_differentialevolution.py 55.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
"""
differential_evolution: The differential evolution global optimization algorithm
Added by Andrew Nelson 2014
"""
from __future__ import division, print_function, absolute_import
import warnings

import numpy as np
from scipy.optimize import OptimizeResult, minimize
from scipy.optimize.optimize import _status_message
from scipy._lib._util import check_random_state, MapWrapper
from scipy._lib.six import xrange, string_types

from scipy.optimize._constraints import (Bounds, new_bounds_to_old,
                                         NonlinearConstraint, LinearConstraint)


__all__ = ['differential_evolution']

_MACHEPS = np.finfo(np.float64).eps


def differential_evolution(func, bounds, args=(), strategy='best1bin',
                           maxiter=1000, popsize=15, tol=0.01,
                           mutation=(0.5, 1), recombination=0.7, seed=None,
                           callback=None, disp=False, polish=True,
                           init='latinhypercube', atol=0, updating='immediate',
                           workers=1, constraints=()):
    """Finds the global minimum of a multivariate function.

    Differential Evolution is stochastic in nature (does not use gradient
    methods) to find the minimum, and can search large areas of candidate
    space, but often requires larger numbers of function evaluations than
    conventional gradient based techniques.

    The algorithm is due to Storn and Price [1]_.

    Parameters
    ----------
    func : callable
        The objective function to be minimized.  Must be in the form
        ``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
        and ``args`` is a  tuple of any additional fixed parameters needed to
        completely specify the function.
    bounds : sequence or `Bounds`, optional
        Bounds for variables.  There are two ways to specify the bounds:
        1. Instance of `Bounds` class.
        2. ``(min, max)`` pairs for each element in ``x``, defining the finite
        lower and upper bounds for the optimizing argument of `func`. It is
        required to have ``len(bounds) == len(x)``. ``len(bounds)`` is used
        to determine the number of parameters in ``x``.
    args : tuple, optional
        Any additional fixed parameters needed to
        completely specify the objective function.
    strategy : str, optional
        The differential evolution strategy to use. Should be one of:

            - 'best1bin'
            - 'best1exp'
            - 'rand1exp'
            - 'randtobest1exp'
            - 'currenttobest1exp'
            - 'best2exp'
            - 'rand2exp'
            - 'randtobest1bin'
            - 'currenttobest1bin'
            - 'best2bin'
            - 'rand2bin'
            - 'rand1bin'

        The default is 'best1bin'.
    maxiter : int, optional
        The maximum number of generations over which the entire population is
        evolved. The maximum number of function evaluations (with no polishing)
        is: ``(maxiter + 1) * popsize * len(x)``
    popsize : int, optional
        A multiplier for setting the total population size.  The population has
        ``popsize * len(x)`` individuals (unless the initial population is
        supplied via the `init` keyword).
    tol : float, optional
        Relative tolerance for convergence, the solving stops when
        ``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
        where and `atol` and `tol` are the absolute and relative tolerance
        respectively.
    mutation : float or tuple(float, float), optional
        The mutation constant. In the literature this is also known as
        differential weight, being denoted by F.
        If specified as a float it should be in the range [0, 2].
        If specified as a tuple ``(min, max)`` dithering is employed. Dithering
        randomly changes the mutation constant on a generation by generation
        basis. The mutation constant for that generation is taken from
        ``U[min, max)``. Dithering can help speed convergence significantly.
        Increasing the mutation constant increases the search radius, but will
        slow down convergence.
    recombination : float, optional
        The recombination constant, should be in the range [0, 1]. In the
        literature this is also known as the crossover probability, being
        denoted by CR. Increasing this value allows a larger number of mutants
        to progress into the next generation, but at the risk of population
        stability.
    seed : int or `np.random.RandomState`, optional
        If `seed` is not specified the `np.RandomState` singleton is used.
        If `seed` is an int, a new `np.random.RandomState` instance is used,
        seeded with seed.
        If `seed` is already a `np.random.RandomState instance`, then that
        `np.random.RandomState` instance is used.
        Specify `seed` for repeatable minimizations.
    disp : bool, optional
        Prints the evaluated `func` at every iteration.
    callback : callable, `callback(xk, convergence=val)`, optional
        A function to follow the progress of the minimization. ``xk`` is
        the current value of ``x0``. ``val`` represents the fractional
        value of the population convergence.  When ``val`` is greater than one
        the function halts. If callback returns `True`, then the minimization
        is halted (any polishing is still carried out).
    polish : bool, optional
        If True (default), then `scipy.optimize.minimize` with the `L-BFGS-B`
        method is used to polish the best population member at the end, which
        can improve the minimization slightly. If a constrained problem is
        being studied then the `trust-constr` method is used instead.
    init : str or array-like, optional
        Specify which type of population initialization is performed. Should be
        one of:

            - 'latinhypercube'
            - 'random'
            - array specifying the initial population. The array should have
              shape ``(M, len(x))``, where len(x) is the number of parameters.
              `init` is clipped to `bounds` before use.

        The default is 'latinhypercube'. Latin Hypercube sampling tries to
        maximize coverage of the available parameter space. 'random'
        initializes the population randomly - this has the drawback that
        clustering can occur, preventing the whole of parameter space being
        covered. Use of an array to specify a population subset could be used,
        for example, to create a tight bunch of initial guesses in an location
        where the solution is known to exist, thereby reducing time for
        convergence.
    atol : float, optional
        Absolute tolerance for convergence, the solving stops when
        ``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
        where and `atol` and `tol` are the absolute and relative tolerance
        respectively.
    updating : {'immediate', 'deferred'}, optional
        If ``'immediate'``, the best solution vector is continuously updated
        within a single generation [4]_. This can lead to faster convergence as
        trial vectors can take advantage of continuous improvements in the best
        solution.
        With ``'deferred'``, the best solution vector is updated once per
        generation. Only ``'deferred'`` is compatible with parallelization, and
        the `workers` keyword can over-ride this option.

        .. versionadded:: 1.2.0

    workers : int or map-like callable, optional
        If `workers` is an int the population is subdivided into `workers`
        sections and evaluated in parallel
        (uses `multiprocessing.Pool <multiprocessing>`).
        Supply -1 to use all available CPU cores.
        Alternatively supply a map-like callable, such as
        `multiprocessing.Pool.map` for evaluating the population in parallel.
        This evaluation is carried out as ``workers(func, iterable)``.
        This option will override the `updating` keyword to
        ``updating='deferred'`` if ``workers != 1``.
        Requires that `func` be pickleable.

        .. versionadded:: 1.2.0

    constraints : {NonLinearConstraint, LinearConstraint, Bounds}
        Constraints on the solver, over and above those applied by the `bounds`
        kwd. Uses the approach by Lampinen [5]_.

        .. versionadded:: 1.4.0

    Returns
    -------
    res : OptimizeResult
        The optimization result represented as a `OptimizeResult` object.
        Important attributes are: ``x`` the solution array, ``success`` a
        Boolean flag indicating if the optimizer exited successfully and
        ``message`` which describes the cause of the termination. See
        `OptimizeResult` for a description of other attributes.  If `polish`
        was employed, and a lower minimum was obtained by the polishing, then
        OptimizeResult also contains the ``jac`` attribute.
        If the eventual solution does not satisfy the applied constraints
        ``success`` will be `False`.

    Notes
    -----
    Differential evolution is a stochastic population based method that is
    useful for global optimization problems. At each pass through the population
    the algorithm mutates each candidate solution by mixing with other candidate
    solutions to create a trial candidate. There are several strategies [2]_ for
    creating trial candidates, which suit some problems more than others. The
    'best1bin' strategy is a good starting point for many systems. In this
    strategy two members of the population are randomly chosen. Their difference
    is used to mutate the best member (the `best` in `best1bin`), :math:`b_0`,
    so far:

    .. math::

        b' = b_0 + mutation * (population[rand0] - population[rand1])

    A trial vector is then constructed. Starting with a randomly chosen 'i'th
    parameter the trial is sequentially filled (in modulo) with parameters from
    ``b'`` or the original candidate. The choice of whether to use ``b'`` or the
    original candidate is made with a binomial distribution (the 'bin' in
    'best1bin') - a random number in [0, 1) is generated.  If this number is
    less than the `recombination` constant then the parameter is loaded from
    ``b'``, otherwise it is loaded from the original candidate.  The final
    parameter is always loaded from ``b'``.  Once the trial candidate is built
    its fitness is assessed. If the trial is better than the original candidate
    then it takes its place. If it is also better than the best overall
    candidate it also replaces that.
    To improve your chances of finding a global minimum use higher `popsize`
    values, with higher `mutation` and (dithering), but lower `recombination`
    values. This has the effect of widening the search radius, but slowing
    convergence.
    By default the best solution vector is updated continuously within a single
    iteration (``updating='immediate'``). This is a modification [4]_ of the
    original differential evolution algorithm which can lead to faster
    convergence as trial vectors can immediately benefit from improved
    solutions. To use the original Storn and Price behaviour, updating the best
    solution once per iteration, set ``updating='deferred'``.

    .. versionadded:: 0.15.0

    Examples
    --------
    Let us consider the problem of minimizing the Rosenbrock function. This
    function is implemented in `rosen` in `scipy.optimize`.

    >>> from scipy.optimize import rosen, differential_evolution
    >>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
    >>> result = differential_evolution(rosen, bounds)
    >>> result.x, result.fun
    (array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)

    Now repeat, but with parallelization.

    >>> bounds = [(0,2), (0, 2), (0, 2), (0, 2), (0, 2)]
    >>> result = differential_evolution(rosen, bounds, updating='deferred',
    ...                                 workers=2)
    >>> result.x, result.fun
    (array([1., 1., 1., 1., 1.]), 1.9216496320061384e-19)

    Let's try and do a constrained minimization
    >>> from scipy.optimize import NonlinearConstraint, Bounds
    >>> def constr_f(x):
    ...     return np.array(x[0] + x[1])
    >>>
    >>> # the sum of x[0] and x[1] must be less than 1.9
    >>> nlc = NonlinearConstraint(constr_f, -np.inf, 1.9)
    >>> # specify limits using a `Bounds` object.
    >>> bounds = Bounds([0., 0.], [2., 2.])
    >>> result = differential_evolution(rosen, bounds, constraints=(nlc),
    ...                                 seed=1)
    >>> result.x, result.fun
    (array([0.96633867, 0.93363577]), 0.0011361355854792312)

    Next find the minimum of the Ackley function
    (https://en.wikipedia.org/wiki/Test_functions_for_optimization).

    >>> from scipy.optimize import differential_evolution
    >>> import numpy as np
    >>> def ackley(x):
    ...     arg1 = -0.2 * np.sqrt(0.5 * (x[0] ** 2 + x[1] ** 2))
    ...     arg2 = 0.5 * (np.cos(2. * np.pi * x[0]) + np.cos(2. * np.pi * x[1]))
    ...     return -20. * np.exp(arg1) - np.exp(arg2) + 20. + np.e
    >>> bounds = [(-5, 5), (-5, 5)]
    >>> result = differential_evolution(ackley, bounds)
    >>> result.x, result.fun
    (array([ 0.,  0.]), 4.4408920985006262e-16)

    References
    ----------
    .. [1] Storn, R and Price, K, Differential Evolution - a Simple and
           Efficient Heuristic for Global Optimization over Continuous Spaces,
           Journal of Global Optimization, 1997, 11, 341 - 359.
    .. [2] http://www1.icsi.berkeley.edu/~storn/code.html
    .. [3] http://en.wikipedia.org/wiki/Differential_evolution
    .. [4] Wormington, M., Panaccione, C., Matney, K. M., Bowen, D. K., -
           Characterization of structures from X-ray scattering data using
           genetic algorithms, Phil. Trans. R. Soc. Lond. A, 1999, 357,
           2827-2848
    .. [5] Lampinen, J., A constraint handling approach for the differential
           evolution algorithm. Proceedings of the 2002 Congress on
           Evolutionary Computation. CEC'02 (Cat. No. 02TH8600). Vol. 2. IEEE,
           2002.
    """

    # using a context manager means that any created Pool objects are
    # cleared up.
    with DifferentialEvolutionSolver(func, bounds, args=args,
                                     strategy=strategy,
                                     maxiter=maxiter,
                                     popsize=popsize, tol=tol,
                                     mutation=mutation,
                                     recombination=recombination,
                                     seed=seed, polish=polish,
                                     callback=callback,
                                     disp=disp, init=init, atol=atol,
                                     updating=updating,
                                     workers=workers,
                                     constraints=constraints) as solver:
        ret = solver.solve()

    return ret


class DifferentialEvolutionSolver(object):

    """This class implements the differential evolution solver

    Parameters
    ----------
    func : callable
        The objective function to be minimized.  Must be in the form
        ``f(x, *args)``, where ``x`` is the argument in the form of a 1-D array
        and ``args`` is a  tuple of any additional fixed parameters needed to
        completely specify the function.
    bounds : sequence or `Bounds`, optional
        Bounds for variables.  There are two ways to specify the bounds:
        1. Instance of `Bounds` class.
        2. ``(min, max)`` pairs for each element in ``x``, defining the finite
        lower and upper bounds for the optimizing argument of `func`. It is
        required to have ``len(bounds) == len(x)``. ``len(bounds)`` is used
        to determine the number of parameters in ``x``.
    args : tuple, optional
        Any additional fixed parameters needed to
        completely specify the objective function.
    strategy : str, optional
        The differential evolution strategy to use. Should be one of:

            - 'best1bin'
            - 'best1exp'
            - 'rand1exp'
            - 'randtobest1exp'
            - 'currenttobest1exp'
            - 'best2exp'
            - 'rand2exp'
            - 'randtobest1bin'
            - 'currenttobest1bin'
            - 'best2bin'
            - 'rand2bin'
            - 'rand1bin'

        The default is 'best1bin'

    maxiter : int, optional
        The maximum number of generations over which the entire population is
        evolved. The maximum number of function evaluations (with no polishing)
        is: ``(maxiter + 1) * popsize * len(x)``
    popsize : int, optional
        A multiplier for setting the total population size.  The population has
        ``popsize * len(x)`` individuals (unless the initial population is
        supplied via the `init` keyword).
    tol : float, optional
        Relative tolerance for convergence, the solving stops when
        ``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
        where and `atol` and `tol` are the absolute and relative tolerance
        respectively.
    mutation : float or tuple(float, float), optional
        The mutation constant. In the literature this is also known as
        differential weight, being denoted by F.
        If specified as a float it should be in the range [0, 2].
        If specified as a tuple ``(min, max)`` dithering is employed. Dithering
        randomly changes the mutation constant on a generation by generation
        basis. The mutation constant for that generation is taken from
        U[min, max). Dithering can help speed convergence significantly.
        Increasing the mutation constant increases the search radius, but will
        slow down convergence.
    recombination : float, optional
        The recombination constant, should be in the range [0, 1]. In the
        literature this is also known as the crossover probability, being
        denoted by CR. Increasing this value allows a larger number of mutants
        to progress into the next generation, but at the risk of population
        stability.
    seed : int or `np.random.RandomState`, optional
        If `seed` is not specified the `np.random.RandomState` singleton is
        used.
        If `seed` is an int, a new `np.random.RandomState` instance is used,
        seeded with `seed`.
        If `seed` is already a `np.random.RandomState` instance, then that
        `np.random.RandomState` instance is used.
        Specify `seed` for repeatable minimizations.
    disp : bool, optional
        Prints the evaluated `func` at every iteration.
    callback : callable, `callback(xk, convergence=val)`, optional
        A function to follow the progress of the minimization. ``xk`` is
        the current value of ``x0``. ``val`` represents the fractional
        value of the population convergence.  When ``val`` is greater than one
        the function halts. If callback returns `True`, then the minimization
        is halted (any polishing is still carried out).
    polish : bool, optional
        If True (default), then `scipy.optimize.minimize` with the `L-BFGS-B`
        method is used to polish the best population member at the end, which
        can improve the minimization slightly. If a constrained problem is
        being studied then the `trust-constr` method is used instead.
    maxfun : int, optional
        Set the maximum number of function evaluations. However, it probably
        makes more sense to set `maxiter` instead.
    init : str or array-like, optional
        Specify which type of population initialization is performed. Should be
        one of:

            - 'latinhypercube'
            - 'random'
            - array specifying the initial population. The array should have
              shape ``(M, len(x))``, where len(x) is the number of parameters.
              `init` is clipped to `bounds` before use.

        The default is 'latinhypercube'. Latin Hypercube sampling tries to
        maximize coverage of the available parameter space. 'random'
        initializes the population randomly - this has the drawback that
        clustering can occur, preventing the whole of parameter space being
        covered. Use of an array to specify a population could be used, for
        example, to create a tight bunch of initial guesses in an location
        where the solution is known to exist, thereby reducing time for
        convergence.
    atol : float, optional
        Absolute tolerance for convergence, the solving stops when
        ``np.std(pop) <= atol + tol * np.abs(np.mean(population_energies))``,
        where and `atol` and `tol` are the absolute and relative tolerance
        respectively.
    updating : {'immediate', 'deferred'}, optional
        If `immediate` the best solution vector is continuously updated within
        a single generation. This can lead to faster convergence as trial
        vectors can take advantage of continuous improvements in the best
        solution.
        With `deferred` the best solution vector is updated once per
        generation. Only `deferred` is compatible with parallelization, and the
        `workers` keyword can over-ride this option.
    workers : int or map-like callable, optional
        If `workers` is an int the population is subdivided into `workers`
        sections and evaluated in parallel
        (uses `multiprocessing.Pool <multiprocessing>`).
        Supply `-1` to use all cores available to the Process.
        Alternatively supply a map-like callable, such as
        `multiprocessing.Pool.map` for evaluating the population in parallel.
        This evaluation is carried out as ``workers(func, iterable)``.
        This option will override the `updating` keyword to
        `updating='deferred'` if `workers != 1`.
        Requires that `func` be pickleable.
    constraints : {NonLinearConstraint, LinearConstraint, Bounds}
        Constraints on the solver, over and above those applied by the `bounds`
        kwd. Uses the approach by Lampinen.
    """

    # Dispatch of mutation strategy method (binomial or exponential).
    _binomial = {'best1bin': '_best1',
                 'randtobest1bin': '_randtobest1',
                 'currenttobest1bin': '_currenttobest1',
                 'best2bin': '_best2',
                 'rand2bin': '_rand2',
                 'rand1bin': '_rand1'}
    _exponential = {'best1exp': '_best1',
                    'rand1exp': '_rand1',
                    'randtobest1exp': '_randtobest1',
                    'currenttobest1exp': '_currenttobest1',
                    'best2exp': '_best2',
                    'rand2exp': '_rand2'}

    __init_error_msg = ("The population initialization method must be one of "
                        "'latinhypercube' or 'random', or an array of shape "
                        "(M, N) where N is the number of parameters and M>5")

    def __init__(self, func, bounds, args=(),
                 strategy='best1bin', maxiter=1000, popsize=15,
                 tol=0.01, mutation=(0.5, 1), recombination=0.7, seed=None,
                 maxfun=np.inf, callback=None, disp=False, polish=True,
                 init='latinhypercube', atol=0, updating='immediate',
                 workers=1, constraints=()):

        if strategy in self._binomial:
            self.mutation_func = getattr(self, self._binomial[strategy])
        elif strategy in self._exponential:
            self.mutation_func = getattr(self, self._exponential[strategy])
        else:
            raise ValueError("Please select a valid mutation strategy")
        self.strategy = strategy

        self.callback = callback
        self.polish = polish

        # set the updating / parallelisation options
        if updating in ['immediate', 'deferred']:
            self._updating = updating

        # want to use parallelisation, but updating is immediate
        if workers != 1 and updating == 'immediate':
            warnings.warn("differential_evolution: the 'workers' keyword has"
                          " overridden updating='immediate' to"
                          " updating='deferred'", UserWarning)
            self._updating = 'deferred'

        # an object with a map method.
        self._mapwrapper = MapWrapper(workers)

        # relative and absolute tolerances for convergence
        self.tol, self.atol = tol, atol

        # Mutation constant should be in [0, 2). If specified as a sequence
        # then dithering is performed.
        self.scale = mutation
        if (not np.all(np.isfinite(mutation)) or
                np.any(np.array(mutation) >= 2) or
                np.any(np.array(mutation) < 0)):
            raise ValueError('The mutation constant must be a float in '
                             'U[0, 2), or specified as a tuple(min, max)'
                             ' where min < max and min, max are in U[0, 2).')

        self.dither = None
        if hasattr(mutation, '__iter__') and len(mutation) > 1:
            self.dither = [mutation[0], mutation[1]]
            self.dither.sort()

        self.cross_over_probability = recombination

        # we create a wrapped function to allow the use of map (and Pool.map
        # in the future)
        self.func = _FunctionWrapper(func, args)
        self.args = args

        # convert tuple of lower and upper bounds to limits
        # [(low_0, high_0), ..., (low_n, high_n]
        #     -> [[low_0, ..., low_n], [high_0, ..., high_n]]
        if isinstance(bounds, Bounds):
            self.limits = np.array(new_bounds_to_old(bounds.lb,
                                                     bounds.ub,
                                                     len(bounds.lb)),
                                   dtype=float).T
        else:
            self.limits = np.array(bounds, dtype='float').T

        if (np.size(self.limits, 0) != 2 or not
                np.all(np.isfinite(self.limits))):
            raise ValueError('bounds should be a sequence containing '
                             'real valued (min, max) pairs for each value'
                             ' in x')

        if maxiter is None:  # the default used to be None
            maxiter = 1000
        self.maxiter = maxiter
        if maxfun is None:  # the default used to be None
            maxfun = np.inf
        self.maxfun = maxfun

        # population is scaled to between [0, 1].
        # We have to scale between parameter <-> population
        # save these arguments for _scale_parameter and
        # _unscale_parameter. This is an optimization
        self.__scale_arg1 = 0.5 * (self.limits[0] + self.limits[1])
        self.__scale_arg2 = np.fabs(self.limits[0] - self.limits[1])

        self.parameter_count = np.size(self.limits, 1)

        self.random_number_generator = check_random_state(seed)

        # default population initialization is a latin hypercube design, but
        # there are other population initializations possible.
        # the minimum is 5 because 'best2bin' requires a population that's at
        # least 5 long
        self.num_population_members = max(5, popsize * self.parameter_count)

        self.population_shape = (self.num_population_members,
                                 self.parameter_count)

        self._nfev = 0
        if isinstance(init, string_types):
            if init == 'latinhypercube':
                self.init_population_lhs()
            elif init == 'random':
                self.init_population_random()
            else:
                raise ValueError(self.__init_error_msg)
        else:
            self.init_population_array(init)

        # infrastructure for constraints
        # dummy parameter vector for preparing constraints, this is required so
        # that the number of constraints is known.
        x0 = self._scale_parameters(self.population[0])

        self.constraints = constraints
        self._wrapped_constraints = []

        if hasattr(constraints, '__len__'):
            # sequence of constraints, this will also deal with default
            # keyword parameter
            for c in constraints:
                self._wrapped_constraints.append(_ConstraintWrapper(c, x0))
        else:
            self._wrapped_constraints = [_ConstraintWrapper(constraints, x0)]

        self.constraint_violation = np.zeros((self.num_population_members, 1))
        self.feasible = np.ones(self.num_population_members, bool)

        self.disp = disp

    def init_population_lhs(self):
        """
        Initializes the population with Latin Hypercube Sampling.
        Latin Hypercube Sampling ensures that each parameter is uniformly
        sampled over its range.
        """
        rng = self.random_number_generator

        # Each parameter range needs to be sampled uniformly. The scaled
        # parameter range ([0, 1)) needs to be split into
        # `self.num_population_members` segments, each of which has the following
        # size:
        segsize = 1.0 / self.num_population_members

        # Within each segment we sample from a uniform random distribution.
        # We need to do this sampling for each parameter.
        samples = (segsize * rng.random_sample(self.population_shape)

        # Offset each segment to cover the entire parameter range [0, 1)
                   + np.linspace(0., 1., self.num_population_members,
                                 endpoint=False)[:, np.newaxis])

        # Create an array for population of candidate solutions.
        self.population = np.zeros_like(samples)

        # Initialize population of candidate solutions by permutation of the
        # random samples.
        for j in range(self.parameter_count):
            order = rng.permutation(range(self.num_population_members))
            self.population[:, j] = samples[order, j]

        # reset population energies
        self.population_energies = np.full(self.num_population_members,
                                           np.inf)

        # reset number of function evaluations counter
        self._nfev = 0

    def init_population_random(self):
        """
        Initialises the population at random.  This type of initialization
        can possess clustering, Latin Hypercube sampling is generally better.
        """
        rng = self.random_number_generator
        self.population = rng.random_sample(self.population_shape)

        # reset population energies
        self.population_energies = np.full(self.num_population_members,
                                           np.inf)

        # reset number of function evaluations counter
        self._nfev = 0

    def init_population_array(self, init):
        """
        Initialises the population with a user specified population.

        Parameters
        ----------
        init : np.ndarray
            Array specifying subset of the initial population. The array should
            have shape (M, len(x)), where len(x) is the number of parameters.
            The population is clipped to the lower and upper bounds.
        """
        # make sure you're using a float array
        popn = np.asfarray(init)

        if (np.size(popn, 0) < 5 or
                popn.shape[1] != self.parameter_count or
                len(popn.shape) != 2):
            raise ValueError("The population supplied needs to have shape"
                             " (M, len(x)), where M > 4.")

        # scale values and clip to bounds, assigning to population
        self.population = np.clip(self._unscale_parameters(popn), 0, 1)

        self.num_population_members = np.size(self.population, 0)

        self.population_shape = (self.num_population_members,
                                 self.parameter_count)

        # reset population energies
        self.population_energies = np.full(self.num_population_members,
                                           np.inf)

        # reset number of function evaluations counter
        self._nfev = 0

    @property
    def x(self):
        """
        The best solution from the solver
        """
        return self._scale_parameters(self.population[0])

    @property
    def convergence(self):
        """
        The standard deviation of the population energies divided by their
        mean.
        """
        if np.any(np.isinf(self.population_energies)):
            return np.inf
        return (np.std(self.population_energies) /
                np.abs(np.mean(self.population_energies) + _MACHEPS))

    def converged(self):
        """
        Return True if the solver has converged.
        """
        return (np.std(self.population_energies) <=
                self.atol +
                self.tol * np.abs(np.mean(self.population_energies)))

    def solve(self):
        """
        Runs the DifferentialEvolutionSolver.

        Returns
        -------
        res : OptimizeResult
            The optimization result represented as a ``OptimizeResult`` object.
            Important attributes are: ``x`` the solution array, ``success`` a
            Boolean flag indicating if the optimizer exited successfully and
            ``message`` which describes the cause of the termination. See
            `OptimizeResult` for a description of other attributes.  If `polish`
            was employed, and a lower minimum was obtained by the polishing,
            then OptimizeResult also contains the ``jac`` attribute.
        """
        nit, warning_flag = 0, False
        status_message = _status_message['success']

        # The population may have just been initialized (all entries are
        # np.inf). If it has you have to calculate the initial energies.
        # Although this is also done in the evolve generator it's possible
        # that someone can set maxiter=0, at which point we still want the
        # initial energies to be calculated (the following loop isn't run).
        if np.all(np.isinf(self.population_energies)):
            self.feasible, self.constraint_violation = (
                self._calculate_population_feasibilities(self.population))

            # only work out population energies for feasible solutions
            self.population_energies[self.feasible] = (
                self._calculate_population_energies(
                    self.population[self.feasible]))

            self._promote_lowest_energy()

        # do the optimisation.
        for nit in xrange(1, self.maxiter + 1):
            # evolve the population by a generation
            try:
                next(self)
            except StopIteration:
                warning_flag = True
                if self._nfev > self.maxfun:
                    status_message = _status_message['maxfev']
                elif self._nfev == self.maxfun:
                    status_message = ('Maximum number of function evaluations'
                                      ' has been reached.')
                break

            if self.disp:
                print("differential_evolution step %d: f(x)= %g"
                      % (nit,
                         self.population_energies[0]))

            # should the solver terminate?
            convergence = self.convergence

            if (self.callback and
                    self.callback(self._scale_parameters(self.population[0]),
                                  convergence=self.tol / convergence) is True):

                warning_flag = True
                status_message = ('callback function requested stop early '
                                  'by returning True')
                break

            if np.any(np.isinf(self.population_energies)):
                intol = False
            else:
                intol = (np.std(self.population_energies) <=
                         self.atol +
                         self.tol * np.abs(np.mean(self.population_energies)))
            if warning_flag or intol:
                break

        else:
            status_message = _status_message['maxiter']
            warning_flag = True

        DE_result = OptimizeResult(
            x=self.x,
            fun=self.population_energies[0],
            nfev=self._nfev,
            nit=nit,
            message=status_message,
            success=(warning_flag is not True))

        if self.polish:
            polish_method = 'L-BFGS-B'

            if self._wrapped_constraints:
                polish_method = 'trust-constr'

                constr_violation = self._constraint_violation_fn(DE_result.x)
                if np.any(constr_violation > 0.):
                    warnings.warn("differential evolution didn't find a"
                                  " solution satisfying the constraints,"
                                  " attempting to polish from the least"
                                  " infeasible solution", UserWarning)

            result = minimize(self.func,
                              np.copy(DE_result.x),
                              method=polish_method,
                              bounds=self.limits.T,
                              constraints=self.constraints)

            self._nfev += result.nfev
            DE_result.nfev = self._nfev

            # polishing solution is only accepted if there is an improvement in
            # cost function, the polishing was successful and the solution lies
            # within the bounds.
            if (result.fun < DE_result.fun and
                    result.success and
                    np.all(result.x <= self.limits[1]) and
                    np.all(self.limits[0] <= result.x)):
                DE_result.fun = result.fun
                DE_result.x = result.x
                DE_result.jac = result.jac
                # to keep internal state consistent
                self.population_energies[0] = result.fun
                self.population[0] = self._unscale_parameters(result.x)

        if self._wrapped_constraints:
            DE_result.constr = [c.violation(DE_result.x) for
                                c in self._wrapped_constraints]
            DE_result.constr_violation = np.max(
                np.concatenate(DE_result.constr))
            DE_result.maxcv = DE_result.constr_violation
            if DE_result.maxcv > 0:
                # if the result is infeasible then success must be False
                DE_result.success = False
                DE_result.message = ("The solution does not satisfy the"
                                    " constraints, MAXCV = " % DE_result.maxcv)

        return DE_result

    def _calculate_population_energies(self, population):
        """
        Calculate the energies of a population.

        Parameters
        ----------
        population : ndarray
            An array of parameter vectors normalised to [0, 1] using lower
            and upper limits. Has shape ``(np.size(population, 0), len(x))``.

        Returns
        -------
        energies : ndarray
            An array of energies corresponding to each population member. If
            maxfun will be exceeded during this call, then the number of
            function evaluations will be reduced and energies will be
            right-padded with np.inf. Has shape ``(np.size(population, 0),)``
        """
        num_members = np.size(population, 0)
        nfevs = min(num_members,
                    self.maxfun - num_members)

        energies = np.full(num_members, np.inf)

        parameters_pop = self._scale_parameters(population)
        try:
            calc_energies = list(self._mapwrapper(self.func,
                                                  parameters_pop[0:nfevs]))
            energies[0:nfevs] = calc_energies
        except (TypeError, ValueError):
            # wrong number of arguments for _mapwrapper
            # or wrong length returned from the mapper
            raise RuntimeError("The map-like callable must be of the"
                               " form f(func, iterable), returning a sequence"
                               " of numbers the same length as 'iterable'")

        self._nfev += nfevs

        return energies

    def _promote_lowest_energy(self):
        # swaps 'best solution' into first population entry

        idx = np.arange(self.num_population_members)
        feasible_solutions = idx[self.feasible]
        if feasible_solutions.size:
            # find the best feasible solution
            idx_t = np.argmin(self.population_energies[feasible_solutions])
            l = feasible_solutions[idx_t]
        else:
            # no solution was feasible, use 'best' infeasible solution, which
            # will violate constraints the least
            l = np.argmin(np.sum(self.constraint_violation, axis=1))

        self.population_energies[[0, l]] = self.population_energies[[l, 0]]
        self.population[[0, l], :] = self.population[[l, 0], :]
        self.feasible[[0, l]] = self.feasible[[l, 0]]
        self.constraint_violation[[0, l], :] = (
        self.constraint_violation[[l, 0], :])

    def _constraint_violation_fn(self, x):
        """
        Calculates total constraint violation for all the constraints, for a given
        solution.

        Parameters
        ----------
        x : ndarray
            Solution vector

        Returns
        -------
        cv : ndarray
            Total violation of constraints. Has shape ``(M,)``, where M is the
            number of constraints (if each constraint function only returns one
            value)
        """
        return np.concatenate([c.violation(x) for c in self._wrapped_constraints])

    def _calculate_population_feasibilities(self, population):
        """
        Calculate the feasibilities of a population.

        Parameters
        ----------
        population : ndarray
            An array of parameter vectors normalised to [0, 1] using lower
            and upper limits. Has shape ``(np.size(population, 0), len(x))``.

        Returns
        -------
        feasible, constraint_violation : ndarray, ndarray
            Boolean array of feasibility for each population member, and an
            array of the constraint violation for each population member.
            constraint_violation has shape ``(np.size(population, 0), M)``,
            where M is the number of constraints.
        """
        num_members = np.size(population, 0)
        if not self._wrapped_constraints:
            # shortcut for no constraints
            return np.ones(num_members, bool), np.zeros((num_members, 1))

        parameters_pop = self._scale_parameters(population)

        constraint_violation = np.array([self._constraint_violation_fn(x)
                                         for x in parameters_pop])
        feasible = ~(np.sum(constraint_violation, axis=1) > 0)

        return feasible, constraint_violation

    def __iter__(self):
        return self

    def __enter__(self):
        return self

    def __exit__(self, *args):
        # to make sure resources are closed down
        self._mapwrapper.close()
        self._mapwrapper.terminate()

    def __del__(self):
        # to make sure resources are closed down
        self._mapwrapper.close()
        self._mapwrapper.terminate()

    def _accept_trial(self, energy_trial, feasible_trial, cv_trial,
                      energy_orig, feasible_orig, cv_orig):
        """
        Trial is accepted if:
        * it satisfies all constraints and provides a lower or equal objective
          function value, while both the compared solutions are feasible
        - or -
        * it is feasible while the original solution is infeasible,
        - or -
        * it is infeasible, but provides a lower or equal constraint violation
          for all constraint functions.

        This test corresponds to section III of Lampinen [1]_.

        Parameters
        ----------
        energy_trial : float
            Energy of the trial solution
        feasible_trial : float
            Feasibility of trial solution
        cv_trial : array-like
            Excess constraint violation for the trial solution
        energy_orig : float
            Energy of the original solution
        feasible_orig : float
            Feasibility of original solution
        cv_orig : array-like
            Excess constraint violation for the original solution

        Returns
        -------
        accepted : bool

        """
        if feasible_orig and feasible_trial:
            return energy_trial <= energy_orig
        elif feasible_trial and not feasible_orig:
            return True
        elif not feasible_trial and (cv_trial <= cv_orig).all():
            # cv_trial < cv_orig would imply that both trial and orig are not
            # feasible
            return True

        return False

    def __next__(self):
        """
        Evolve the population by a single generation

        Returns
        -------
        x : ndarray
            The best solution from the solver.
        fun : float
            Value of objective function obtained from the best solution.
        """
        # the population may have just been initialized (all entries are
        # np.inf). If it has you have to calculate the initial energies
        if np.all(np.isinf(self.population_energies)):
            self.feasible, self.constraint_violation = (
                self._calculate_population_feasibilities(self.population))

            # only need to work out population energies for those that are
            # feasible
            self.population_energies[self.feasible] = (
                self._calculate_population_energies(
                    self.population[self.feasible]))

            self._promote_lowest_energy()

        if self.dither is not None:
            self.scale = (self.random_number_generator.rand()
                          * (self.dither[1] - self.dither[0]) + self.dither[0])

        if self._updating == 'immediate':
            # update best solution immediately
            for candidate in range(self.num_population_members):
                if self._nfev > self.maxfun:
                    raise StopIteration

                # create a trial solution
                trial = self._mutate(candidate)

                # ensuring that it's in the range [0, 1)
                self._ensure_constraint(trial)

                # scale from [0, 1) to the actual parameter value
                parameters = self._scale_parameters(trial)

                # determine the energy of the objective function
                if self._wrapped_constraints:
                    cv = self._constraint_violation_fn(parameters)
                    feasible = False
                    energy = np.inf
                    if not np.sum(cv) > 0:
                        # solution is feasible
                        feasible = True
                        energy = self.func(parameters)
                        self._nfev += 1
                else:
                    feasible = True
                    cv = np.atleast_2d([0.])
                    energy = self.func(parameters)
                    self._nfev += 1

                # compare trial and population member
                if self._accept_trial(energy, feasible, cv,
                                      self.population_energies[candidate],
                                      self.feasible[candidate],
                                      self.constraint_violation[candidate]):
                    self.population[candidate] = trial
                    self.population_energies[candidate] = energy
                    self.feasible[candidate] = feasible
                    self.constraint_violation[candidate] = cv

                    # if the trial candidate is also better than the best
                    # solution then promote it.
                    if self._accept_trial(energy, feasible, cv,
                                          self.population_energies[0],
                                          self.feasible[0],
                                          self.constraint_violation[0]):
                        self._promote_lowest_energy()

        elif self._updating == 'deferred':
            # update best solution once per generation
            if self._nfev >= self.maxfun:
                raise StopIteration

            # 'deferred' approach, vectorised form.
            # create trial solutions
            trial_pop = np.array(
                [self._mutate(i) for i in range(self.num_population_members)])

            # enforce bounds
            self._ensure_constraint(trial_pop)

            # determine the energies of the objective function, but only for
            # feasible trials
            feasible, cv = self._calculate_population_feasibilities(trial_pop)
            trial_energies = np.full(self.num_population_members, np.inf)

            # only calculate for feasible entries
            trial_energies[feasible] = self._calculate_population_energies(
                trial_pop[feasible])

            # which solutions are 'improved'?
            loc = [self._accept_trial(*val) for val in
                   zip(trial_energies, feasible, cv, self.population_energies,
                       self.feasible, self.constraint_violation)]
            loc = np.array(loc)
            self.population = np.where(loc[:, np.newaxis],
                                       trial_pop,
                                       self.population)
            self.population_energies = np.where(loc,
                                                trial_energies,
                                                self.population_energies)
            self.feasible = np.where(loc,
                                     feasible,
                                     self.feasible)
            self.constraint_violation = np.where(loc[:, np.newaxis],
                                                 cv,
                                                 self.constraint_violation)

            # make sure the best solution is updated if updating='deferred'.
            # put the lowest energy into the best solution position.
            self._promote_lowest_energy()

        return self.x, self.population_energies[0]

    next = __next__

    def _scale_parameters(self, trial):
        """Scale from a number between 0 and 1 to parameters."""
        return self.__scale_arg1 + (trial - 0.5) * self.__scale_arg2

    def _unscale_parameters(self, parameters):
        """Scale from parameters to a number between 0 and 1."""
        return (parameters - self.__scale_arg1) / self.__scale_arg2 + 0.5

    def _ensure_constraint(self, trial):
        """Make sure the parameters lie between the limits."""
        mask = np.where((trial > 1) | (trial < 0))
        trial[mask] = self.random_number_generator.rand(mask[0].size)

    def _mutate(self, candidate):
        """Create a trial vector based on a mutation strategy."""
        trial = np.copy(self.population[candidate])

        rng = self.random_number_generator

        fill_point = rng.randint(0, self.parameter_count)

        if self.strategy in ['currenttobest1exp', 'currenttobest1bin']:
            bprime = self.mutation_func(candidate,
                                        self._select_samples(candidate, 5))
        else:
            bprime = self.mutation_func(self._select_samples(candidate, 5))

        if self.strategy in self._binomial:
            crossovers = rng.rand(self.parameter_count)
            crossovers = crossovers < self.cross_over_probability
            # the last one is always from the bprime vector for binomial
            # If you fill in modulo with a loop you have to set the last one to
            # true. If you don't use a loop then you can have any random entry
            # be True.
            crossovers[fill_point] = True
            trial = np.where(crossovers, bprime, trial)
            return trial

        elif self.strategy in self._exponential:
            i = 0
            while (i < self.parameter_count and
                   rng.rand() < self.cross_over_probability):

                trial[fill_point] = bprime[fill_point]
                fill_point = (fill_point + 1) % self.parameter_count
                i += 1

            return trial

    def _best1(self, samples):
        """best1bin, best1exp"""
        r0, r1 = samples[:2]
        return (self.population[0] + self.scale *
                (self.population[r0] - self.population[r1]))

    def _rand1(self, samples):
        """rand1bin, rand1exp"""
        r0, r1, r2 = samples[:3]
        return (self.population[r0] + self.scale *
                (self.population[r1] - self.population[r2]))

    def _randtobest1(self, samples):
        """randtobest1bin, randtobest1exp"""
        r0, r1, r2 = samples[:3]
        bprime = np.copy(self.population[r0])
        bprime += self.scale * (self.population[0] - bprime)
        bprime += self.scale * (self.population[r1] -
                                self.population[r2])
        return bprime

    def _currenttobest1(self, candidate, samples):
        """currenttobest1bin, currenttobest1exp"""
        r0, r1 = samples[:2]
        bprime = (self.population[candidate] + self.scale *
                  (self.population[0] - self.population[candidate] +
                   self.population[r0] - self.population[r1]))
        return bprime

    def _best2(self, samples):
        """best2bin, best2exp"""
        r0, r1, r2, r3 = samples[:4]
        bprime = (self.population[0] + self.scale *
                  (self.population[r0] + self.population[r1] -
                   self.population[r2] - self.population[r3]))

        return bprime

    def _rand2(self, samples):
        """rand2bin, rand2exp"""
        r0, r1, r2, r3, r4 = samples
        bprime = (self.population[r0] + self.scale *
                  (self.population[r1] + self.population[r2] -
                   self.population[r3] - self.population[r4]))

        return bprime

    def _select_samples(self, candidate, number_samples):
        """
        obtain random integers from range(self.num_population_members),
        without replacement.  You can't have the original candidate either.
        """
        idxs = list(range(self.num_population_members))
        idxs.remove(candidate)
        self.random_number_generator.shuffle(idxs)
        idxs = idxs[:number_samples]
        return idxs


class _FunctionWrapper(object):
    """
    Object to wrap user cost function, allowing picklability
    """
    def __init__(self, f, args):
        self.f = f
        self.args = [] if args is None else args

    def __call__(self, x):
        return self.f(x, *self.args)


class _ConstraintWrapper(object):
    """Object to wrap/evaluate user defined constraints.

    Very similar in practice to `PreparedConstraint`, except that no evaluation
    of jac/hess is performed (explicit or implicit).

    If created successfully, it will contain the attributes listed below.

    Parameters
    ----------
    constraint : {`NonlinearConstraint`, `LinearConstraint`, `Bounds`}
        Constraint to check and prepare.
    x0 : array_like
        Initial vector of independent variables.

    Attributes
    ----------
    fun : callable
        Function defining the constraint wrapped by one of the convenience
        classes.
    bounds : 2-tuple
        Contains lower and upper bounds for the constraints --- lb and ub.
        These are converted to ndarray and have a size equal to the number of
        the constraints.
    """
    def __init__(self, constraint, x0):
        self.constraint = constraint

        if isinstance(constraint, NonlinearConstraint):
            def fun(x):
                return np.atleast_1d(constraint.fun(x))
        elif isinstance(constraint, LinearConstraint):
            def fun(x):
                A = np.atleast_2d(constraint.A)
                return A.dot(x)
        elif isinstance(constraint, Bounds):
            def fun(x):
                return x
        else:
            raise ValueError("`constraint` of an unknown type is passed.")

        self.fun = fun

        lb = np.asarray(constraint.lb, dtype=float)
        ub = np.asarray(constraint.ub, dtype=float)

        f0 = fun(x0)
        m = f0.size

        if lb.ndim == 0:
            lb = np.resize(lb, m)
        if ub.ndim == 0:
            ub = np.resize(ub, m)

        self.bounds = (lb, ub)

    def __call__(self, x):
        return np.atleast_1d(self.fun(x))

    def violation(self, x):
        """How much the constraint is exceeded by.

        Parameters
        ----------
        x : array-like
            Vector of independent variables

        Returns
        -------
        excess : array-like
            How much the constraint is exceeded by, for each of the
            constraints specified by `_ConstraintWrapper.fun`.
        """
        ev = self.fun(np.asarray(x))

        excess_lb = np.maximum(self.bounds[0] - ev, 0)
        excess_ub = np.maximum(ev - self.bounds[1], 0)

        return excess_lb + excess_ub