_constraints.py
17.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
"""Constraints definition for minimize."""
from __future__ import division, print_function, absolute_import
import numpy as np
from ._hessian_update_strategy import BFGS
from ._differentiable_functions import (
VectorFunction, LinearVectorFunction, IdentityVectorFunction)
from .optimize import OptimizeWarning
from warnings import warn
from scipy._lib._numpy_compat import suppress_warnings
from scipy.sparse import issparse
class NonlinearConstraint(object):
"""Nonlinear constraint on the variables.
The constraint has the general inequality form::
lb <= fun(x) <= ub
Here the vector of independent variables x is passed as ndarray of shape
(n,) and ``fun`` returns a vector with m components.
It is possible to use equal bounds to represent an equality constraint or
infinite bounds to represent a one-sided constraint.
Parameters
----------
fun : callable
The function defining the constraint.
The signature is ``fun(x) -> array_like, shape (m,)``.
lb, ub : array_like
Lower and upper bounds on the constraint. Each array must have the
shape (m,) or be a scalar, in the latter case a bound will be the same
for all components of the constraint. Use ``np.inf`` with an
appropriate sign to specify a one-sided constraint.
Set components of `lb` and `ub` equal to represent an equality
constraint. Note that you can mix constraints of different types:
interval, one-sided or equality, by setting different components of
`lb` and `ub` as necessary.
jac : {callable, '2-point', '3-point', 'cs'}, optional
Method of computing the Jacobian matrix (an m-by-n matrix,
where element (i, j) is the partial derivative of f[i] with
respect to x[j]). The keywords {'2-point', '3-point',
'cs'} select a finite difference scheme for the numerical estimation.
A callable must have the following signature:
``jac(x) -> {ndarray, sparse matrix}, shape (m, n)``.
Default is '2-point'.
hess : {callable, '2-point', '3-point', 'cs', HessianUpdateStrategy, None}, optional
Method for computing the Hessian matrix. The keywords
{'2-point', '3-point', 'cs'} select a finite difference scheme for
numerical estimation. Alternatively, objects implementing
`HessianUpdateStrategy` interface can be used to approximate the
Hessian. Currently available implementations are:
- `BFGS` (default option)
- `SR1`
A callable must return the Hessian matrix of ``dot(fun, v)`` and
must have the following signature:
``hess(x, v) -> {LinearOperator, sparse matrix, array_like}, shape (n, n)``.
Here ``v`` is ndarray with shape (m,) containing Lagrange multipliers.
keep_feasible : array_like of bool, optional
Whether to keep the constraint components feasible throughout
iterations. A single value set this property for all components.
Default is False. Has no effect for equality constraints.
finite_diff_rel_step: None or array_like, optional
Relative step size for the finite difference approximation. Default is
None, which will select a reasonable value automatically depending
on a finite difference scheme.
finite_diff_jac_sparsity: {None, array_like, sparse matrix}, optional
Defines the sparsity structure of the Jacobian matrix for finite
difference estimation, its shape must be (m, n). If the Jacobian has
only few non-zero elements in *each* row, providing the sparsity
structure will greatly speed up the computations. A zero entry means
that a corresponding element in the Jacobian is identically zero.
If provided, forces the use of 'lsmr' trust-region solver.
If None (default) then dense differencing will be used.
Notes
-----
Finite difference schemes {'2-point', '3-point', 'cs'} may be used for
approximating either the Jacobian or the Hessian. We, however, do not allow
its use for approximating both simultaneously. Hence whenever the Jacobian
is estimated via finite-differences, we require the Hessian to be estimated
using one of the quasi-Newton strategies.
The scheme 'cs' is potentially the most accurate, but requires the function
to correctly handles complex inputs and be analytically continuable to the
complex plane. The scheme '3-point' is more accurate than '2-point' but
requires twice as many operations.
"""
def __init__(self, fun, lb, ub, jac='2-point', hess=BFGS(),
keep_feasible=False, finite_diff_rel_step=None,
finite_diff_jac_sparsity=None):
self.fun = fun
self.lb = lb
self.ub = ub
self.finite_diff_rel_step = finite_diff_rel_step
self.finite_diff_jac_sparsity = finite_diff_jac_sparsity
self.jac = jac
self.hess = hess
self.keep_feasible = keep_feasible
class LinearConstraint(object):
"""Linear constraint on the variables.
The constraint has the general inequality form::
lb <= A.dot(x) <= ub
Here the vector of independent variables x is passed as ndarray of shape
(n,) and the matrix A has shape (m, n).
It is possible to use equal bounds to represent an equality constraint or
infinite bounds to represent a one-sided constraint.
Parameters
----------
A : {array_like, sparse matrix}, shape (m, n)
Matrix defining the constraint.
lb, ub : array_like
Lower and upper bounds on the constraint. Each array must have the
shape (m,) or be a scalar, in the latter case a bound will be the same
for all components of the constraint. Use ``np.inf`` with an
appropriate sign to specify a one-sided constraint.
Set components of `lb` and `ub` equal to represent an equality
constraint. Note that you can mix constraints of different types:
interval, one-sided or equality, by setting different components of
`lb` and `ub` as necessary.
keep_feasible : array_like of bool, optional
Whether to keep the constraint components feasible throughout
iterations. A single value set this property for all components.
Default is False. Has no effect for equality constraints.
"""
def __init__(self, A, lb, ub, keep_feasible=False):
self.A = A
self.lb = lb
self.ub = ub
self.keep_feasible = keep_feasible
class Bounds(object):
"""Bounds constraint on the variables.
The constraint has the general inequality form::
lb <= x <= ub
It is possible to use equal bounds to represent an equality constraint or
infinite bounds to represent a one-sided constraint.
Parameters
----------
lb, ub : array_like, optional
Lower and upper bounds on independent variables. Each array must
have the same size as x or be a scalar, in which case a bound will be
the same for all the variables. Set components of `lb` and `ub` equal
to fix a variable. Use ``np.inf`` with an appropriate sign to disable
bounds on all or some variables. Note that you can mix constraints of
different types: interval, one-sided or equality, by setting different
components of `lb` and `ub` as necessary.
keep_feasible : array_like of bool, optional
Whether to keep the constraint components feasible throughout
iterations. A single value set this property for all components.
Default is False. Has no effect for equality constraints.
"""
def __init__(self, lb, ub, keep_feasible=False):
self.lb = lb
self.ub = ub
self.keep_feasible = keep_feasible
def __repr__(self):
if np.any(self.keep_feasible):
return "{}({!r}, {!r}, keep_feasible={!r})".format(type(self).__name__, self.lb, self.ub, self.keep_feasible)
else:
return "{}({!r}, {!r})".format(type(self).__name__, self.lb, self.ub)
class PreparedConstraint(object):
"""Constraint prepared from a user defined constraint.
On creation it will check whether a constraint definition is valid and
the initial point is feasible. If created successfully, it will contain
the attributes listed below.
Parameters
----------
constraint : {NonlinearConstraint, LinearConstraint`, Bounds}
Constraint to check and prepare.
x0 : array_like
Initial vector of independent variables.
sparse_jacobian : bool or None, optional
If bool, then the Jacobian of the constraint will be converted
to the corresponded format if necessary. If None (default), such
conversion is not made.
finite_diff_bounds : 2-tuple, optional
Lower and upper bounds on the independent variables for the finite
difference approximation, if applicable. Defaults to no bounds.
Attributes
----------
fun : {VectorFunction, LinearVectorFunction, IdentityVectorFunction}
Function defining the constraint wrapped by one of the convenience
classes.
bounds : 2-tuple
Contains lower and upper bounds for the constraints --- lb and ub.
These are converted to ndarray and have a size equal to the number of
the constraints.
keep_feasible : ndarray
Array indicating which components must be kept feasible with a size
equal to the number of the constraints.
"""
def __init__(self, constraint, x0, sparse_jacobian=None,
finite_diff_bounds=(-np.inf, np.inf)):
if isinstance(constraint, NonlinearConstraint):
fun = VectorFunction(constraint.fun, x0,
constraint.jac, constraint.hess,
constraint.finite_diff_rel_step,
constraint.finite_diff_jac_sparsity,
finite_diff_bounds, sparse_jacobian)
elif isinstance(constraint, LinearConstraint):
fun = LinearVectorFunction(constraint.A, x0, sparse_jacobian)
elif isinstance(constraint, Bounds):
fun = IdentityVectorFunction(x0, sparse_jacobian)
else:
raise ValueError("`constraint` of an unknown type is passed.")
m = fun.m
lb = np.asarray(constraint.lb, dtype=float)
ub = np.asarray(constraint.ub, dtype=float)
if lb.ndim == 0:
lb = np.resize(lb, m)
if ub.ndim == 0:
ub = np.resize(ub, m)
keep_feasible = np.asarray(constraint.keep_feasible, dtype=bool)
if keep_feasible.ndim == 0:
keep_feasible = np.resize(keep_feasible, m)
if keep_feasible.shape != (m,):
raise ValueError("`keep_feasible` has a wrong shape.")
mask = keep_feasible & (lb != ub)
f0 = fun.f
if np.any(f0[mask] < lb[mask]) or np.any(f0[mask] > ub[mask]):
raise ValueError("`x0` is infeasible with respect to some "
"inequality constraint with `keep_feasible` "
"set to True.")
self.fun = fun
self.bounds = (lb, ub)
self.keep_feasible = keep_feasible
def violation(self, x):
"""How much the constraint is exceeded by.
Parameters
----------
x : array-like
Vector of independent variables
Returns
-------
excess : array-like
How much the constraint is exceeded by, for each of the
constraints specified by `PreparedConstraint.fun`.
"""
with suppress_warnings() as sup:
sup.filter(UserWarning)
ev = self.fun.fun(np.asarray(x))
excess_lb = np.maximum(self.bounds[0] - ev, 0)
excess_ub = np.maximum(ev - self.bounds[1], 0)
return excess_lb + excess_ub
def new_bounds_to_old(lb, ub, n):
"""Convert the new bounds representation to the old one.
The new representation is a tuple (lb, ub) and the old one is a list
containing n tuples, i-th containing lower and upper bound on a i-th
variable.
"""
lb = np.asarray(lb)
ub = np.asarray(ub)
if lb.ndim == 0:
lb = np.resize(lb, n)
if ub.ndim == 0:
ub = np.resize(ub, n)
lb = [x if x > -np.inf else None for x in lb]
ub = [x if x < np.inf else None for x in ub]
return list(zip(lb, ub))
def old_bound_to_new(bounds):
"""Convert the old bounds representation to the new one.
The new representation is a tuple (lb, ub) and the old one is a list
containing n tuples, i-th containing lower and upper bound on a i-th
variable.
"""
lb, ub = zip(*bounds)
lb = np.array([x if x is not None else -np.inf for x in lb])
ub = np.array([x if x is not None else np.inf for x in ub])
return lb, ub
def strict_bounds(lb, ub, keep_feasible, n_vars):
"""Remove bounds which are not asked to be kept feasible."""
strict_lb = np.resize(lb, n_vars).astype(float)
strict_ub = np.resize(ub, n_vars).astype(float)
keep_feasible = np.resize(keep_feasible, n_vars)
strict_lb[~keep_feasible] = -np.inf
strict_ub[~keep_feasible] = np.inf
return strict_lb, strict_ub
def new_constraint_to_old(con, x0):
"""
Converts new-style constraint objects to old-style constraint dictionaries.
"""
if isinstance(con, NonlinearConstraint):
if (con.finite_diff_jac_sparsity is not None or
con.finite_diff_rel_step is not None or
not isinstance(con.hess, BFGS) or # misses user specified BFGS
con.keep_feasible):
warn("Constraint options `finite_diff_jac_sparsity`, "
"`finite_diff_rel_step`, `keep_feasible`, and `hess`"
"are ignored by this method.", OptimizeWarning)
fun = con.fun
if callable(con.jac):
jac = con.jac
else:
jac = None
else: # LinearConstraint
if con.keep_feasible:
warn("Constraint option `keep_feasible` is ignored by this "
"method.", OptimizeWarning)
A = con.A
if issparse(A):
A = A.todense()
fun = lambda x: np.dot(A, x)
jac = lambda x: A
# FIXME: when bugs in VectorFunction/LinearVectorFunction are worked out,
# use pcon.fun.fun and pcon.fun.jac. Until then, get fun/jac above.
pcon = PreparedConstraint(con, x0)
lb, ub = pcon.bounds
i_eq = lb == ub
i_bound_below = np.logical_xor(lb != -np.inf, i_eq)
i_bound_above = np.logical_xor(ub != np.inf, i_eq)
i_unbounded = np.logical_and(lb == -np.inf, ub == np.inf)
if np.any(i_unbounded):
warn("At least one constraint is unbounded above and below. Such "
"constraints are ignored.", OptimizeWarning)
ceq = []
if np.any(i_eq):
def f_eq(x):
y = np.array(fun(x)).flatten()
return y[i_eq] - lb[i_eq]
ceq = [{"type": "eq", "fun": f_eq}]
if jac is not None:
def j_eq(x):
dy = jac(x)
if issparse(dy):
dy = dy.todense()
dy = np.atleast_2d(dy)
return dy[i_eq, :]
ceq[0]["jac"] = j_eq
cineq = []
n_bound_below = np.sum(i_bound_below)
n_bound_above = np.sum(i_bound_above)
if n_bound_below + n_bound_above:
def f_ineq(x):
y = np.zeros(n_bound_below + n_bound_above)
y_all = np.array(fun(x)).flatten()
y[:n_bound_below] = y_all[i_bound_below] - lb[i_bound_below]
y[n_bound_below:] = -(y_all[i_bound_above] - ub[i_bound_above])
return y
cineq = [{"type": "ineq", "fun": f_ineq}]
if jac is not None:
def j_ineq(x):
dy = np.zeros((n_bound_below + n_bound_above, len(x0)))
dy_all = jac(x)
if issparse(dy_all):
dy_all = dy_all.todense()
dy_all = np.atleast_2d(dy_all)
dy[:n_bound_below, :] = dy_all[i_bound_below]
dy[n_bound_below:, :] = -dy_all[i_bound_above]
return dy
cineq[0]["jac"] = j_ineq
old_constraints = ceq + cineq
if len(old_constraints) > 1:
warn("Equality and inequality constraints are specified in the same "
"element of the constraint list. For efficient use with this "
"method, equality and inequality constraints should be specified "
"in separate elements of the constraint list. ", OptimizeWarning)
return old_constraints
def old_constraint_to_new(ic, con):
"""
Converts old-style constraint dictionaries to new-style constraint objects.
"""
# check type
try:
ctype = con['type'].lower()
except KeyError:
raise KeyError('Constraint %d has no type defined.' % ic)
except TypeError:
raise TypeError('Constraints must be a sequence of dictionaries.')
except AttributeError:
raise TypeError("Constraint's type must be a string.")
else:
if ctype not in ['eq', 'ineq']:
raise ValueError("Unknown constraint type '%s'." % con['type'])
if 'fun' not in con:
raise ValueError('Constraint %d has no function defined.' % ic)
lb = 0
if ctype == 'eq':
ub = 0
else:
ub = np.inf
jac = '2-point'
if 'args' in con:
args = con['args']
fun = lambda x: con['fun'](x, *args)
if 'jac' in con:
jac = lambda x: con['jac'](x, *args)
else:
fun = con['fun']
if 'jac' in con:
jac = con['jac']
return NonlinearConstraint(fun, lb, ub, jac)