morphology.py 81 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
# Copyright (C) 2003-2005 Peter J. Verveer
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
#    copyright notice, this list of conditions and the following
#    disclaimer in the documentation and/or other materials provided
#    with the distribution.
#
# 3. The name of the author may not be used to endorse or promote
#    products derived from this software without specific prior
#    written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

from __future__ import division, print_function, absolute_import
import warnings
import operator

import numpy
from . import _ni_support
from . import _nd_image
from . import filters

__all__ = ['iterate_structure', 'generate_binary_structure', 'binary_erosion',
           'binary_dilation', 'binary_opening', 'binary_closing',
           'binary_hit_or_miss', 'binary_propagation', 'binary_fill_holes',
           'grey_erosion', 'grey_dilation', 'grey_opening', 'grey_closing',
           'morphological_gradient', 'morphological_laplace', 'white_tophat',
           'black_tophat', 'distance_transform_bf', 'distance_transform_cdt',
           'distance_transform_edt']


def _center_is_true(structure, origin):
    structure = numpy.array(structure)
    coor = tuple([oo + ss // 2 for ss, oo in zip(structure.shape,
                                                 origin)])
    return bool(structure[coor])


def iterate_structure(structure, iterations, origin=None):
    """
    Iterate a structure by dilating it with itself.

    Parameters
    ----------
    structure : array_like
       Structuring element (an array of bools, for example), to be dilated with
       itself.
    iterations : int
       number of dilations performed on the structure with itself
    origin : optional
        If origin is None, only the iterated structure is returned. If
        not, a tuple of the iterated structure and the modified origin is
        returned.

    Returns
    -------
    iterate_structure : ndarray of bools
        A new structuring element obtained by dilating `structure`
        (`iterations` - 1) times with itself.

    See also
    --------
    generate_binary_structure

    Examples
    --------
    >>> from scipy import ndimage
    >>> struct = ndimage.generate_binary_structure(2, 1)
    >>> struct.astype(int)
    array([[0, 1, 0],
           [1, 1, 1],
           [0, 1, 0]])
    >>> ndimage.iterate_structure(struct, 2).astype(int)
    array([[0, 0, 1, 0, 0],
           [0, 1, 1, 1, 0],
           [1, 1, 1, 1, 1],
           [0, 1, 1, 1, 0],
           [0, 0, 1, 0, 0]])
    >>> ndimage.iterate_structure(struct, 3).astype(int)
    array([[0, 0, 0, 1, 0, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 1, 1, 1, 1, 1, 0],
           [1, 1, 1, 1, 1, 1, 1],
           [0, 1, 1, 1, 1, 1, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 0, 1, 0, 0, 0]])

    """
    structure = numpy.asarray(structure)
    if iterations < 2:
        return structure.copy()
    ni = iterations - 1
    shape = [ii + ni * (ii - 1) for ii in structure.shape]
    pos = [ni * (structure.shape[ii] // 2) for ii in range(len(shape))]
    slc = tuple(slice(pos[ii], pos[ii] + structure.shape[ii], None)
                for ii in range(len(shape)))
    out = numpy.zeros(shape, bool)
    out[slc] = structure != 0
    out = binary_dilation(out, structure, iterations=ni)
    if origin is None:
        return out
    else:
        origin = _ni_support._normalize_sequence(origin, structure.ndim)
        origin = [iterations * o for o in origin]
        return out, origin


def generate_binary_structure(rank, connectivity):
    """
    Generate a binary structure for binary morphological operations.

    Parameters
    ----------
    rank : int
         Number of dimensions of the array to which the structuring element
         will be applied, as returned by `np.ndim`.
    connectivity : int
         `connectivity` determines which elements of the output array belong
         to the structure, i.e. are considered as neighbors of the central
         element. Elements up to a squared distance of `connectivity` from
         the center are considered neighbors. `connectivity` may range from 1
         (no diagonal elements are neighbors) to `rank` (all elements are
         neighbors).

    Returns
    -------
    output : ndarray of bools
         Structuring element which may be used for binary morphological
         operations, with `rank` dimensions and all dimensions equal to 3.

    See also
    --------
    iterate_structure, binary_dilation, binary_erosion

    Notes
    -----
    `generate_binary_structure` can only create structuring elements with
    dimensions equal to 3, i.e. minimal dimensions. For larger structuring
    elements, that are useful e.g. for eroding large objects, one may either
    use   `iterate_structure`, or create directly custom arrays with
    numpy functions such as `numpy.ones`.

    Examples
    --------
    >>> from scipy import ndimage
    >>> struct = ndimage.generate_binary_structure(2, 1)
    >>> struct
    array([[False,  True, False],
           [ True,  True,  True],
           [False,  True, False]], dtype=bool)
    >>> a = np.zeros((5,5))
    >>> a[2, 2] = 1
    >>> a
    array([[ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  1.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.]])
    >>> b = ndimage.binary_dilation(a, structure=struct).astype(a.dtype)
    >>> b
    array([[ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  1.,  0.,  0.],
           [ 0.,  1.,  1.,  1.,  0.],
           [ 0.,  0.,  1.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.]])
    >>> ndimage.binary_dilation(b, structure=struct).astype(a.dtype)
    array([[ 0.,  0.,  1.,  0.,  0.],
           [ 0.,  1.,  1.,  1.,  0.],
           [ 1.,  1.,  1.,  1.,  1.],
           [ 0.,  1.,  1.,  1.,  0.],
           [ 0.,  0.,  1.,  0.,  0.]])
    >>> struct = ndimage.generate_binary_structure(2, 2)
    >>> struct
    array([[ True,  True,  True],
           [ True,  True,  True],
           [ True,  True,  True]], dtype=bool)
    >>> struct = ndimage.generate_binary_structure(3, 1)
    >>> struct # no diagonal elements
    array([[[False, False, False],
            [False,  True, False],
            [False, False, False]],
           [[False,  True, False],
            [ True,  True,  True],
            [False,  True, False]],
           [[False, False, False],
            [False,  True, False],
            [False, False, False]]], dtype=bool)

    """
    if connectivity < 1:
        connectivity = 1
    if rank < 1:
        return numpy.array(True, dtype=bool)
    output = numpy.fabs(numpy.indices([3] * rank) - 1)
    output = numpy.add.reduce(output, 0)
    return output <= connectivity


def _binary_erosion(input, structure, iterations, mask, output,
                    border_value, origin, invert, brute_force):
    try:
        iterations = operator.index(iterations)
    except TypeError:
        raise TypeError('iterations parameter should be an integer')

    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError('Complex type not supported')
    if structure is None:
        structure = generate_binary_structure(input.ndim, 1)
    else:
        structure = numpy.asarray(structure, dtype=bool)
    if structure.ndim != input.ndim:
        raise RuntimeError('structure and input must have same dimensionality')
    if not structure.flags.contiguous:
        structure = structure.copy()
    if numpy.prod(structure.shape, axis=0) < 1:
        raise RuntimeError('structure must not be empty')
    if mask is not None:
        mask = numpy.asarray(mask)
        if mask.shape != input.shape:
            raise RuntimeError('mask and input must have equal sizes')
    origin = _ni_support._normalize_sequence(origin, input.ndim)
    cit = _center_is_true(structure, origin)
    if isinstance(output, numpy.ndarray):
        if numpy.iscomplexobj(output):
            raise TypeError('Complex output type not supported')
    else:
        output = bool
    output = _ni_support._get_output(output, input)

    if iterations == 1:
        _nd_image.binary_erosion(input, structure, mask, output,
                                 border_value, origin, invert, cit, 0)
        return output
    elif cit and not brute_force:
        changed, coordinate_list = _nd_image.binary_erosion(
            input, structure, mask, output,
            border_value, origin, invert, cit, 1)
        structure = structure[tuple([slice(None, None, -1)] *
                                    structure.ndim)]
        for ii in range(len(origin)):
            origin[ii] = -origin[ii]
            if not structure.shape[ii] & 1:
                origin[ii] -= 1
        if mask is not None:
            mask = numpy.asarray(mask, dtype=numpy.int8)
        if not structure.flags.contiguous:
            structure = structure.copy()
        _nd_image.binary_erosion2(output, structure, mask, iterations - 1,
                                  origin, invert, coordinate_list)
        return output
    else:
        tmp_in = numpy.empty_like(input, dtype=bool)
        tmp_out = output
        if iterations >= 1 and not iterations & 1:
            tmp_in, tmp_out = tmp_out, tmp_in
        changed = _nd_image.binary_erosion(
            input, structure, mask, tmp_out,
            border_value, origin, invert, cit, 0)
        ii = 1
        while ii < iterations or (iterations < 1 and changed):
            tmp_in, tmp_out = tmp_out, tmp_in
            changed = _nd_image.binary_erosion(
                tmp_in, structure, mask, tmp_out,
                border_value, origin, invert, cit, 0)
            ii += 1
        return output


def binary_erosion(input, structure=None, iterations=1, mask=None, output=None,
                   border_value=0, origin=0, brute_force=False):
    """
    Multi-dimensional binary erosion with a given structuring element.

    Binary erosion is a mathematical morphology operation used for image
    processing.

    Parameters
    ----------
    input : array_like
        Binary image to be eroded. Non-zero (True) elements form
        the subset to be eroded.
    structure : array_like, optional
        Structuring element used for the erosion. Non-zero elements are
        considered True. If no structuring element is provided, an element
        is generated with a square connectivity equal to one.
    iterations : int, optional
        The erosion is repeated `iterations` times (one, by default).
        If iterations is less than 1, the erosion is repeated until the
        result does not change anymore.
    mask : array_like, optional
        If a mask is given, only those elements with a True value at
        the corresponding mask element are modified at each iteration.
    output : ndarray, optional
        Array of the same shape as input, into which the output is placed.
        By default, a new array is created.
    border_value : int (cast to 0 or 1), optional
        Value at the border in the output array.
    origin : int or tuple of ints, optional
        Placement of the filter, by default 0.
    brute_force : boolean, optional
        Memory condition: if False, only the pixels whose value was changed in
        the last iteration are tracked as candidates to be updated (eroded) in
        the current iteration; if True all pixels are considered as candidates
        for erosion, regardless of what happened in the previous iteration.
        False by default.

    Returns
    -------
    binary_erosion : ndarray of bools
        Erosion of the input by the structuring element.

    See also
    --------
    grey_erosion, binary_dilation, binary_closing, binary_opening,
    generate_binary_structure

    Notes
    -----
    Erosion [1]_ is a mathematical morphology operation [2]_ that uses a
    structuring element for shrinking the shapes in an image. The binary
    erosion of an image by a structuring element is the locus of the points
    where a superimposition of the structuring element centered on the point
    is entirely contained in the set of non-zero elements of the image.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Erosion_%28morphology%29
    .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology

    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.zeros((7,7), dtype=int)
    >>> a[1:6, 2:5] = 1
    >>> a
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> ndimage.binary_erosion(a).astype(a.dtype)
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 1, 0, 0, 0],
           [0, 0, 0, 1, 0, 0, 0],
           [0, 0, 0, 1, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> #Erosion removes objects smaller than the structure
    >>> ndimage.binary_erosion(a, structure=np.ones((5,5))).astype(a.dtype)
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]])

    """
    return _binary_erosion(input, structure, iterations, mask,
                           output, border_value, origin, 0, brute_force)


def binary_dilation(input, structure=None, iterations=1, mask=None,
                    output=None, border_value=0, origin=0,
                    brute_force=False):
    """
    Multi-dimensional binary dilation with the given structuring element.

    Parameters
    ----------
    input : array_like
        Binary array_like to be dilated. Non-zero (True) elements form
        the subset to be dilated.
    structure : array_like, optional
        Structuring element used for the dilation. Non-zero elements are
        considered True. If no structuring element is provided an element
        is generated with a square connectivity equal to one.
    iterations : int, optional
        The dilation is repeated `iterations` times (one, by default).
        If iterations is less than 1, the dilation is repeated until the
        result does not change anymore. Only an integer of iterations is
        accepted.
    mask : array_like, optional
        If a mask is given, only those elements with a True value at
        the corresponding mask element are modified at each iteration.
    output : ndarray, optional
        Array of the same shape as input, into which the output is placed.
        By default, a new array is created.
    border_value : int (cast to 0 or 1), optional
        Value at the border in the output array.
    origin : int or tuple of ints, optional
        Placement of the filter, by default 0.
    brute_force : boolean, optional
        Memory condition: if False, only the pixels whose value was changed in
        the last iteration are tracked as candidates to be updated (dilated)
        in the current iteration; if True all pixels are considered as
        candidates for dilation, regardless of what happened in the previous
        iteration. False by default.

    Returns
    -------
    binary_dilation : ndarray of bools
        Dilation of the input by the structuring element.

    See also
    --------
    grey_dilation, binary_erosion, binary_closing, binary_opening,
    generate_binary_structure

    Notes
    -----
    Dilation [1]_ is a mathematical morphology operation [2]_ that uses a
    structuring element for expanding the shapes in an image. The binary
    dilation of an image by a structuring element is the locus of the points
    covered by the structuring element, when its center lies within the
    non-zero points of the image.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Dilation_%28morphology%29
    .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology

    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.zeros((5, 5))
    >>> a[2, 2] = 1
    >>> a
    array([[ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  1.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.]])
    >>> ndimage.binary_dilation(a)
    array([[False, False, False, False, False],
           [False, False,  True, False, False],
           [False,  True,  True,  True, False],
           [False, False,  True, False, False],
           [False, False, False, False, False]], dtype=bool)
    >>> ndimage.binary_dilation(a).astype(a.dtype)
    array([[ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  1.,  0.,  0.],
           [ 0.,  1.,  1.,  1.,  0.],
           [ 0.,  0.,  1.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.]])
    >>> # 3x3 structuring element with connectivity 1, used by default
    >>> struct1 = ndimage.generate_binary_structure(2, 1)
    >>> struct1
    array([[False,  True, False],
           [ True,  True,  True],
           [False,  True, False]], dtype=bool)
    >>> # 3x3 structuring element with connectivity 2
    >>> struct2 = ndimage.generate_binary_structure(2, 2)
    >>> struct2
    array([[ True,  True,  True],
           [ True,  True,  True],
           [ True,  True,  True]], dtype=bool)
    >>> ndimage.binary_dilation(a, structure=struct1).astype(a.dtype)
    array([[ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  1.,  0.,  0.],
           [ 0.,  1.,  1.,  1.,  0.],
           [ 0.,  0.,  1.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.]])
    >>> ndimage.binary_dilation(a, structure=struct2).astype(a.dtype)
    array([[ 0.,  0.,  0.,  0.,  0.],
           [ 0.,  1.,  1.,  1.,  0.],
           [ 0.,  1.,  1.,  1.,  0.],
           [ 0.,  1.,  1.,  1.,  0.],
           [ 0.,  0.,  0.,  0.,  0.]])
    >>> ndimage.binary_dilation(a, structure=struct1,\\
    ... iterations=2).astype(a.dtype)
    array([[ 0.,  0.,  1.,  0.,  0.],
           [ 0.,  1.,  1.,  1.,  0.],
           [ 1.,  1.,  1.,  1.,  1.],
           [ 0.,  1.,  1.,  1.,  0.],
           [ 0.,  0.,  1.,  0.,  0.]])

    """
    input = numpy.asarray(input)
    if structure is None:
        structure = generate_binary_structure(input.ndim, 1)
    origin = _ni_support._normalize_sequence(origin, input.ndim)
    structure = numpy.asarray(structure)
    structure = structure[tuple([slice(None, None, -1)] *
                                structure.ndim)]
    for ii in range(len(origin)):
        origin[ii] = -origin[ii]
        if not structure.shape[ii] & 1:
            origin[ii] -= 1

    return _binary_erosion(input, structure, iterations, mask,
                           output, border_value, origin, 1, brute_force)


def binary_opening(input, structure=None, iterations=1, output=None,
                   origin=0, mask=None, border_value=0, brute_force=False):
    """
    Multi-dimensional binary opening with the given structuring element.

    The *opening* of an input image by a structuring element is the
    *dilation* of the *erosion* of the image by the structuring element.

    Parameters
    ----------
    input : array_like
        Binary array_like to be opened. Non-zero (True) elements form
        the subset to be opened.
    structure : array_like, optional
        Structuring element used for the opening. Non-zero elements are
        considered True. If no structuring element is provided an element
        is generated with a square connectivity equal to one (i.e., only
        nearest neighbors are connected to the center, diagonally-connected
        elements are not considered neighbors).
    iterations : int, optional
        The erosion step of the opening, then the dilation step are each
        repeated `iterations` times (one, by default). If `iterations` is
        less than 1, each operation is repeated until the result does
        not change anymore. Only an integer of iterations is accepted.
    output : ndarray, optional
        Array of the same shape as input, into which the output is placed.
        By default, a new array is created.
    origin : int or tuple of ints, optional
        Placement of the filter, by default 0.
    mask : array_like, optional
        If a mask is given, only those elements with a True value at
        the corresponding mask element are modified at each iteration.

        .. versionadded:: 1.1.0
    border_value : int (cast to 0 or 1), optional
        Value at the border in the output array.

        .. versionadded:: 1.1.0
    brute_force : boolean, optional
        Memory condition: if False, only the pixels whose value was changed in
        the last iteration are tracked as candidates to be updated in the
        current iteration; if true all pixels are considered as candidates for
        update, regardless of what happened in the previous iteration.
        False by default.

        .. versionadded:: 1.1.0

    Returns
    -------
    binary_opening : ndarray of bools
        Opening of the input by the structuring element.

    See also
    --------
    grey_opening, binary_closing, binary_erosion, binary_dilation,
    generate_binary_structure

    Notes
    -----
    *Opening* [1]_ is a mathematical morphology operation [2]_ that
    consists in the succession of an erosion and a dilation of the
    input with the same structuring element. Opening therefore removes
    objects smaller than the structuring element.

    Together with *closing* (`binary_closing`), opening can be used for
    noise removal.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Opening_%28morphology%29
    .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology

    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.zeros((5,5), dtype=int)
    >>> a[1:4, 1:4] = 1; a[4, 4] = 1
    >>> a
    array([[0, 0, 0, 0, 0],
           [0, 1, 1, 1, 0],
           [0, 1, 1, 1, 0],
           [0, 1, 1, 1, 0],
           [0, 0, 0, 0, 1]])
    >>> # Opening removes small objects
    >>> ndimage.binary_opening(a, structure=np.ones((3,3))).astype(int)
    array([[0, 0, 0, 0, 0],
           [0, 1, 1, 1, 0],
           [0, 1, 1, 1, 0],
           [0, 1, 1, 1, 0],
           [0, 0, 0, 0, 0]])
    >>> # Opening can also smooth corners
    >>> ndimage.binary_opening(a).astype(int)
    array([[0, 0, 0, 0, 0],
           [0, 0, 1, 0, 0],
           [0, 1, 1, 1, 0],
           [0, 0, 1, 0, 0],
           [0, 0, 0, 0, 0]])
    >>> # Opening is the dilation of the erosion of the input
    >>> ndimage.binary_erosion(a).astype(int)
    array([[0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0],
           [0, 0, 1, 0, 0],
           [0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0]])
    >>> ndimage.binary_dilation(ndimage.binary_erosion(a)).astype(int)
    array([[0, 0, 0, 0, 0],
           [0, 0, 1, 0, 0],
           [0, 1, 1, 1, 0],
           [0, 0, 1, 0, 0],
           [0, 0, 0, 0, 0]])

    """
    input = numpy.asarray(input)
    if structure is None:
        rank = input.ndim
        structure = generate_binary_structure(rank, 1)

    tmp = binary_erosion(input, structure, iterations, mask, None,
                         border_value, origin, brute_force)
    return binary_dilation(tmp, structure, iterations, mask, output,
                           border_value, origin, brute_force)


def binary_closing(input, structure=None, iterations=1, output=None,
                   origin=0, mask=None, border_value=0, brute_force=False):
    """
    Multi-dimensional binary closing with the given structuring element.

    The *closing* of an input image by a structuring element is the
    *erosion* of the *dilation* of the image by the structuring element.

    Parameters
    ----------
    input : array_like
        Binary array_like to be closed. Non-zero (True) elements form
        the subset to be closed.
    structure : array_like, optional
        Structuring element used for the closing. Non-zero elements are
        considered True. If no structuring element is provided an element
        is generated with a square connectivity equal to one (i.e., only
        nearest neighbors are connected to the center, diagonally-connected
        elements are not considered neighbors).
    iterations : int, optional
        The dilation step of the closing, then the erosion step are each
        repeated `iterations` times (one, by default). If iterations is
        less than 1, each operations is repeated until the result does
        not change anymore. Only an integer of iterations is accepted.
    output : ndarray, optional
        Array of the same shape as input, into which the output is placed.
        By default, a new array is created.
    origin : int or tuple of ints, optional
        Placement of the filter, by default 0.
    mask : array_like, optional
        If a mask is given, only those elements with a True value at
        the corresponding mask element are modified at each iteration.

        .. versionadded:: 1.1.0
    border_value : int (cast to 0 or 1), optional
        Value at the border in the output array.

        .. versionadded:: 1.1.0
    brute_force : boolean, optional
        Memory condition: if False, only the pixels whose value was changed in
        the last iteration are tracked as candidates to be updated in the
        current iteration; if true al pixels are considered as candidates for
        update, regardless of what happened in the previous iteration.
        False by default.

        .. versionadded:: 1.1.0

    Returns
    -------
    binary_closing : ndarray of bools
        Closing of the input by the structuring element.

    See also
    --------
    grey_closing, binary_opening, binary_dilation, binary_erosion,
    generate_binary_structure

    Notes
    -----
    *Closing* [1]_ is a mathematical morphology operation [2]_ that
    consists in the succession of a dilation and an erosion of the
    input with the same structuring element. Closing therefore fills
    holes smaller than the structuring element.

    Together with *opening* (`binary_opening`), closing can be used for
    noise removal.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Closing_%28morphology%29
    .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology

    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.zeros((5,5), dtype=int)
    >>> a[1:-1, 1:-1] = 1; a[2,2] = 0
    >>> a
    array([[0, 0, 0, 0, 0],
           [0, 1, 1, 1, 0],
           [0, 1, 0, 1, 0],
           [0, 1, 1, 1, 0],
           [0, 0, 0, 0, 0]])
    >>> # Closing removes small holes
    >>> ndimage.binary_closing(a).astype(int)
    array([[0, 0, 0, 0, 0],
           [0, 1, 1, 1, 0],
           [0, 1, 1, 1, 0],
           [0, 1, 1, 1, 0],
           [0, 0, 0, 0, 0]])
    >>> # Closing is the erosion of the dilation of the input
    >>> ndimage.binary_dilation(a).astype(int)
    array([[0, 1, 1, 1, 0],
           [1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1],
           [1, 1, 1, 1, 1],
           [0, 1, 1, 1, 0]])
    >>> ndimage.binary_erosion(ndimage.binary_dilation(a)).astype(int)
    array([[0, 0, 0, 0, 0],
           [0, 1, 1, 1, 0],
           [0, 1, 1, 1, 0],
           [0, 1, 1, 1, 0],
           [0, 0, 0, 0, 0]])


    >>> a = np.zeros((7,7), dtype=int)
    >>> a[1:6, 2:5] = 1; a[1:3,3] = 0
    >>> a
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 1, 0, 1, 0, 0],
           [0, 0, 1, 0, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> # In addition to removing holes, closing can also
    >>> # coarsen boundaries with fine hollows.
    >>> ndimage.binary_closing(a).astype(int)
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 1, 0, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> ndimage.binary_closing(a, structure=np.ones((2,2))).astype(int)
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]])

    """
    input = numpy.asarray(input)
    if structure is None:
        rank = input.ndim
        structure = generate_binary_structure(rank, 1)

    tmp = binary_dilation(input, structure, iterations, mask, None,
                          border_value, origin, brute_force)
    return binary_erosion(tmp, structure, iterations, mask, output,
                          border_value, origin, brute_force)


def binary_hit_or_miss(input, structure1=None, structure2=None,
                       output=None, origin1=0, origin2=None):
    """
    Multi-dimensional binary hit-or-miss transform.

    The hit-or-miss transform finds the locations of a given pattern
    inside the input image.

    Parameters
    ----------
    input : array_like (cast to booleans)
        Binary image where a pattern is to be detected.
    structure1 : array_like (cast to booleans), optional
        Part of the structuring element to be fitted to the foreground
        (non-zero elements) of `input`. If no value is provided, a
        structure of square connectivity 1 is chosen.
    structure2 : array_like (cast to booleans), optional
        Second part of the structuring element that has to miss completely
        the foreground. If no value is provided, the complementary of
        `structure1` is taken.
    output : ndarray, optional
        Array of the same shape as input, into which the output is placed.
        By default, a new array is created.
    origin1 : int or tuple of ints, optional
        Placement of the first part of the structuring element `structure1`,
        by default 0 for a centered structure.
    origin2 : int or tuple of ints, optional
        Placement of the second part of the structuring element `structure2`,
        by default 0 for a centered structure. If a value is provided for
        `origin1` and not for `origin2`, then `origin2` is set to `origin1`.

    Returns
    -------
    binary_hit_or_miss : ndarray
        Hit-or-miss transform of `input` with the given structuring
        element (`structure1`, `structure2`).

    See also
    --------
    binary_erosion

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Hit-or-miss_transform

    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.zeros((7,7), dtype=int)
    >>> a[1, 1] = 1; a[2:4, 2:4] = 1; a[4:6, 4:6] = 1
    >>> a
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 1, 0, 0, 0, 0, 0],
           [0, 0, 1, 1, 0, 0, 0],
           [0, 0, 1, 1, 0, 0, 0],
           [0, 0, 0, 0, 1, 1, 0],
           [0, 0, 0, 0, 1, 1, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> structure1 = np.array([[1, 0, 0], [0, 1, 1], [0, 1, 1]])
    >>> structure1
    array([[1, 0, 0],
           [0, 1, 1],
           [0, 1, 1]])
    >>> # Find the matches of structure1 in the array a
    >>> ndimage.binary_hit_or_miss(a, structure1=structure1).astype(int)
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 1, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 1, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> # Change the origin of the filter
    >>> # origin1=1 is equivalent to origin1=(1,1) here
    >>> ndimage.binary_hit_or_miss(a, structure1=structure1,\\
    ... origin1=1).astype(int)
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 1, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 1, 0],
           [0, 0, 0, 0, 0, 0, 0]])

    """
    input = numpy.asarray(input)
    if structure1 is None:
        structure1 = generate_binary_structure(input.ndim, 1)
    if structure2 is None:
        structure2 = numpy.logical_not(structure1)
    origin1 = _ni_support._normalize_sequence(origin1, input.ndim)
    if origin2 is None:
        origin2 = origin1
    else:
        origin2 = _ni_support._normalize_sequence(origin2, input.ndim)

    tmp1 = _binary_erosion(input, structure1, 1, None, None, 0, origin1,
                           0, False)
    inplace = isinstance(output, numpy.ndarray)
    result = _binary_erosion(input, structure2, 1, None, output, 0,
                             origin2, 1, False)
    if inplace:
        numpy.logical_not(output, output)
        numpy.logical_and(tmp1, output, output)
    else:
        numpy.logical_not(result, result)
        return numpy.logical_and(tmp1, result)


def binary_propagation(input, structure=None, mask=None,
                       output=None, border_value=0, origin=0):
    """
    Multi-dimensional binary propagation with the given structuring element.

    Parameters
    ----------
    input : array_like
        Binary image to be propagated inside `mask`.
    structure : array_like, optional
        Structuring element used in the successive dilations. The output
        may depend on the structuring element, especially if `mask` has
        several connex components. If no structuring element is
        provided, an element is generated with a squared connectivity equal
        to one.
    mask : array_like, optional
        Binary mask defining the region into which `input` is allowed to
        propagate.
    output : ndarray, optional
        Array of the same shape as input, into which the output is placed.
        By default, a new array is created.
    border_value : int (cast to 0 or 1), optional
        Value at the border in the output array.
    origin : int or tuple of ints, optional
        Placement of the filter, by default 0.

    Returns
    -------
    binary_propagation : ndarray
        Binary propagation of `input` inside `mask`.

    Notes
    -----
    This function is functionally equivalent to calling binary_dilation
    with the number of iterations less than one: iterative dilation until
    the result does not change anymore.

    The succession of an erosion and propagation inside the original image
    can be used instead of an *opening* for deleting small objects while
    keeping the contours of larger objects untouched.

    References
    ----------
    .. [1] http://cmm.ensmp.fr/~serra/cours/pdf/en/ch6en.pdf, slide 15.
    .. [2] I.T. Young, J.J. Gerbrands, and L.J. van Vliet, "Fundamentals of
        image processing", 1998
        ftp://qiftp.tudelft.nl/DIPimage/docs/FIP2.3.pdf

    Examples
    --------
    >>> from scipy import ndimage
    >>> input = np.zeros((8, 8), dtype=int)
    >>> input[2, 2] = 1
    >>> mask = np.zeros((8, 8), dtype=int)
    >>> mask[1:4, 1:4] = mask[4, 4]  = mask[6:8, 6:8] = 1
    >>> input
    array([[0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 1, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0]])
    >>> mask
    array([[0, 0, 0, 0, 0, 0, 0, 0],
           [0, 1, 1, 1, 0, 0, 0, 0],
           [0, 1, 1, 1, 0, 0, 0, 0],
           [0, 1, 1, 1, 0, 0, 0, 0],
           [0, 0, 0, 0, 1, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 1, 1],
           [0, 0, 0, 0, 0, 0, 1, 1]])
    >>> ndimage.binary_propagation(input, mask=mask).astype(int)
    array([[0, 0, 0, 0, 0, 0, 0, 0],
           [0, 1, 1, 1, 0, 0, 0, 0],
           [0, 1, 1, 1, 0, 0, 0, 0],
           [0, 1, 1, 1, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0]])
    >>> ndimage.binary_propagation(input, mask=mask,\\
    ... structure=np.ones((3,3))).astype(int)
    array([[0, 0, 0, 0, 0, 0, 0, 0],
           [0, 1, 1, 1, 0, 0, 0, 0],
           [0, 1, 1, 1, 0, 0, 0, 0],
           [0, 1, 1, 1, 0, 0, 0, 0],
           [0, 0, 0, 0, 1, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0, 0]])

    >>> # Comparison between opening and erosion+propagation
    >>> a = np.zeros((6,6), dtype=int)
    >>> a[2:5, 2:5] = 1; a[0, 0] = 1; a[5, 5] = 1
    >>> a
    array([[1, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0],
           [0, 0, 1, 1, 1, 0],
           [0, 0, 1, 1, 1, 0],
           [0, 0, 1, 1, 1, 0],
           [0, 0, 0, 0, 0, 1]])
    >>> ndimage.binary_opening(a).astype(int)
    array([[0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0],
           [0, 0, 0, 1, 0, 0],
           [0, 0, 1, 1, 1, 0],
           [0, 0, 0, 1, 0, 0],
           [0, 0, 0, 0, 0, 0]])
    >>> b = ndimage.binary_erosion(a)
    >>> b.astype(int)
    array([[0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0],
           [0, 0, 0, 1, 0, 0],
           [0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0]])
    >>> ndimage.binary_propagation(b, mask=a).astype(int)
    array([[0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0],
           [0, 0, 1, 1, 1, 0],
           [0, 0, 1, 1, 1, 0],
           [0, 0, 1, 1, 1, 0],
           [0, 0, 0, 0, 0, 0]])

    """
    return binary_dilation(input, structure, -1, mask, output,
                           border_value, origin)


def binary_fill_holes(input, structure=None, output=None, origin=0):
    """
    Fill the holes in binary objects.


    Parameters
    ----------
    input : array_like
        n-dimensional binary array with holes to be filled
    structure : array_like, optional
        Structuring element used in the computation; large-size elements
        make computations faster but may miss holes separated from the
        background by thin regions. The default element (with a square
        connectivity equal to one) yields the intuitive result where all
        holes in the input have been filled.
    output : ndarray, optional
        Array of the same shape as input, into which the output is placed.
        By default, a new array is created.
    origin : int, tuple of ints, optional
        Position of the structuring element.

    Returns
    -------
    out : ndarray
        Transformation of the initial image `input` where holes have been
        filled.

    See also
    --------
    binary_dilation, binary_propagation, label

    Notes
    -----
    The algorithm used in this function consists in invading the complementary
    of the shapes in `input` from the outer boundary of the image,
    using binary dilations. Holes are not connected to the boundary and are
    therefore not invaded. The result is the complementary subset of the
    invaded region.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Mathematical_morphology


    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.zeros((5, 5), dtype=int)
    >>> a[1:4, 1:4] = 1
    >>> a[2,2] = 0
    >>> a
    array([[0, 0, 0, 0, 0],
           [0, 1, 1, 1, 0],
           [0, 1, 0, 1, 0],
           [0, 1, 1, 1, 0],
           [0, 0, 0, 0, 0]])
    >>> ndimage.binary_fill_holes(a).astype(int)
    array([[0, 0, 0, 0, 0],
           [0, 1, 1, 1, 0],
           [0, 1, 1, 1, 0],
           [0, 1, 1, 1, 0],
           [0, 0, 0, 0, 0]])
    >>> # Too big structuring element
    >>> ndimage.binary_fill_holes(a, structure=np.ones((5,5))).astype(int)
    array([[0, 0, 0, 0, 0],
           [0, 1, 1, 1, 0],
           [0, 1, 0, 1, 0],
           [0, 1, 1, 1, 0],
           [0, 0, 0, 0, 0]])

    """
    mask = numpy.logical_not(input)
    tmp = numpy.zeros(mask.shape, bool)
    inplace = isinstance(output, numpy.ndarray)
    if inplace:
        binary_dilation(tmp, structure, -1, mask, output, 1, origin)
        numpy.logical_not(output, output)
    else:
        output = binary_dilation(tmp, structure, -1, mask, None, 1,
                                 origin)
        numpy.logical_not(output, output)
        return output


def grey_erosion(input, size=None, footprint=None, structure=None,
                 output=None, mode="reflect", cval=0.0, origin=0):
    """
    Calculate a greyscale erosion, using either a structuring element,
    or a footprint corresponding to a flat structuring element.

    Grayscale erosion is a mathematical morphology operation. For the
    simple case of a full and flat structuring element, it can be viewed
    as a minimum filter over a sliding window.

    Parameters
    ----------
    input : array_like
        Array over which the grayscale erosion is to be computed.
    size : tuple of ints
        Shape of a flat and full structuring element used for the grayscale
        erosion. Optional if `footprint` or `structure` is provided.
    footprint : array of ints, optional
        Positions of non-infinite elements of a flat structuring element
        used for the grayscale erosion. Non-zero values give the set of
        neighbors of the center over which the minimum is chosen.
    structure : array of ints, optional
        Structuring element used for the grayscale erosion. `structure`
        may be a non-flat structuring element.
    output : array, optional
        An array used for storing the output of the erosion may be provided.
    mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional
        The `mode` parameter determines how the array borders are
        handled, where `cval` is the value when mode is equal to
        'constant'. Default is 'reflect'
    cval : scalar, optional
        Value to fill past edges of input if `mode` is 'constant'. Default
        is 0.0.
    origin : scalar, optional
        The `origin` parameter controls the placement of the filter.
        Default 0

    Returns
    -------
    output : ndarray
        Grayscale erosion of `input`.

    See also
    --------
    binary_erosion, grey_dilation, grey_opening, grey_closing
    generate_binary_structure, minimum_filter

    Notes
    -----
    The grayscale erosion of an image input by a structuring element s defined
    over a domain E is given by:

    (input+s)(x) = min {input(y) - s(x-y), for y in E}

    In particular, for structuring elements defined as
    s(y) = 0 for y in E, the grayscale erosion computes the minimum of the
    input image inside a sliding window defined by E.

    Grayscale erosion [1]_ is a *mathematical morphology* operation [2]_.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Erosion_%28morphology%29
    .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology

    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.zeros((7,7), dtype=int)
    >>> a[1:6, 1:6] = 3
    >>> a[4,4] = 2; a[2,3] = 1
    >>> a
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 3, 3, 3, 3, 3, 0],
           [0, 3, 3, 1, 3, 3, 0],
           [0, 3, 3, 3, 3, 3, 0],
           [0, 3, 3, 3, 2, 3, 0],
           [0, 3, 3, 3, 3, 3, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> ndimage.grey_erosion(a, size=(3,3))
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 3, 2, 2, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> footprint = ndimage.generate_binary_structure(2, 1)
    >>> footprint
    array([[False,  True, False],
           [ True,  True,  True],
           [False,  True, False]], dtype=bool)
    >>> # Diagonally-connected elements are not considered neighbors
    >>> ndimage.grey_erosion(a, size=(3,3), footprint=footprint)
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 3, 1, 2, 0, 0],
           [0, 0, 3, 2, 2, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]])

    """
    if size is None and footprint is None and structure is None:
        raise ValueError("size, footprint or structure must be specified")

    return filters._min_or_max_filter(input, size, footprint, structure,
                                      output, mode, cval, origin, 1)


def grey_dilation(input, size=None, footprint=None, structure=None,
                  output=None, mode="reflect", cval=0.0, origin=0):
    """
    Calculate a greyscale dilation, using either a structuring element,
    or a footprint corresponding to a flat structuring element.

    Grayscale dilation is a mathematical morphology operation. For the
    simple case of a full and flat structuring element, it can be viewed
    as a maximum filter over a sliding window.

    Parameters
    ----------
    input : array_like
        Array over which the grayscale dilation is to be computed.
    size : tuple of ints
        Shape of a flat and full structuring element used for the grayscale
        dilation. Optional if `footprint` or `structure` is provided.
    footprint : array of ints, optional
        Positions of non-infinite elements of a flat structuring element
        used for the grayscale dilation. Non-zero values give the set of
        neighbors of the center over which the maximum is chosen.
    structure : array of ints, optional
        Structuring element used for the grayscale dilation. `structure`
        may be a non-flat structuring element.
    output : array, optional
        An array used for storing the output of the dilation may be provided.
    mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional
        The `mode` parameter determines how the array borders are
        handled, where `cval` is the value when mode is equal to
        'constant'. Default is 'reflect'
    cval : scalar, optional
        Value to fill past edges of input if `mode` is 'constant'. Default
        is 0.0.
    origin : scalar, optional
        The `origin` parameter controls the placement of the filter.
        Default 0

    Returns
    -------
    grey_dilation : ndarray
        Grayscale dilation of `input`.

    See also
    --------
    binary_dilation, grey_erosion, grey_closing, grey_opening
    generate_binary_structure, maximum_filter

    Notes
    -----
    The grayscale dilation of an image input by a structuring element s defined
    over a domain E is given by:

    (input+s)(x) = max {input(y) + s(x-y), for y in E}

    In particular, for structuring elements defined as
    s(y) = 0 for y in E, the grayscale dilation computes the maximum of the
    input image inside a sliding window defined by E.

    Grayscale dilation [1]_ is a *mathematical morphology* operation [2]_.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Dilation_%28morphology%29
    .. [2] https://en.wikipedia.org/wiki/Mathematical_morphology

    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.zeros((7,7), dtype=int)
    >>> a[2:5, 2:5] = 1
    >>> a[4,4] = 2; a[2,3] = 3
    >>> a
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 1, 3, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 2, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> ndimage.grey_dilation(a, size=(3,3))
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 1, 3, 3, 3, 1, 0],
           [0, 1, 3, 3, 3, 1, 0],
           [0, 1, 3, 3, 3, 2, 0],
           [0, 1, 1, 2, 2, 2, 0],
           [0, 1, 1, 2, 2, 2, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> ndimage.grey_dilation(a, footprint=np.ones((3,3)))
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 1, 3, 3, 3, 1, 0],
           [0, 1, 3, 3, 3, 1, 0],
           [0, 1, 3, 3, 3, 2, 0],
           [0, 1, 1, 2, 2, 2, 0],
           [0, 1, 1, 2, 2, 2, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> s = ndimage.generate_binary_structure(2,1)
    >>> s
    array([[False,  True, False],
           [ True,  True,  True],
           [False,  True, False]], dtype=bool)
    >>> ndimage.grey_dilation(a, footprint=s)
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 1, 3, 1, 0, 0],
           [0, 1, 3, 3, 3, 1, 0],
           [0, 1, 1, 3, 2, 1, 0],
           [0, 1, 1, 2, 2, 2, 0],
           [0, 0, 1, 1, 2, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> ndimage.grey_dilation(a, size=(3,3), structure=np.ones((3,3)))
    array([[1, 1, 1, 1, 1, 1, 1],
           [1, 2, 4, 4, 4, 2, 1],
           [1, 2, 4, 4, 4, 2, 1],
           [1, 2, 4, 4, 4, 3, 1],
           [1, 2, 2, 3, 3, 3, 1],
           [1, 2, 2, 3, 3, 3, 1],
           [1, 1, 1, 1, 1, 1, 1]])

    """
    if size is None and footprint is None and structure is None:
        raise ValueError("size, footprint or structure must be specified")
    if structure is not None:
        structure = numpy.asarray(structure)
        structure = structure[tuple([slice(None, None, -1)] *
                                    structure.ndim)]
    if footprint is not None:
        footprint = numpy.asarray(footprint)
        footprint = footprint[tuple([slice(None, None, -1)] *
                                    footprint.ndim)]

    input = numpy.asarray(input)
    origin = _ni_support._normalize_sequence(origin, input.ndim)
    for ii in range(len(origin)):
        origin[ii] = -origin[ii]
        if footprint is not None:
            sz = footprint.shape[ii]
        elif structure is not None:
            sz = structure.shape[ii]
        elif numpy.isscalar(size):
            sz = size
        else:
            sz = size[ii]
        if not sz & 1:
            origin[ii] -= 1

    return filters._min_or_max_filter(input, size, footprint, structure,
                                      output, mode, cval, origin, 0)


def grey_opening(input, size=None, footprint=None, structure=None,
                 output=None, mode="reflect", cval=0.0, origin=0):
    """
    Multi-dimensional greyscale opening.

    A greyscale opening consists in the succession of a greyscale erosion,
    and a greyscale dilation.

    Parameters
    ----------
    input : array_like
        Array over which the grayscale opening is to be computed.
    size : tuple of ints
        Shape of a flat and full structuring element used for the grayscale
        opening. Optional if `footprint` or `structure` is provided.
    footprint : array of ints, optional
        Positions of non-infinite elements of a flat structuring element
        used for the grayscale opening.
    structure : array of ints, optional
        Structuring element used for the grayscale opening. `structure`
        may be a non-flat structuring element.
    output : array, optional
        An array used for storing the output of the opening may be provided.
    mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
        The `mode` parameter determines how the array borders are
        handled, where `cval` is the value when mode is equal to
        'constant'. Default is 'reflect'
    cval : scalar, optional
        Value to fill past edges of input if `mode` is 'constant'. Default
        is 0.0.
    origin : scalar, optional
        The `origin` parameter controls the placement of the filter.
        Default 0

    Returns
    -------
    grey_opening : ndarray
        Result of the grayscale opening of `input` with `structure`.

    See also
    --------
    binary_opening, grey_dilation, grey_erosion, grey_closing
    generate_binary_structure

    Notes
    -----
    The action of a grayscale opening with a flat structuring element amounts
    to smoothen high local maxima, whereas binary opening erases small objects.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Mathematical_morphology

    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.arange(36).reshape((6,6))
    >>> a[3, 3] = 50
    >>> a
    array([[ 0,  1,  2,  3,  4,  5],
           [ 6,  7,  8,  9, 10, 11],
           [12, 13, 14, 15, 16, 17],
           [18, 19, 20, 50, 22, 23],
           [24, 25, 26, 27, 28, 29],
           [30, 31, 32, 33, 34, 35]])
    >>> ndimage.grey_opening(a, size=(3,3))
    array([[ 0,  1,  2,  3,  4,  4],
           [ 6,  7,  8,  9, 10, 10],
           [12, 13, 14, 15, 16, 16],
           [18, 19, 20, 22, 22, 22],
           [24, 25, 26, 27, 28, 28],
           [24, 25, 26, 27, 28, 28]])
    >>> # Note that the local maximum a[3,3] has disappeared

    """
    if (size is not None) and (footprint is not None):
        warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
    tmp = grey_erosion(input, size, footprint, structure, None, mode,
                       cval, origin)
    return grey_dilation(tmp, size, footprint, structure, output, mode,
                         cval, origin)


def grey_closing(input, size=None, footprint=None, structure=None,
                 output=None, mode="reflect", cval=0.0, origin=0):
    """
    Multi-dimensional greyscale closing.

    A greyscale closing consists in the succession of a greyscale dilation,
    and a greyscale erosion.

    Parameters
    ----------
    input : array_like
        Array over which the grayscale closing is to be computed.
    size : tuple of ints
        Shape of a flat and full structuring element used for the grayscale
        closing. Optional if `footprint` or `structure` is provided.
    footprint : array of ints, optional
        Positions of non-infinite elements of a flat structuring element
        used for the grayscale closing.
    structure : array of ints, optional
        Structuring element used for the grayscale closing. `structure`
        may be a non-flat structuring element.
    output : array, optional
        An array used for storing the output of the closing may be provided.
    mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
        The `mode` parameter determines how the array borders are
        handled, where `cval` is the value when mode is equal to
        'constant'. Default is 'reflect'
    cval : scalar, optional
        Value to fill past edges of input if `mode` is 'constant'. Default
        is 0.0.
    origin : scalar, optional
        The `origin` parameter controls the placement of the filter.
        Default 0

    Returns
    -------
    grey_closing : ndarray
        Result of the grayscale closing of `input` with `structure`.

    See also
    --------
    binary_closing, grey_dilation, grey_erosion, grey_opening,
    generate_binary_structure

    Notes
    -----
    The action of a grayscale closing with a flat structuring element amounts
    to smoothen deep local minima, whereas binary closing fills small holes.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Mathematical_morphology

    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.arange(36).reshape((6,6))
    >>> a[3,3] = 0
    >>> a
    array([[ 0,  1,  2,  3,  4,  5],
           [ 6,  7,  8,  9, 10, 11],
           [12, 13, 14, 15, 16, 17],
           [18, 19, 20,  0, 22, 23],
           [24, 25, 26, 27, 28, 29],
           [30, 31, 32, 33, 34, 35]])
    >>> ndimage.grey_closing(a, size=(3,3))
    array([[ 7,  7,  8,  9, 10, 11],
           [ 7,  7,  8,  9, 10, 11],
           [13, 13, 14, 15, 16, 17],
           [19, 19, 20, 20, 22, 23],
           [25, 25, 26, 27, 28, 29],
           [31, 31, 32, 33, 34, 35]])
    >>> # Note that the local minimum a[3,3] has disappeared

    """
    if (size is not None) and (footprint is not None):
        warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
    tmp = grey_dilation(input, size, footprint, structure, None, mode,
                        cval, origin)
    return grey_erosion(tmp, size, footprint, structure, output, mode,
                        cval, origin)


def morphological_gradient(input, size=None, footprint=None, structure=None,
                           output=None, mode="reflect", cval=0.0, origin=0):
    """
    Multi-dimensional morphological gradient.

    The morphological gradient is calculated as the difference between a
    dilation and an erosion of the input with a given structuring element.

    Parameters
    ----------
    input : array_like
        Array over which to compute the morphlogical gradient.
    size : tuple of ints
        Shape of a flat and full structuring element used for the mathematical
        morphology operations. Optional if `footprint` or `structure` is
        provided. A larger `size` yields a more blurred gradient.
    footprint : array of ints, optional
        Positions of non-infinite elements of a flat structuring element
        used for the morphology operations. Larger footprints
        give a more blurred morphological gradient.
    structure : array of ints, optional
        Structuring element used for the morphology operations.
        `structure` may be a non-flat structuring element.
    output : array, optional
        An array used for storing the output of the morphological gradient
        may be provided.
    mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
        The `mode` parameter determines how the array borders are
        handled, where `cval` is the value when mode is equal to
        'constant'. Default is 'reflect'
    cval : scalar, optional
        Value to fill past edges of input if `mode` is 'constant'. Default
        is 0.0.
    origin : scalar, optional
        The `origin` parameter controls the placement of the filter.
        Default 0

    Returns
    -------
    morphological_gradient : ndarray
        Morphological gradient of `input`.

    See also
    --------
    grey_dilation, grey_erosion, gaussian_gradient_magnitude

    Notes
    -----
    For a flat structuring element, the morphological gradient
    computed at a given point corresponds to the maximal difference
    between elements of the input among the elements covered by the
    structuring element centered on the point.

    References
    ----------
    .. [1] https://en.wikipedia.org/wiki/Mathematical_morphology

    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.zeros((7,7), dtype=int)
    >>> a[2:5, 2:5] = 1
    >>> ndimage.morphological_gradient(a, size=(3,3))
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 1, 1, 1, 1, 1, 0],
           [0, 1, 1, 1, 1, 1, 0],
           [0, 1, 1, 0, 1, 1, 0],
           [0, 1, 1, 1, 1, 1, 0],
           [0, 1, 1, 1, 1, 1, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> # The morphological gradient is computed as the difference
    >>> # between a dilation and an erosion
    >>> ndimage.grey_dilation(a, size=(3,3)) -\\
    ...  ndimage.grey_erosion(a, size=(3,3))
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 1, 1, 1, 1, 1, 0],
           [0, 1, 1, 1, 1, 1, 0],
           [0, 1, 1, 0, 1, 1, 0],
           [0, 1, 1, 1, 1, 1, 0],
           [0, 1, 1, 1, 1, 1, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> a = np.zeros((7,7), dtype=int)
    >>> a[2:5, 2:5] = 1
    >>> a[4,4] = 2; a[2,3] = 3
    >>> a
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 1, 3, 1, 0, 0],
           [0, 0, 1, 1, 1, 0, 0],
           [0, 0, 1, 1, 2, 0, 0],
           [0, 0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0, 0]])
    >>> ndimage.morphological_gradient(a, size=(3,3))
    array([[0, 0, 0, 0, 0, 0, 0],
           [0, 1, 3, 3, 3, 1, 0],
           [0, 1, 3, 3, 3, 1, 0],
           [0, 1, 3, 2, 3, 2, 0],
           [0, 1, 1, 2, 2, 2, 0],
           [0, 1, 1, 2, 2, 2, 0],
           [0, 0, 0, 0, 0, 0, 0]])

    """
    tmp = grey_dilation(input, size, footprint, structure, None, mode,
                        cval, origin)
    if isinstance(output, numpy.ndarray):
        grey_erosion(input, size, footprint, structure, output, mode,
                     cval, origin)
        return numpy.subtract(tmp, output, output)
    else:
        return (tmp - grey_erosion(input, size, footprint, structure,
                                   None, mode, cval, origin))


def morphological_laplace(input, size=None, footprint=None,
                          structure=None, output=None,
                          mode="reflect", cval=0.0, origin=0):
    """
    Multi-dimensional morphological laplace.

    Parameters
    ----------
    input : array_like
        Input.
    size : int or sequence of ints, optional
        See `structure`.
    footprint : bool or ndarray, optional
        See `structure`.
    structure : structure, optional
        Either `size`, `footprint`, or the `structure` must be provided.
    output : ndarray, optional
        An output array can optionally be provided.
    mode : {'reflect','constant','nearest','mirror', 'wrap'}, optional
        The mode parameter determines how the array borders are handled.
        For 'constant' mode, values beyond borders are set to be `cval`.
        Default is 'reflect'.
    cval : scalar, optional
        Value to fill past edges of input if mode is 'constant'.
        Default is 0.0
    origin : origin, optional
        The origin parameter controls the placement of the filter.

    Returns
    -------
    morphological_laplace : ndarray
        Output

    """
    tmp1 = grey_dilation(input, size, footprint, structure, None, mode,
                         cval, origin)
    if isinstance(output, numpy.ndarray):
        grey_erosion(input, size, footprint, structure, output, mode,
                     cval, origin)
        numpy.add(tmp1, output, output)
        numpy.subtract(output, input, output)
        return numpy.subtract(output, input, output)
    else:
        tmp2 = grey_erosion(input, size, footprint, structure, None, mode,
                            cval, origin)
        numpy.add(tmp1, tmp2, tmp2)
        numpy.subtract(tmp2, input, tmp2)
        numpy.subtract(tmp2, input, tmp2)
        return tmp2


def white_tophat(input, size=None, footprint=None, structure=None,
                 output=None, mode="reflect", cval=0.0, origin=0):
    """
    Multi-dimensional white tophat filter.

    Parameters
    ----------
    input : array_like
        Input.
    size : tuple of ints
        Shape of a flat and full structuring element used for the filter.
        Optional if `footprint` or `structure` is provided.
    footprint : array of ints, optional
        Positions of elements of a flat structuring element
        used for the white tophat filter.
    structure : array of ints, optional
        Structuring element used for the filter. `structure`
        may be a non-flat structuring element.
    output : array, optional
        An array used for storing the output of the filter may be provided.
    mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
        The `mode` parameter determines how the array borders are
        handled, where `cval` is the value when mode is equal to
        'constant'. Default is 'reflect'
    cval : scalar, optional
        Value to fill past edges of input if `mode` is 'constant'.
        Default is 0.0.
    origin : scalar, optional
        The `origin` parameter controls the placement of the filter.
        Default is 0.

    Returns
    -------
    output : ndarray
        Result of the filter of `input` with `structure`.

    See also
    --------
    black_tophat

    """
    if (size is not None) and (footprint is not None):
        warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
    tmp = grey_erosion(input, size, footprint, structure, None, mode,
                       cval, origin)
    tmp = grey_dilation(tmp, size, footprint, structure, output, mode,
                        cval, origin)
    if tmp is None:
        tmp = output

    if input.dtype == numpy.bool_ and tmp.dtype == numpy.bool_:
        numpy.bitwise_xor(input, tmp, out=tmp)
    else:
        numpy.subtract(input, tmp, out=tmp)
    return tmp


def black_tophat(input, size=None, footprint=None,
                 structure=None, output=None, mode="reflect",
                 cval=0.0, origin=0):
    """
    Multi-dimensional black tophat filter.

    Parameters
    ----------
    input : array_like
        Input.
    size : tuple of ints, optional
        Shape of a flat and full structuring element used for the filter.
        Optional if `footprint` or `structure` is provided.
    footprint : array of ints, optional
        Positions of non-infinite elements of a flat structuring element
        used for the black tophat filter.
    structure : array of ints, optional
        Structuring element used for the filter. `structure`
        may be a non-flat structuring element.
    output : array, optional
        An array used for storing the output of the filter may be provided.
    mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional
        The `mode` parameter determines how the array borders are
        handled, where `cval` is the value when mode is equal to
        'constant'. Default is 'reflect'
    cval : scalar, optional
        Value to fill past edges of input if `mode` is 'constant'. Default
        is 0.0.
    origin : scalar, optional
        The `origin` parameter controls the placement of the filter.
        Default 0

    Returns
    -------
    black_tophat : ndarray
        Result of the filter of `input` with `structure`.

    See also
    --------
    white_tophat, grey_opening, grey_closing

    """
    if (size is not None) and (footprint is not None):
        warnings.warn("ignoring size because footprint is set", UserWarning, stacklevel=2)
    tmp = grey_dilation(input, size, footprint, structure, None, mode,
                        cval, origin)
    tmp = grey_erosion(tmp, size, footprint, structure, output, mode,
                       cval, origin)
    if tmp is None:
        tmp = output

    if input.dtype == numpy.bool_ and tmp.dtype == numpy.bool_:
        numpy.bitwise_xor(tmp, input, out=tmp)
    else:
        numpy.subtract(tmp, input, out=tmp)
    return tmp


def distance_transform_bf(input, metric="euclidean", sampling=None,
                          return_distances=True, return_indices=False,
                          distances=None, indices=None):
    """
    Distance transform function by a brute force algorithm.

    This function calculates the distance transform of the `input`, by
    replacing each foreground (non-zero) element, with its
    shortest distance to the background (any zero-valued element).

    In addition to the distance transform, the feature transform can
    be calculated. In this case the index of the closest background
    element is returned along the first axis of the result.

    Parameters
    ----------
    input : array_like
        Input
    metric : str, optional
        Three types of distance metric are supported: 'euclidean', 'taxicab'
        and 'chessboard'.
    sampling : {int, sequence of ints}, optional
        This parameter is only used in the case of the euclidean `metric`
        distance transform.

        The sampling along each axis can be given by the `sampling` parameter
        which should be a sequence of length equal to the input rank, or a
        single number in which the `sampling` is assumed to be equal along all
        axes.
    return_distances : bool, optional
        The `return_distances` flag can be used to indicate if the distance
        transform is returned.

        The default is True.
    return_indices : bool, optional
        The `return_indices` flags can be used to indicate if the feature
        transform is returned.

        The default is False.
    distances : float64 ndarray, optional
        Optional output array to hold distances (if `return_distances` is
        True).
    indices : int64 ndarray, optional
        Optional output array to hold indices (if `return_indices` is True).

    Returns
    -------
    distances : ndarray
        Distance array if `return_distances` is True.
    indices : ndarray
        Indices array if `return_indices` is True.

    Notes
    -----
    This function employs a slow brute force algorithm, see also the
    function distance_transform_cdt for more efficient taxicab and
    chessboard algorithms.

    """
    if (not return_distances) and (not return_indices):
        msg = 'at least one of distances/indices must be specified'
        raise RuntimeError(msg)

    tmp1 = numpy.asarray(input) != 0
    struct = generate_binary_structure(tmp1.ndim, tmp1.ndim)
    tmp2 = binary_dilation(tmp1, struct)
    tmp2 = numpy.logical_xor(tmp1, tmp2)
    tmp1 = tmp1.astype(numpy.int8) - tmp2.astype(numpy.int8)
    metric = metric.lower()
    if metric == 'euclidean':
        metric = 1
    elif metric in ['taxicab', 'cityblock', 'manhattan']:
        metric = 2
    elif metric == 'chessboard':
        metric = 3
    else:
        raise RuntimeError('distance metric not supported')
    if sampling is not None:
        sampling = _ni_support._normalize_sequence(sampling, tmp1.ndim)
        sampling = numpy.asarray(sampling, dtype=numpy.float64)
        if not sampling.flags.contiguous:
            sampling = sampling.copy()
    if return_indices:
        ft = numpy.zeros(tmp1.shape, dtype=numpy.int32)
    else:
        ft = None
    if return_distances:
        if distances is None:
            if metric == 1:
                dt = numpy.zeros(tmp1.shape, dtype=numpy.float64)
            else:
                dt = numpy.zeros(tmp1.shape, dtype=numpy.uint32)
        else:
            if distances.shape != tmp1.shape:
                raise RuntimeError('distances array has wrong shape')
            if metric == 1:
                if distances.dtype.type != numpy.float64:
                    raise RuntimeError('distances array must be float64')
            else:
                if distances.dtype.type != numpy.uint32:
                    raise RuntimeError('distances array must be uint32')
            dt = distances
    else:
        dt = None

    _nd_image.distance_transform_bf(tmp1, metric, sampling, dt, ft)
    if return_indices:
        if isinstance(indices, numpy.ndarray):
            if indices.dtype.type != numpy.int32:
                raise RuntimeError('indices must of int32 type')
            if indices.shape != (tmp1.ndim,) + tmp1.shape:
                raise RuntimeError('indices has wrong shape')
            tmp2 = indices
        else:
            tmp2 = numpy.indices(tmp1.shape, dtype=numpy.int32)
        ft = numpy.ravel(ft)
        for ii in range(tmp2.shape[0]):
            rtmp = numpy.ravel(tmp2[ii, ...])[ft]
            rtmp.shape = tmp1.shape
            tmp2[ii, ...] = rtmp
        ft = tmp2

    # construct and return the result
    result = []
    if return_distances and not isinstance(distances, numpy.ndarray):
        result.append(dt)
    if return_indices and not isinstance(indices, numpy.ndarray):
        result.append(ft)

    if len(result) == 2:
        return tuple(result)
    elif len(result) == 1:
        return result[0]
    else:
        return None


def distance_transform_cdt(input, metric='chessboard', return_distances=True,
                           return_indices=False, distances=None, indices=None):
    """
    Distance transform for chamfer type of transforms.

    Parameters
    ----------
    input : array_like
        Input
    metric : {'chessboard', 'taxicab'}, optional
        The `metric` determines the type of chamfering that is done. If the
        `metric` is equal to 'taxicab' a structure is generated using
        generate_binary_structure with a squared distance equal to 1. If
        the `metric` is equal to 'chessboard', a `metric` is generated
        using generate_binary_structure with a squared distance equal to
        the dimensionality of the array. These choices correspond to the
        common interpretations of the 'taxicab' and the 'chessboard'
        distance metrics in two dimensions.

        The default for `metric` is 'chessboard'.
    return_distances, return_indices : bool, optional
        The `return_distances`, and `return_indices` flags can be used to
        indicate if the distance transform, the feature transform, or both
        must be returned.

        If the feature transform is returned (``return_indices=True``),
        the index of the closest background element is returned along
        the first axis of the result.

        The `return_distances` default is True, and the
        `return_indices` default is False.
    distances, indices : ndarrays of int32, optional
        The `distances` and `indices` arguments can be used to give optional
        output arrays that must be the same shape as `input`.

    """
    if (not return_distances) and (not return_indices):
        msg = 'at least one of distances/indices must be specified'
        raise RuntimeError(msg)

    ft_inplace = isinstance(indices, numpy.ndarray)
    dt_inplace = isinstance(distances, numpy.ndarray)
    input = numpy.asarray(input)
    if metric in ['taxicab', 'cityblock', 'manhattan']:
        rank = input.ndim
        metric = generate_binary_structure(rank, 1)
    elif metric == 'chessboard':
        rank = input.ndim
        metric = generate_binary_structure(rank, rank)
    else:
        try:
            metric = numpy.asarray(metric)
        except Exception:
            raise RuntimeError('invalid metric provided')
        for s in metric.shape:
            if s != 3:
                raise RuntimeError('metric sizes must be equal to 3')

    if not metric.flags.contiguous:
        metric = metric.copy()
    if dt_inplace:
        if distances.dtype.type != numpy.int32:
            raise RuntimeError('distances must be of int32 type')
        if distances.shape != input.shape:
            raise RuntimeError('distances has wrong shape')
        dt = distances
        dt[...] = numpy.where(input, -1, 0).astype(numpy.int32)
    else:
        dt = numpy.where(input, -1, 0).astype(numpy.int32)

    rank = dt.ndim
    if return_indices:
        sz = numpy.prod(dt.shape, axis=0)
        ft = numpy.arange(sz, dtype=numpy.int32)
        ft.shape = dt.shape
    else:
        ft = None

    _nd_image.distance_transform_op(metric, dt, ft)
    dt = dt[tuple([slice(None, None, -1)] * rank)]
    if return_indices:
        ft = ft[tuple([slice(None, None, -1)] * rank)]
    _nd_image.distance_transform_op(metric, dt, ft)
    dt = dt[tuple([slice(None, None, -1)] * rank)]
    if return_indices:
        ft = ft[tuple([slice(None, None, -1)] * rank)]
        ft = numpy.ravel(ft)
        if ft_inplace:
            if indices.dtype.type != numpy.int32:
                raise RuntimeError('indices must of int32 type')
            if indices.shape != (dt.ndim,) + dt.shape:
                raise RuntimeError('indices has wrong shape')
            tmp = indices
        else:
            tmp = numpy.indices(dt.shape, dtype=numpy.int32)
        for ii in range(tmp.shape[0]):
            rtmp = numpy.ravel(tmp[ii, ...])[ft]
            rtmp.shape = dt.shape
            tmp[ii, ...] = rtmp
        ft = tmp

    # construct and return the result
    result = []
    if return_distances and not dt_inplace:
        result.append(dt)
    if return_indices and not ft_inplace:
        result.append(ft)

    if len(result) == 2:
        return tuple(result)
    elif len(result) == 1:
        return result[0]
    else:
        return None


def distance_transform_edt(input, sampling=None, return_distances=True,
                           return_indices=False, distances=None, indices=None):
    """
    Exact euclidean distance transform.

    In addition to the distance transform, the feature transform can
    be calculated. In this case the index of the closest background
    element is returned along the first axis of the result.

    Parameters
    ----------
    input : array_like
        Input data to transform. Can be any type but will be converted
        into binary: 1 wherever input equates to True, 0 elsewhere.
    sampling : float or int, or sequence of same, optional
        Spacing of elements along each dimension. If a sequence, must be of
        length equal to the input rank; if a single number, this is used for
        all axes. If not specified, a grid spacing of unity is implied.
    return_distances : bool, optional
        Whether to return distance matrix. At least one of
        return_distances/return_indices must be True. Default is True.
    return_indices : bool, optional
        Whether to return indices matrix. Default is False.
    distances : ndarray, optional
        Used for output of distance array, must be of type float64.
    indices : ndarray, optional
        Used for output of indices, must be of type int32.

    Returns
    -------
    distance_transform_edt : ndarray or list of ndarrays
        Either distance matrix, index matrix, or a list of the two,
        depending on `return_x` flags and `distance` and `indices`
        input parameters.

    Notes
    -----
    The euclidean distance transform gives values of the euclidean
    distance::

                    n
      y_i = sqrt(sum (x[i]-b[i])**2)
                    i

    where b[i] is the background point (value 0) with the smallest
    Euclidean distance to input points x[i], and n is the
    number of dimensions.

    Examples
    --------
    >>> from scipy import ndimage
    >>> a = np.array(([0,1,1,1,1],
    ...               [0,0,1,1,1],
    ...               [0,1,1,1,1],
    ...               [0,1,1,1,0],
    ...               [0,1,1,0,0]))
    >>> ndimage.distance_transform_edt(a)
    array([[ 0.    ,  1.    ,  1.4142,  2.2361,  3.    ],
           [ 0.    ,  0.    ,  1.    ,  2.    ,  2.    ],
           [ 0.    ,  1.    ,  1.4142,  1.4142,  1.    ],
           [ 0.    ,  1.    ,  1.4142,  1.    ,  0.    ],
           [ 0.    ,  1.    ,  1.    ,  0.    ,  0.    ]])

    With a sampling of 2 units along x, 1 along y:

    >>> ndimage.distance_transform_edt(a, sampling=[2,1])
    array([[ 0.    ,  1.    ,  2.    ,  2.8284,  3.6056],
           [ 0.    ,  0.    ,  1.    ,  2.    ,  3.    ],
           [ 0.    ,  1.    ,  2.    ,  2.2361,  2.    ],
           [ 0.    ,  1.    ,  2.    ,  1.    ,  0.    ],
           [ 0.    ,  1.    ,  1.    ,  0.    ,  0.    ]])

    Asking for indices as well:

    >>> edt, inds = ndimage.distance_transform_edt(a, return_indices=True)
    >>> inds
    array([[[0, 0, 1, 1, 3],
            [1, 1, 1, 1, 3],
            [2, 2, 1, 3, 3],
            [3, 3, 4, 4, 3],
            [4, 4, 4, 4, 4]],
           [[0, 0, 1, 1, 4],
            [0, 1, 1, 1, 4],
            [0, 0, 1, 4, 4],
            [0, 0, 3, 3, 4],
            [0, 0, 3, 3, 4]]])

    With arrays provided for inplace outputs:

    >>> indices = np.zeros(((np.ndim(a),) + a.shape), dtype=np.int32)
    >>> ndimage.distance_transform_edt(a, return_indices=True, indices=indices)
    array([[ 0.    ,  1.    ,  1.4142,  2.2361,  3.    ],
           [ 0.    ,  0.    ,  1.    ,  2.    ,  2.    ],
           [ 0.    ,  1.    ,  1.4142,  1.4142,  1.    ],
           [ 0.    ,  1.    ,  1.4142,  1.    ,  0.    ],
           [ 0.    ,  1.    ,  1.    ,  0.    ,  0.    ]])
    >>> indices
    array([[[0, 0, 1, 1, 3],
            [1, 1, 1, 1, 3],
            [2, 2, 1, 3, 3],
            [3, 3, 4, 4, 3],
            [4, 4, 4, 4, 4]],
           [[0, 0, 1, 1, 4],
            [0, 1, 1, 1, 4],
            [0, 0, 1, 4, 4],
            [0, 0, 3, 3, 4],
            [0, 0, 3, 3, 4]]])

    """
    if (not return_distances) and (not return_indices):
        msg = 'at least one of distances/indices must be specified'
        raise RuntimeError(msg)

    ft_inplace = isinstance(indices, numpy.ndarray)
    dt_inplace = isinstance(distances, numpy.ndarray)
    # calculate the feature transform
    input = numpy.atleast_1d(numpy.where(input, 1, 0).astype(numpy.int8))
    if sampling is not None:
        sampling = _ni_support._normalize_sequence(sampling, input.ndim)
        sampling = numpy.asarray(sampling, dtype=numpy.float64)
        if not sampling.flags.contiguous:
            sampling = sampling.copy()

    if ft_inplace:
        ft = indices
        if ft.shape != (input.ndim,) + input.shape:
            raise RuntimeError('indices has wrong shape')
        if ft.dtype.type != numpy.int32:
            raise RuntimeError('indices must be of int32 type')
    else:
        ft = numpy.zeros((input.ndim,) + input.shape, dtype=numpy.int32)

    _nd_image.euclidean_feature_transform(input, sampling, ft)
    # if requested, calculate the distance transform
    if return_distances:
        dt = ft - numpy.indices(input.shape, dtype=ft.dtype)
        dt = dt.astype(numpy.float64)
        if sampling is not None:
            for ii in range(len(sampling)):
                dt[ii, ...] *= sampling[ii]
        numpy.multiply(dt, dt, dt)
        if dt_inplace:
            dt = numpy.add.reduce(dt, axis=0)
            if distances.shape != dt.shape:
                raise RuntimeError('indices has wrong shape')
            if distances.dtype.type != numpy.float64:
                raise RuntimeError('indices must be of float64 type')
            numpy.sqrt(dt, distances)
        else:
            dt = numpy.add.reduce(dt, axis=0)
            dt = numpy.sqrt(dt)

    # construct and return the result
    result = []
    if return_distances and not dt_inplace:
        result.append(dt)
    if return_indices and not ft_inplace:
        result.append(ft)

    if len(result) == 2:
        return tuple(result)
    elif len(result) == 1:
        return result[0]
    else:
        return None