatible with the
    numpy.dot() behavior and the returned result is still 1D array.

    The generic, symmetric, hermitian and positive definite solutions are
    obtained via calling ?GESV, ?SYSV, ?HESV, and ?POSV routines of
    LAPACK respectively.
    """
    # Flags for 1D or nD right hand side
    b_is_1D = False

    a1 = atleast_2d(_asarray_validated(a, check_finite=check_finite))
    b1 = atleast_1d(_asarray_validated(b, check_finite=check_finite))
    n = a1.shape[0]

    overwrite_a = overwrite_a or _datacopied(a1, a)
    overwrite_b = overwrite_b or _datacopied(b1, b)

    if a1.shape[0] != a1.shape[1]:
        raise ValueError('Input a needs to be a square matrix.')

    if n != b1.shape[0]:
        # Last chance to catch 1x1 scalar a and 1D b arrays
        if not (n == 1 and b1.size != 0):
            raise ValueError('Input b has to have same number of rows as '
                             'input a')

    # accommodate empty arrays
    if b1.size == 0:
        return np.asfortranarray(b1.copy())

    # regularize 1D b arrays to 2D
    if b1.ndim == 1:
        if n == 1:
            b1 = b1[None, :]
        else:
            b1 = b1[:, None]
        b_is_1D = True

    # Backwards compatibility - old keyword.
    if sym_pos:
        assume_a = 'pos'

    if assume_a not in ('gen', 'sym', 'her', 'pos'):
        raise ValueError('{} is not a recognized matrix structure'
                         ''.format(assume_a))

    # Deprecate keyword "debug"
    if debug is not None:
        warn('Use of the "debug" keyword is deprecated '
             'and this keyword will be removed in future '
             'versions of SciPy.', DeprecationWarning, stacklevel=2)

    # Get the correct lamch function.
    # The LAMCH functions only exists for S and D
    # So for complex values we have to convert to real/double.
    if a1.dtype.char in 'fF':  # single precision
        lamch = get_lapack_funcs('lamch', dtype='f')
    else:
        lamch = get_lapack_funcs('lamch', dtype='d')

    # Currently we do not have the other forms of the norm calculators
    #   lansy, lanpo, lanhe.
    # However, in any case they only reduce computations slightly...
    lange = get_lapack_funcs('lange', (a1,))

    # Since the I-norm and 1-norm are the same for symmetric matrices
    # we can collect them all in this one call
    # Note however, that when issuing 'gen' and form!='none', then
    # the I-norm should be used
    if transposed:
        trans = 1
        norm = 'I'
        if np.iscomplexobj(a1):
            raise NotImplementedError('scipy.linalg.solve can currently '
                                      'not solve a^T x = b or a^H x = b '
                                      'for complex matrices.')
    else:
        trans = 0
        norm = '1'

    anorm = lange(norm, a1)

    # Generalized case 'gesv'
    if assume_a == 'gen':
        gecon, getrf, getrs = get_lapack_funcs(('gecon', 'getrf', 'getrs'),
                                               (a1, b1))
        lu, ipvt, info = getrf(a1, overwrite_a=overwrite_a)
        _solve_check(n, info)
        x, info = getrs(lu, ipvt, b1,
                        trans=trans, overwrite_b=overwrite_b)
        _solve_check(n, info)
        rcond, info = gecon(lu, anorm, norm=norm)
    # Hermitian case 'hesv'
    elif assume_a == 'her':
        hecon, hesv, hesv_lw = get_lapack_funcs(('hecon', 'hesv',
                                                 'hesv_lwork'), (a1, b1))
        lwork = _compute_lwork(hesv_lw, n, lower)
        lu, ipvt, x, info = hesv(a1, b1, lwork=lwork,
                                 lower=lower,
                                 overwrite_a=overwrite_a,
                                 overwrite_b=overwrite_b)
        _solve_check(n, info)
        rcond, info = hecon(lu, ipvt, anorm)
    # Symmetric case 'sysv'
    elif assume_a == 'sym':
        sycon, sysv, sysv_lw = get_lapack_funcs(('sycon', 'sysv',
                                                 'sysv_lwork'), (a1, b1))
        lwork = _compute_lwork(sysv_lw, n, lower)
        lu, ipvt, x, info = sysv(a1, b1, lwork=lwork,
                                 lower=lower,
                                 overwrite_a=overwrite_a,
                                 overwrite_b=overwrite_b)
        _solve_check(n, info)
        rcond, info = sycon(lu, ipvt, anorm)
    # Positive definite case 'posv'
    else:
        pocon, posv = get_lapack_funcs(('pocon', 'posv'),
                                       (a1, b1))
        lu, x, info = posv(a1, b1, lower=lower,
                           overwrite_a=overwrite_a,
                           overwrite_b=overwrite_b)
        _solve_check(n, info)
        rcond, info = pocon(lu, anorm)

    _solve_check(n, info, lamch, rcond)

    if b_is_1D:
        x = x.ravel()

    return x


def solve_triangular(a, b, trans=0, lower=False, unit_diagonal=False,
                     overwrite_b=False, debug=None, check_finite=True):
    """
    Solve the equation `a x = b` for `x`, assuming a is a triangular matrix.

    Parameters
    ----------
    a : (M, M) array_like
        A triangular matrix
    b : (M,) or (M, N) array_like
        Right-hand side matrix in `a x = b`
    lower : bool, optional
        Use only data contained in the lower triangle of `a`.
        Default is to use upper triangle.
    trans : {0, 1, 2, 'N', 'T', 'C'}, optional
        Type of system to solve:

        ========  =========
        trans     system
        ========  =========
        0 or 'N'  a x  = b
        1 or 'T'  a^T x = b
        2 or 'C'  a^H x = b
        ========  =========
    unit_diagonal : bool, optional
        If True, diagonal elements of `a` are assumed to be 1 and
        will not be referenced.
    overwrite_b : bool, optional
        Allow overwriting data in `b` (may enhance performance)
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    x : (M,) or (M, N) ndarray
        Solution to the system `a x = b`.  Shape of return matches `b`.

    Raises
    ------
    LinAlgError
        If `a` is singular

    Notes
    -----
    .. versionadded:: 0.9.0

    Examples
    --------
    Solve the lower triangular system a x = b, where::

             [3  0  0  0]       [4]
        a =  [2  1  0  0]   b = [2]
             [1  0  1  0]       [4]
             [1  1  1  1]       [2]

    >>> from scipy.linalg import solve_triangular
    >>> a = np.array([[3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]])
    >>> b = np.array([4, 2, 4, 2])
    >>> x = solve_triangular(a, b, lower=True)
    >>> x
    array([ 1.33333333, -0.66666667,  2.66666667, -1.33333333])
    >>> a.dot(x)  # Check the result
    array([ 4.,  2.,  4.,  2.])

    """

    # Deprecate keyword "debug"
    if debug is not None:
        warn('Use of the "debug" keyword is deprecated '
             'and this keyword will be removed in the future '
             'versions of SciPy.', DeprecationWarning, stacklevel=2)

    a1 = _asarray_validated(a, check_finite=check_finite)
    b1 = _asarray_validated(b, check_finite=check_finite)
    if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
        raise ValueError('expected square matrix')
    if a1.shape[0] != b1.shape[0]:
        raise ValueError('incompatible dimensions')
    overwrite_b = overwrite_b or _datacopied(b1, b)
    if debug:
        print('solve:overwrite_b=', overwrite_b)
    trans = {'N': 0, 'T': 1, 'C': 2}.get(trans, trans)
    trtrs, = get_lapack_funcs(('trtrs',), (a1, b1))
    if a1.flags.f_contiguous or trans == 2:
        x, info = trtrs(a1, b1, overwrite_b=overwrite_b, lower=lower,
                        trans=trans, unitdiag=unit_diagonal)
    else:
        # transposed system is solved since trtrs expects Fortran ordering
        x, info = trtrs(a1.T, b1, overwrite_b=overwrite_b, lower=not lower,
                        trans=not trans, unitdiag=unit_diagonal)

    if info == 0:
        return x
    if info > 0:
        raise LinAlgError("singular matrix: resolution failed at diagonal %d" %
                          (info-1))
    raise ValueError('illegal value in %d-th argument of internal trtrs' %
                     (-info))


def solve_banded(l_and_u, ab, b, overwrite_ab=False, overwrite_b=False,
                 debug=None, check_finite=True):
    """
    Solve the equation a x = b for x, assuming a is banded matrix.

    The matrix a is stored in `ab` using the matrix diagonal ordered form::

        ab[u + i - j, j] == a[i,j]

    Example of `ab` (shape of a is (6,6), `u` =1, `l` =2)::

        *    a01  a12  a23  a34  a45
        a00  a11  a22  a33  a44  a55
        a10  a21  a32  a43  a54   *
        a20  a31  a42  a53   *    *

    Parameters
    ----------
    (l, u) : (integer, integer)
        Number of non-zero lower and upper diagonals
    ab : (`l` + `u` + 1, M) array_like
        Banded matrix
    b : (M,) or (M, K) array_like
        Right-hand side
    overwrite_ab : bool, optional
        Discard data in `ab` (may enhance performance)
    overwrite_b : bool, optional
        Discard data in `b` (may enhance performance)
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    x : (M,) or (M, K) ndarray
        The solution to the system a x = b.  Returned shape depends on the
        shape of `b`.

    Examples
    --------
    Solve the banded system a x = b, where::

            [5  2 -1  0  0]       [0]
            [1  4  2 -1  0]       [1]
        a = [0  1  3  2 -1]   b = [2]
            [0  0  1  2  2]       [2]
            [0  0  0  1  1]       [3]

    There is one nonzero diagonal below the main diagonal (l = 1), and
    two above (u = 2).  The diagonal banded form of the matrix is::

             [*  * -1 -1 -1]
        ab = [*  2  2  2  2]
             [5  4  3  2  1]
             [1  1  1  1  *]

    >>> from scipy.linalg import solve_banded
    >>> ab = np.array([[0,  0, -1, -1, -1],
    ...                [0,  2,  2,  2,  2],
    ...                [5,  4,  3,  2,  1],
    ...                [1,  1,  1,  1,  0]])
    >>> b = np.array([0, 1, 2, 2, 3])
    >>> x = solve_banded((1, 2), ab, b)
    >>> x
    array([-2.37288136,  3.93220339, -4.        ,  4.3559322 , -1.3559322 ])

    """

    # Deprecate keyword "debug"
    if debug is not None:
        warn('Use of the "debug" keyword is deprecated '
             'and this keyword will be removed in the future '
             'versions of SciPy.', DeprecationWarning, stacklevel=2)

    a1 = _asarray_validated(ab, check_finite=check_finite, as_inexact=True)
    b1 = _asarray_validated(b, check_finite=check_finite, as_inexact=True)
    # Validate shapes.
    if a1.shape[-1] != b1.shape[0]:
        raise ValueError("shapes of ab and b are not compatible.")
    (nlower, nupper) = l_and_u
    if nlower + nupper + 1 != a1.shape[0]:
        raise ValueError("invalid values for the number of lower and upper "
                         "diagonals: l+u+1 (%d) does not equal ab.shape[0] "
                         "(%d)" % (nlower + nupper + 1, ab.shape[0]))

    overwrite_b = overwrite_b or _datacopied(b1, b)
    if a1.shape[-1] == 1:
        b2 = np.array(b1, copy=(not overwrite_b))
        b2 /= a1[1, 0]
        return b2
    if nlower == nupper == 1:
        overwrite_ab = overwrite_ab or _datacopied(a1, ab)
        gtsv, = get_lapack_funcs(('gtsv',), (a1, b1))
        du = a1[0, 1:]
        d = a1[1, :]
        dl = a1[2, :-1]
        du2, d, du, x, info = gtsv(dl, d, du, b1, overwrite_ab, overwrite_ab,
                                   overwrite_ab, overwrite_b)
    else:
        gbsv, = get_lapack_funcs(('gbsv',), (a1, b1))
        a2 = np.zeros((2*nlower + nupper + 1, a1.shape[1]), dtype=gbsv.dtype)
        a2[nlower:, :] = a1
        lu, piv, x, info = gbsv(nlower, nupper, a2, b1, overwrite_ab=True,
                                overwrite_b=overwrite_b)
    if info == 0:
        return x
    if info > 0:
        raise LinAlgError("singular matrix")
    raise ValueError('illegal value in %d-th argument of internal '
                     'gbsv/gtsv' % -info)


def solveh_banded(ab, b, overwrite_ab=False, overwrite_b=False, lower=False,
                  check_finite=True):
    """
    Solve equation a x = b. a is Hermitian positive-definite banded matrix.

    The matrix a is stored in `ab` either in lower diagonal or upper
    diagonal ordered form:

        ab[u + i - j, j] == a[i,j]        (if upper form; i <= j)
        ab[    i - j, j] == a[i,j]        (if lower form; i >= j)

    Example of `ab` (shape of a is (6, 6), `u` =2)::

        upper form:
        *   *   a02 a13 a24 a35
        *   a01 a12 a23 a34 a45
        a00 a11 a22 a33 a44 a55

        lower form:
        a00 a11 a22 a33 a44 a55
        a10 a21 a32 a43 a54 *
        a20 a31 a42 a53 *   *

    Cells marked with * are not used.

    Parameters
    ----------
    ab : (`u` + 1, M) array_like
        Banded matrix
    b : (M,) or (M, K) array_like
        Right-hand side
    overwrite_ab : bool, optional
        Discard data in `ab` (may enhance performance)
    overwrite_b : bool, optional
        Discard data in `b` (may enhance performance)
    lower : bool, optional
        Is the matrix in the lower form. (Default is upper form)
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    x : (M,) or (M, K) ndarray
        The solution to the system a x = b.  Shape of return matches shape
        of `b`.

    Examples
    --------
    Solve the banded system A x = b, where::

            [ 4  2 -1  0  0  0]       [1]
            [ 2  5  2 -1  0  0]       [2]
        A = [-1  2  6  2 -1  0]   b = [2]
            [ 0 -1  2  7  2 -1]       [3]
            [ 0  0 -1  2  8  2]       [3]
            [ 0  0  0 -1  2  9]       [3]

    >>> from scipy.linalg import solveh_banded

    `ab` contains the main diagonal and the nonzero diagonals below the
    main diagonal.  That is, we use the lower form:

    >>> ab = np.array([[ 4,  5,  6,  7, 8, 9],
    ...                [ 2,  2,  2,  2, 2, 0],
    ...                [-1, -1, -1, -1, 0, 0]])
    >>> b = np.array([1, 2, 2, 3, 3, 3])
    >>> x = solveh_banded(ab, b, lower=True)
    >>> x
    array([ 0.03431373,  0.45938375,  0.05602241,  0.47759104,  0.17577031,
            0.34733894])


    Solve the Hermitian banded system H x = b, where::

            [ 8   2-1j   0     0  ]        [ 1  ]
        H = [2+1j  5     1j    0  ]    b = [1+1j]
            [ 0   -1j    9   -2-1j]        [1-2j]
            [ 0    0   -2+1j   6  ]        [ 0  ]

    In this example, we put the upper diagonals in the array `hb`:

    >>> hb = np.array([[0, 2-1j, 1j, -2-1j],
    ...                [8,  5,    9,   6  ]])
    >>> b = np.array([1, 1+1j, 1-2j, 0])
    >>> x = solveh_banded(hb, b)
    >>> x
    array([ 0.07318536-0.02939412j,  0.11877624+0.17696461j,
            0.10077984-0.23035393j, -0.00479904-0.09358128j])

    """
    a1 = _asarray_validated(ab, check_finite=check_finite)
    b1 = _asarray_validated(b, check_finite=check_finite)
    # Validate shapes.
    if a1.shape[-1] != b1.shape[0]:
        raise ValueError("shapes of ab and b are not compatible.")

    overwrite_b = overwrite_b or _datacopied(b1, b)
    overwrite_ab = overwrite_ab or _datacopied(a1, ab)

    if a1.shape[0] == 2:
        ptsv, = get_lapack_funcs(('ptsv',), (a1, b1))
        if lower:
            d = a1[0, :].real
            e = a1[1, :-1]
        else:
            d = a1[1, :].real
            e = a1[0, 1:].conj()
        d, du, x, info = ptsv(d, e, b1, overwrite_ab, overwrite_ab,
                              overwrite_b)
    else:
        pbsv, = get_lapack_funcs(('pbsv',), (a1, b1))
        c, x, info = pbsv(a1, b1, lower=lower, overwrite_ab=overwrite_ab,
                          overwrite_b=overwrite_b)
    if info > 0:
        raise LinAlgError("%d-th leading minor not positive definite" % info)
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal '
                         'pbsv' % -info)
    return x


def solve_toeplitz(c_or_cr, b, check_finite=True):
    """Solve a Toeplitz system using Levinson Recursion

    The Toeplitz matrix has constant diagonals, with c as its first column
    and r as its first row.  If r is not given, ``r == conjugate(c)`` is
    assumed.

    Parameters
    ----------
    c_or_cr : array_like or tuple of (array_like, array_like)
        The vector ``c``, or a tuple of arrays (``c``, ``r``). Whatever the
        actual shape of ``c``, it will be converted to a 1-D array. If not
        supplied, ``r = conjugate(c)`` is assumed; in this case, if c[0] is
        real, the Toeplitz matrix is Hermitian. r[0] is ignored; the first row
        of the Toeplitz matrix is ``[c[0], r[1:]]``.  Whatever the actual shape
        of ``r``, it will be converted to a 1-D array.
    b : (M,) or (M, K) array_like
        Right-hand side in ``T x = b``.
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (result entirely NaNs) if the inputs do contain infinities or NaNs.

    Returns
    -------
    x : (M,) or (M, K) ndarray
        The solution to the system ``T x = b``.  Shape of return matches shape
        of `b`.

    See Also
    --------
    toeplitz : Toeplitz matrix

    Notes
    -----
    The solution is computed using Levinson-Durbin recursion, which is faster
    than generic least-squares methods, but can be less numerically stable.

    Examples
    --------
    Solve the Toeplitz system T x = b, where::

            [ 1 -1 -2 -3]       [1]
        T = [ 3  1 -1 -2]   b = [2]
            [ 6  3  1 -1]       [2]
            [10  6  3  1]       [5]

    To specify the Toeplitz matrix, only the first column and the first
    row are needed.

    >>> c = np.array([1, 3, 6, 10])    # First column of T
    >>> r = np.array([1, -1, -2, -3])  # First row of T
    >>> b = np.array([1, 2, 2, 5])

    >>> from scipy.linalg import solve_toeplitz, toeplitz
    >>> x = solve_toeplitz((c, r), b)
    >>> x
    array([ 1.66666667, -1.        , -2.66666667,  2.33333333])

    Check the result by creating the full Toeplitz matrix and
    multiplying it by `x`.  We should get `b`.

    >>> T = toeplitz(c, r)
    >>> T.dot(x)
    array([ 1.,  2.,  2.,  5.])

    """
    # If numerical stability of this algorithm is a problem, a future
    # developer might consider implementing other O(N^2) Toeplitz solvers,
    # such as GKO (https://www.jstor.org/stable/2153371) or Bareiss.
    if isinstance(c_or_cr, tuple):
        c, r = c_or_cr
        c = _asarray_validated(c, check_finite=check_finite).ravel()
        r = _asarray_validated(r, check_finite=check_finite).ravel()
    else:
        c = _asarray_validated(c_or_cr, check_finite=check_finite).ravel()
        r = c.conjugate()

    # Form a 1D array of values to be used in the matrix, containing a reversed
    # copy of r[1:], followed by c.
    vals = np.concatenate((r[-1:0:-1], c))
    if b is None:
        raise ValueError('illegal value, `b` is a required argument')

    b = _asarray_validated(b)
    if vals.shape[0] != (2*b.shape[0] - 1):
        raise ValueError('incompatible dimensions')
    if np.iscomplexobj(vals) or np.iscomplexobj(b):
        vals = np.asarray(vals, dtype=np.complex128, order='c')
        b = np.asarray(b, dtype=np.complex128)
    else:
        vals = np.asarray(vals, dtype=np.double, order='c')
        b = np.asarray(b, dtype=np.double)

    if b.ndim == 1:
        x, _ = levinson(vals, np.ascontiguousarray(b))
    else:
        b_shape = b.shape
        b = b.reshape(b.shape[0], -1)
        x = np.column_stack([levinson(vals, np.ascontiguousarray(b[:, i]))[0]
                             for i in range(b.shape[1])])
        x = x.reshape(*b_shape)

    return x


def _get_axis_len(aname, a, axis):
    ax = axis
    if ax < 0:
        ax += a.ndim
    if 0 <= ax < a.ndim:
        return a.shape[ax]
    raise ValueError("'%saxis' entry is out of bounds" % (aname,))


def solve_circulant(c, b, singular='raise', tol=None,
                    caxis=-1, baxis=0, outaxis=0):
    """Solve C x = b for x, where C is a circulant matrix.

    `C` is the circulant matrix associated with the vector `c`.

    The system is solved by doing division in Fourier space.  The
    calculation is::

        x = ifft(fft(b) / fft(c))

    where `fft` and `ifft` are the fast Fourier transform and its inverse,
    respectively.  For a large vector `c`, this is *much* faster than
    solving the system with the full circulant matrix.

    Parameters
    ----------
    c : array_like
        The coefficients of the circulant matrix.
    b : array_like
        Right-hand side matrix in ``a x = b``.
    singular : str, optional
        This argument controls how a near singular circulant matrix is
        handled.  If `singular` is "raise" and the circulant matrix is
        near singular, a `LinAlgError` is raised.  If `singular` is
        "lstsq", the least squares solution is returned.  Default is "raise".
    tol : float, optional
        If any eigenvalue of the circulant matrix has an absolute value
        that is less than or equal to `tol`, the matrix is considered to be
        near singular.  If not given, `tol` is set to::

            tol = abs_eigs.max() * abs_eigs.size * np.finfo(np.float64).eps

        where `abs_eigs` is the array of absolute values of the eigenvalues
        of the circulant matrix.
    caxis : int
        When `c` has dimension greater than 1, it is viewed as a collection
        of circulant vectors.  In this case, `caxis` is the axis of `c` that
        holds the vectors of circulant coefficients.
    baxis : int
        When `b` has dimension greater than 1, it is viewed as a collection
        of vectors.  In this case, `baxis` is the axis of `b` that holds the
        right-hand side vectors.
    outaxis : int
        When `c` or `b` are multidimensional, the value returned by
        `solve_circulant` is multidimensional.  In this case, `outaxis` is
        the axis of the result that holds the solution vectors.

    Returns
    -------
    x : ndarray
        Solution to the system ``C x = b``.

    Raises
    ------
    LinAlgError
        If the circulant matrix associated with `c` is near singular.

    See Also
    --------
    circulant : circulant matrix

    Notes
    -----
    For a one-dimensional vector `c` with length `m`, and an array `b`
    with shape ``(m, ...)``,

        solve_circulant(c, b)

    returns the same result as

        solve(circulant(c), b)

    where `solve` and `circulant` are from `scipy.linalg`.

    .. versionadded:: 0.16.0

    Examples
    --------
    >>> from scipy.linalg import solve_circulant, solve, circulant, lstsq

    >>> c = np.array([2, 2, 4])
    >>> b = np.array([1, 2, 3])
    >>> solve_circulant(c, b)
    array([ 0.75, -0.25,  0.25])

    Compare that result to solving the system with `scipy.linalg.solve`:

    >>> solve(circulant(c), b)
    array([ 0.75, -0.25,  0.25])

    A singular example:

    >>> c = np.array([1, 1, 0, 0])
    >>> b = np.array([1, 2, 3, 4])

    Calling ``solve_circulant(c, b)`` will raise a `LinAlgError`.  For the
    least square solution, use the option ``singular='lstsq'``:

    >>> solve_circulant(c, b, singular='lstsq')
    array([ 0.25,  1.25,  2.25,  1.25])

    Compare to `scipy.linalg.lstsq`:

    >>> x, resid, rnk, s = lstsq(circulant(c), b)
    >>> x
    array([ 0.25,  1.25,  2.25,  1.25])

    A broadcasting example:

    Suppose we have the vectors of two circulant matrices stored in an array
    with shape (2, 5), and three `b` vectors stored in an array with shape
    (3, 5).  For example,

    >>> c = np.array([[1.5, 2, 3, 0, 0], [1, 1, 4, 3, 2]])
    >>> b = np.arange(15).reshape(-1, 5)

    We want to solve all combinations of circulant matrices and `b` vectors,
    with the result stored in an array with shape (2, 3, 5).  When we
    disregard the axes of `c` and `b` that hold the vectors of coefficients,
    the shapes of the collections are (2,) and (3,), respectively, which are
    not compatible for broadcasting.  To have a broadcast result with shape
    (2, 3), we add a trivial dimension to `c`: ``c[:, np.newaxis, :]`` has
    shape (2, 1, 5).  The last dimension holds the coefficients of the
    circulant matrices, so when we call `solve_circulant`, we can use the
    default ``caxis=-1``.  The coefficients of the `b` vectors are in the last
    dimension of the array `b`, so we use ``baxis=-1``.  If we use the
    default `outaxis`, the result will have shape (5, 2, 3), so we'll use
    ``outaxis=-1`` to put the solution vectors in the last dimension.

    >>> x = solve_circulant(c[:, np.newaxis, :], b, baxis=-1, outaxis=-1)
    >>> x.shape
    (2, 3, 5)
    >>> np.set_printoptions(precision=3)  # For compact output of numbers.
    >>> x
    array([[[-0.118,  0.22 ,  1.277, -0.142,  0.302],
            [ 0.651,  0.989,  2.046,  0.627,  1.072],
            [ 1.42 ,  1.758,  2.816,  1.396,  1.841]],
           [[ 0.401,  0.304,  0.694, -0.867,  0.377],
            [ 0.856,  0.758,  1.149, -0.412,  0.831],
            [ 1.31 ,  1.213,  1.603,  0.042,  1.286]]])

    Check by solving one pair of `c` and `b` vectors (cf. ``x[1, 1, :]``):

    >>> solve_circulant(c[1], b[1, :])
    array([ 0.856,  0.758,  1.149, -0.412,  0.831])

    """
    c = np.atleast_1d(c)
    nc = _get_axis_len("c", c, caxis)
    b = np.atleast_1d(b)
    nb = _get_axis_len("b", b, baxis)
    if nc != nb:
        raise ValueError('Incompatible c and b axis lengths')

    fc = np.fft.fft(np.rollaxis(c, caxis, c.ndim), axis=-1)
    abs_fc = np.abs(fc)
    if tol is None:
        # This is the same tolerance as used in np.linalg.matrix_rank.
        tol = abs_fc.max(axis=-1) * nc * np.finfo(np.float64).eps
        if tol.shape != ():
            tol.shape = tol.shape + (1,)
        else:
            tol = np.atleast_1d(tol)

    near_zeros = abs_fc <= tol
    is_near_singular = np.any(near_zeros)
    if is_near_singular:
        if singular == 'raise':
            raise LinAlgError("near singular circulant matrix.")
        else:
            # Replace the small values with 1 to avoid errors in the
            # division fb/fc below.
            fc[near_zeros] = 1

    fb = np.fft.fft(np.rollaxis(b, baxis, b.ndim), axis=-1)

    q = fb / fc

    if is_near_singular:
        # `near_zeros` is a boolean array, same shape as `c`, that is
        # True where `fc` is (near) zero.  `q` is the broadcasted result
        # of fb / fc, so to set the values of `q` to 0 where `fc` is near
        # zero, we use a mask that is the broadcast result of an array
        # of True values shaped like `b` with `near_zeros`.
        mask = np.ones_like(b, dtype=bool) & near_zeros
        q[mask] = 0

    x = np.fft.ifft(q, axis=-1)
    if not (np.iscomplexobj(c) or np.iscomplexobj(b)):
        x = x.real
    if outaxis != -1:
        x = np.rollaxis(x, -1, outaxis)
    return x


# matrix inversion
def inv(a, overwrite_a=False, check_finite=True):
    """
    Compute the inverse of a matrix.

    Parameters
    ----------
    a : array_like
        Square matrix to be inverted.
    overwrite_a : bool, optional
        Discard data in `a` (may improve performance). Default is False.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    ainv : ndarray
        Inverse of the matrix `a`.

    Raises
    ------
    LinAlgError
        If `a` is singular.
    ValueError
        If `a` is not square, or not 2-dimensional.

    Examples
    --------
    >>> from scipy import linalg
    >>> a = np.array([[1., 2.], [3., 4.]])
    >>> linalg.inv(a)
    array([[-2. ,  1. ],
           [ 1.5, -0.5]])
    >>> np.dot(a, linalg.inv(a))
    array([[ 1.,  0.],
           [ 0.,  1.]])

    """
    a1 = _asarray_validated(a, check_finite=check_finite)
    if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
        raise ValueError('expected square matrix')
    overwrite_a = overwrite_a or _datacopied(a1, a)
    # XXX: I found no advantage or disadvantage of using finv.
#     finv, = get_flinalg_funcs(('inv',),(a1,))
#     if finv is not None:
#         a_inv,info = finv(a1,overwrite_a=overwrite_a)
#         if info==0:
#             return a_inv
#         if info>0: raise LinAlgError, "singular matrix"
#         if info<0: raise ValueError('illegal value in %d-th argument of '
#                                     'internal inv.getrf|getri'%(-info))
    getrf, getri, getri_lwork = get_lapack_funcs(('getrf', 'getri',
                                                  'getri_lwork'),
                                                 (a1,))
    lu, piv, info = getrf(a1, overwrite_a=overwrite_a)
    if info == 0:
        lwork = _compute_lwork(getri_lwork, a1.shape[0])

        # XXX: the following line fixes curious SEGFAULT when
        # benchmarking 500x500 matrix inverse. This seems to
        # be a bug in LAPACK ?getri routine because if lwork is
        # minimal (when using lwork[0] instead of lwork[1]) then
        # all tests pass. Further investigation is required if
        # more such SEGFAULTs occur.
        lwork = int(1.01 * lwork)
        inv_a, info = getri(lu, piv, lwork=lwork, overwrite_lu=1)
    if info > 0:
        raise LinAlgError("singular matrix")
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal '
                         'getrf|getri' % -info)
    return inv_a


# Determinant

def det(a, overwrite_a=False, check_finite=True):
    """
    Compute the determinant of a matrix

    The determinant of a square matrix is a value derived arithmetically
    from the coefficients of the matrix.

    The determinant for a 3x3 matrix, for example, is computed as follows::

        a    b    c
        d    e    f = A
        g    h    i

        det(A) = a*e*i + b*f*g + c*d*h - c*e*g - b*d*i - a*f*h

    Parameters
    ----------
    a : (M, M) array_like
        A square matrix.
    overwrite_a : bool, optional
        Allow overwriting data in a (may enhance performance).
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    det : float or complex
        Determinant of `a`.

    Notes
    -----
    The determinant is computed via LU factorization, LAPACK routine z/dgetrf.

    Examples
    --------
    >>> from scipy import linalg
    >>> a = np.array([[1,2,3], [4,5,6], [7,8,9]])
    >>> linalg.det(a)
    0.0
    >>> a = np.array([[0,2,3], [4,5,6], [7,8,9]])
    >>> linalg.det(a)
    3.0

    """
    a1 = _asarray_validated(a, check_finite=check_finite)
    if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
        raise ValueError('expected square matrix')
    overwrite_a = overwrite_a or _datacopied(a1, a)
    fdet, = get_flinalg_funcs(('det',), (a1,))
    a_det, info = fdet(a1, overwrite_a=overwrite_a)
    if info < 0:
        raise ValueError('illegal value in %d-th argument of internal '
                         'det.getrf' % -info)
    return a_det


# Linear Least Squares
def lstsq(a, b, cond=None, overwrite_a=False, overwrite_b=False,
          check_finite=True, lapack_driver=None):
    """
    Compute least-squares solution to equation Ax = b.

    Compute a vector x such that the 2-norm ``|b - A x|`` is minimized.

    Parameters
    ----------
    a : (M, N) array_like
        Left hand side array
    b : (M,) or (M, K) array_like
        Right hand side array
    cond : float, optional
        Cutoff for 'small' singular values; used to determine effective
        rank of a. Singular values smaller than
        ``rcond * largest_singular_value`` are considered zero.
    overwrite_a : bool, optional
        Discard data in `a` (may enhance performance). Default is False.
    overwrite_b : bool, optional
        Discard data in `b` (may enhance performance). Default is False.
    check_finite : bool, optional
        Whether to check that the input matrices contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.
    lapack_driver : str, optional
        Which LAPACK driver is used to solve the least-squares problem.
        Options are ``'gelsd'``, ``'gelsy'``, ``'gelss'``. Default
        (``'gelsd'``) is a good choice.  However, ``'gelsy'`` can be slightly
        faster on many problems.  ``'gelss'`` was used historically.  It is
        generally slow but uses less memory.

        .. versionadded:: 0.17.0

    Returns
    -------
    x : (N,) or (N, K) ndarray
        Least-squares solution.  Return shape matches shape of `b`.
    residues : (K,) ndarray or float
        Square of the 2-norm for each column in ``b - a x``, if ``M > N`` and
        ``ndim(A) == n`` (returns a scalar if b is 1-D). Otherwise a
        (0,)-shaped array is returned.
    rank : int
        Effective rank of `a`.
    s : (min(M, N),) ndarray or None
        Singular values of `a`. The condition number of a is
        ``abs(s[0] / s[-1])``.

    Raises
    ------
    LinAlgError
        If computation does not converge.

    ValueError
        When parameters are not compatible.

    See Also
    --------
    scipy.optimize.nnls : linear least squares with non-negativity constraint

    Notes
    -----
    When ``'gelsy'`` is used as a driver, `residues` is set to a (0,)-shaped
    array and `s` is always ``None``.

    Examples
    --------
    >>> from scipy.linalg import lstsq
    >>> import matplotlib.pyplot as plt

    Suppose we have the following data:

    >>> x = np.array([1, 2.5, 3.5, 4, 5, 7, 8.5])
    >>> y = np.array([0.3, 1.1, 1.5, 2.0, 3.2, 6.6, 8.6])

    We want to fit a quadratic polynomial of the form ``y = a + b*x**2``
    to this data.  We first form the "design matrix" M, with a constant
    column of 1s and a column containing ``x**2``:

    >>> M = x[:, np.newaxis]**[0, 2]
    >>> M
    array([[  1.  ,   1.  ],
           [  1.  ,   6.25],
           [  1.  ,  12.25],
           [  1.  ,  16.  ],
           [  1.  ,  25.  ],
           [  1.  ,  49.  ],
           [  1.  ,  72.25]])

    We want to find the least-squares solution to ``M.dot(p) = y``,
    where ``p`` is a vector with length 2 that holds the parameters
    ``a`` and ``b``.

    >>> p, res, rnk, s = lstsq(M, y)
    >>> p
    array([ 0.20925829,  0.12013861])

    Plot the data and the fitted curve.

    >>> plt.plot(x, y, 'o', label='data')
    >>> xx = np.linspace(0, 9, 101)
    >>> yy = p[0] + p[1]*xx**2
    >>> plt.plot(xx, yy, label='least squares fit, $y = a + bx^2$')
    >>> plt.xlabel('x')
    >>> plt.ylabel('y')
    >>> plt.legend(framealpha=1, shadow=True)
    >>> plt.grid(alpha=0.25)
    >>> plt.show()

    """
    a1 = _asarray_validated(a, check_finite=check_finite)
    b1 = _asarray_validated(b, check_finite=check_finite)
    if len(a1.shape) != 2:
        raise ValueError('Input array a should be 2-D')
    m, n = a1.shape
    if len(b1.shape) == 2:
        nrhs = b1.shape[1]
    else:
        nrhs = 1
    if m != b1.shape[0]:
        raise ValueError('Shape mismatch: a and b should have the same number'
                         ' of rows ({} != {}).'.format(m, b1.shape[0]))
    if m == 0 or n == 0:  # Zero-sized problem, confuses LAPACK
        x = np.zeros((n,) + b1.shape[1:], dtype=np.common_type(a1, b1))
        if n == 0:
            residues = np.linalg.norm(b1, axis=0)**2
        else:
            residues = np.empty((0,))
        return x, residues, 0, np.empty((0,))

    driver = lapack_driver
    if driver is None:
        driver = lstsq.default_lapack_driver
    if driver not in ('gelsd', 'gelsy', 'gelss'):
        raise ValueError('LAPACK driver "%s" is not found' % driver)

    lapack_func, lapack_lwork = get_lapack_funcs((driver,
                                                 '%s_lwork' % driver),
                                                 (a1, b1))
    real_data = True if (lapack_func.dtype.kind == 'f') else False

    if m < n:
        # need to extend b matrix as it will be filled with
        # a larger solution matrix
        if len(b1.shape) == 2:
            b2 = np.zeros((n, nrhs), dtype=lapack_func.dtype)
            b2[:m, :] = b1
        else:
            b2 = np.zeros(n, dtype=lapack_func.dtype)
            b2[:m] = b1
        b1 = b2

    overwrite_a = overwrite_a or _datacopied(a1, a)
    overwrite_b = overwrite_b or _datacopied(b1, b)

    if cond is None:
        cond = np.finfo(lapack_func.dtype).eps

    if driver in ('gelss', 'gelsd'):
        if driver == 'gelss':
            lwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond)
            v, x, s, rank, work, info = lapack_func(a1, b1, cond, lwork,
                                                    overwrite_a=overwrite_a,
                                                    overwrite_b=overwrite_b)

        elif driver == 'gelsd':
            if real_data:
                lwork, iwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond)
                x, s, rank, info = lapack_func(a1, b1, lwork,
                                               iwork, cond, False, False)
            else:  # complex data
                lwork, rwork, iwork = _compute_lwork(lapack_lwork, m, n,
                                                     nrhs, cond)
                x, s, rank, info = lapack_func(a1, b1, lwork, rwork, iwork,
                                               cond, False, False)
        if info > 0:
            raise LinAlgError("SVD did not converge in Linear Least Squares")
        if info < 0:
            raise ValueError('illegal value in %d-th argument of internal %s'
                             % (-info, lapack_driver))
        resids = np.asarray([], dtype=x.dtype)
        if m > n:
            x1 = x[:n]
            if rank == n:
                resids = np.sum(np.abs(x[n:])**2, axis=0)
            x = x1
        return x, resids, rank, s

    elif driver == 'gelsy':
        lwork = _compute_lwork(lapack_lwork, m, n, nrhs, cond)
        jptv = np.zeros((a1.shape[1], 1), dtype=np.int32)
        v, x, j, rank, info = lapack_func(a1, b1, jptv, cond,
                                          lwork, False, False)
        if info < 0:
            raise ValueError("illegal value in %d-th argument of internal "
                             "gelsy" % -info)
        if m > n:
            x1 = x[:n]
            x = x1
        return x, np.array([], x.dtype), rank, None


lstsq.default_lapack_driver = 'gelsd'


def pinv(a, cond=None, rcond=None, return_rank=False, check_finite=True):
    """
    Compute the (Moore-Penrose) pseudo-inverse of a matrix.

    Calculate a generalized inverse of a matrix using a least-squares
    solver.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to be pseudo-inverted.
    cond, rcond : float, optional
        Cutoff factor for 'small' singular values. In `lstsq`,
        singular values less than ``cond*largest_singular_value`` will be
        considered as zero. If both are omitted, the default value
        ``max(M, N) * eps`` is passed to `lstsq` where ``eps`` is the
        corresponding machine precision value of the datatype of ``a``.

        .. versionchanged:: 1.3.0
            Previously the default cutoff value was just `eps` without the
            factor ``max(M, N)``.

    return_rank : bool, optional
        if True, return the effective rank of the matrix
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    B : (N, M) ndarray
        The pseudo-inverse of matrix `a`.
    rank : int
        The effective rank of the matrix.  Returned if return_rank == True

    Raises
    ------
    LinAlgError
        If computation does not converge.

    Examples
    --------
    >>> from scipy import linalg
    >>> a = np.random.randn(9, 6)
    >>> B = linalg.pinv(a)
    >>> np.allclose(a, np.dot(a, np.dot(B, a)))
    True
    >>> np.allclose(B, np.dot(B, np.dot(a, B)))
    True

    """
    a = _asarray_validated(a, check_finite=check_finite)
    b = np.identity(a.shape[0], dtype=a.dtype)

    if rcond is not None:
        cond = rcond

    if cond is None:
        cond = max(a.shape) * np.spacing(a.real.dtype.type(1))

    x, resids, rank, s = lstsq(a, b, cond=cond, check_finite=False)

    if return_rank:
        return x, rank
    else:
        return x


def pinv2(a, cond=None, rcond=None, return_rank=False, check_finite=True):
    """
    Compute the (Moore-Penrose) pseudo-inverse of a matrix.

    Calculate a generalized inverse of a matrix using its
    singular-value decomposition and including all 'large' singular
    values.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to be pseudo-inverted.
    cond, rcond : float or None
        Cutoff for 'small' singular values; singular values smaller than this
        value are considered as zero. If both are omitted, the default value
        ``max(M,N)*largest_singular_value*eps`` is used where ``eps`` is the
        machine precision value of the datatype of ``a``.

        .. versionchanged:: 1.3.0
            Previously the default cutoff value was just ``eps*f`` where ``f``
            was ``1e3`` for single precision and ``1e6`` for double precision.

    return_rank : bool, optional
        If True, return the effective rank of the matrix.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    B : (N, M) ndarray
        The pseudo-inverse of matrix `a`.
    rank : int
        The effective rank of the matrix.  Returned if `return_rank` is True.

    Raises
    ------
    LinAlgError
        If SVD computation does not converge.

    Examples
    --------
    >>> from scipy import linalg
    >>> a = np.random.randn(9, 6)
    >>> B = linalg.pinv2(a)
    >>> np.allclose(a, np.dot(a, np.dot(B, a)))
    True
    >>> np.allclose(B, np.dot(B, np.dot(a, B)))
    True

    """
    a = _asarray_validated(a, check_finite=check_finite)
    u, s, vh = decomp_svd.svd(a, full_matrices=False, check_finite=False)

    if rcond is not None:
        cond = rcond
    if cond in [None, -1]:
        t = u.dtype.char.lower()
        cond = np.max(s) * max(a.shape) * np.finfo(t).eps

    rank = np.sum(s > cond)

    u = u[:, :rank]
    u /= s[:rank]
    B = np.transpose(np.conjugate(np.dot(u, vh[:rank])))

    if return_rank:
        return B, rank
    else:
        return B


def pinvh(a, cond=None, rcond=None, lower=True, return_rank=False,
          check_finite=True):
    """
    Compute the (Moore-Penrose) pseudo-inverse of a Hermitian matrix.

    Calculate a generalized inverse of a Hermitian or real symmetric matrix
    using its eigenvalue decomposition and including all eigenvalues with
    'large' absolute value.

    Parameters
    ----------
    a : (N, N) array_like
        Real symmetric or complex hermetian matrix to be pseudo-inverted
    cond, rcond : float or None
        Cutoff for 'small' singular values; singular values smaller than this
        value are considered as zero. If both are omitted, the default
        ``max(M,N)*largest_eigenvalue*eps`` is used where ``eps`` is the
        machine precision value of the datatype of ``a``.

        .. versionchanged:: 1.3.0
            Previously the default cutoff value was just ``eps*f`` where ``f``
            was ``1e3`` for single precision and ``1e6`` for double precision.

    lower : bool, optional
        Whether the pertinent array data is taken from the lower or upper
        triangle of `a`. (Default: lower)
    return_rank : bool, optional
        If True, return the effective rank of the matrix.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    B : (N, N) ndarray
        The pseudo-inverse of matrix `a`.
    rank : int
        The effective rank of the matrix.  Returned if `return_rank` is True.

    Raises
    ------
    LinAlgError
        If eigenvalue does not converge

    Examples
    --------
    >>> from scipy.linalg import pinvh
    >>> a = np.random.randn(9, 6)
    >>> a = np.dot(a, a.T)
    >>> B = pinvh(a)
    >>> np.allclose(a, np.dot(a, np.dot(B, a)))
    True
    >>> np.allclose(B, np.dot(B, np.dot(a, B)))
    True

    """
    a = _asarray_validated(a, check_finite=check_finite)
    s, u = decomp.eigh(a, lower=lower, check_finite=False)

    if rcond is not None:
        cond = rcond
    if cond in [None, -1]:
        t = u.dtype.char.lower()
        cond = np.max(np.abs(s)) * max(a.shape) * np.finfo(t).eps

    # For Hermitian matrices, singular values equal abs(eigenvalues)
    above_cutoff = (abs(s) > cond)
    psigma_diag = 1.0 / s[above_cutoff]
    u = u[:, above_cutoff]

    B = np.dot(u * psigma_diag, np.conjugate(u).T)

    if return_rank:
        return B, len(psigma_diag)
    else:
        return B


def matrix_balance(A, permute=True, scale=True, separate=False,
                   overwrite_a=False):
    """
    Compute a diagonal similarity transformation for row/column balancing.

    The balancing tries to equalize the row and column 1-norms by applying
    a similarity transformation such that the magnitude variation of the
    matrix entries is reflected to the scaling matrices.

    Moreover, if enabled, the matrix is first permuted to isolate the upper
    triangular parts of the matrix and, again if scaling is also enabled,
    only the remaining subblocks are subjected to scaling.

    The balanced matrix satisfies the following equality

    .. math::

                        B = T^{-1} A T

    The scaling coefficients are approximated to the nearest power of 2
    to avoid round-off errors.

    Parameters
    ----------
    A : (n, n) array_like
        Square data matrix for the balancing.
    permute : bool, optional
        The selector to define whether permutation of A is also performed
        prior to scaling.
    scale : bool, optional
        The selector to turn on and off the scaling. If False, the matrix
        will not be scaled.
    separate : bool, optional
        This switches from returning a full matrix of the transformation
        to a tuple of two separate 1D permutation and scaling arrays.
    overwrite_a : bool, optional
        This is passed to xGEBAL directly. Essentially, overwrites the result
        to the data. It might increase the space efficiency. See LAPACK manual
        for details. This is False by default.

    Returns
    -------
    B : (n, n) ndarray
        Balanced matrix
    T : (n, n) ndarray
        A possibly permuted diagonal matrix whose nonzero entries are
        integer powers of 2 to avoid numerical truncation errors.
    scale, perm : (n,) ndarray
        If ``separate`` keyword is set to True then instead of the array
        ``T`` above, the scaling and the permutation vectors are given
        separately as a tuple without allocating the full array ``T``.

    Notes
    -----

    This algorithm is particularly useful for eigenvalue and matrix
    decompositions and in many cases it is already called by various
    LAPACK routines.

    The algorithm is based on the well-known technique of [1]_ and has
    been modified to account for special cases. See [2]_ for details
    which have been implemented since LAPACK v3.5.0. Before this version
    there are corner cases where balancing can actually worsen the
    conditioning. See [3]_ for such examples.

    The code is a wrapper around LAPACK's xGEBAL routine family for matrix
    balancing.

    .. versionadded:: 0.19.0

    Examples
    --------
    >>> from scipy import linalg
    >>> x = np.array([[1,2,0], [9,1,0.01], [1,2,10*np.pi]])

    >>> y, permscale = linalg.matrix_balance(x)
    >>> np.abs(x).sum(axis=0) / np.abs(x).sum(axis=1)
    array([ 3.66666667,  0.4995005 ,  0.91312162])

    >>> np.abs(y).sum(axis=0) / np.abs(y).sum(axis=1)
    array([ 1.2       ,  1.27041742,  0.92658316])  # may vary

    >>> permscale  # only powers of 2 (0.5 == 2^(-1))
    array([[  0.5,   0. ,  0. ],  # may vary
           [  0. ,   1. ,  0. ],
           [  0. ,   0. ,  1. ]])

    References
    ----------
    .. [1] : B.N. Parlett and C. Reinsch, "Balancing a Matrix for
       Calculation of Eigenvalues and Eigenvectors", Numerische Mathematik,
       Vol.13(4), 1969, DOI:10.1007/BF02165404

    .. [2] : R. James, J. Langou, B.R. Lowery, "On matrix balancing and
       eigenvector computation", 2014, Available online:
       https://arxiv.org/abs/1401.5766

    .. [3] :  D.S. Watkins. A case where balancing is harmful.
       Electron. Trans. Numer. Anal, Vol.23, 2006.

    """

    A = np.atleast_2d(_asarray_validated(A, check_finite=True))

    if not np.equal(*A.shape):
        raise ValueError('The data matrix for balancing should be square.')

    gebal = get_lapack_funcs(('gebal'), (A,))
    B, lo, hi, ps, info = gebal(A, scale=scale, permute=permute,
                                overwrite_a=overwrite_a)

    if info < 0:
        raise ValueError('xGEBAL exited with the internal error '
                         '"illegal value in argument number {}.". See '
                         'LAPACK documentation for the xGEBAL error codes.'
                         ''.format(-info))

    # Separate the permutations from the scalings and then convert to int
    scaling = np.ones_like(ps, dtype=float)
    scaling[lo:hi+1] = ps[lo:hi+1]

    # gebal uses 1-indexing
    ps = ps.astype(int, copy=False) - 1
    n = A.shape[0]
    perm = np.arange(n)

    # LAPACK permutes with the ordering n --> hi, then 0--> lo
    if hi < n:
        for ind, x in enumerate(ps[hi+1:][::-1], 1):
            if n-ind == x:
                continue
            perm[[x, n-ind]] = perm[[n-ind, x]]

    if lo > 0:
        for ind, x in enumerate(ps[:lo]):
            if ind == x:
                continue
            perm[[x, ind]] = perm[[ind, x]]

    if separate:
        return B, (scaling, perm)

    # get the inverse permutation
    iperm = np.empty_like(perm)
    iperm[perm] = np.arange(n)

    return B, np.diag(scaling)[iperm, :]