ltisys.py 122 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722
"""
ltisys -- a collection of classes and functions for modeling linear
time invariant systems.
"""
from __future__ import division, print_function, absolute_import

#
# Author: Travis Oliphant 2001
#
# Feb 2010: Warren Weckesser
#   Rewrote lsim2 and added impulse2.
# Apr 2011: Jeffrey Armstrong <jeff@approximatrix.com>
#   Added dlsim, dstep, dimpulse, cont2discrete
# Aug 2013: Juan Luis Cano
#   Rewrote abcd_normalize.
# Jan 2015: Irvin Probst irvin DOT probst AT ensta-bretagne DOT fr
#   Added pole placement
# Mar 2015: Clancy Rowley
#   Rewrote lsim
# May 2015: Felix Berkenkamp
#   Split lti class into subclasses
#   Merged discrete systems and added dlti

import warnings

# np.linalg.qr fails on some tests with LinAlgError: zgeqrf returns -7
# use scipy's qr until this is solved

import scipy._lib.six as six
from scipy.linalg import qr as s_qr
from scipy import integrate, interpolate, linalg
from scipy.interpolate import interp1d
from scipy._lib.six import xrange
from .filter_design import (tf2zpk, zpk2tf, normalize, freqs, freqz, freqs_zpk,
                            freqz_zpk)
from .lti_conversion import (tf2ss, abcd_normalize, ss2tf, zpk2ss, ss2zpk,
                             cont2discrete)

import numpy
import numpy as np
from numpy import (real, atleast_1d, atleast_2d, squeeze, asarray, zeros,
                   dot, transpose, ones, zeros_like, linspace, nan_to_num)
import copy

__all__ = ['lti', 'dlti', 'TransferFunction', 'ZerosPolesGain', 'StateSpace',
           'lsim', 'lsim2', 'impulse', 'impulse2', 'step', 'step2', 'bode',
           'freqresp', 'place_poles', 'dlsim', 'dstep', 'dimpulse',
           'dfreqresp', 'dbode']


class LinearTimeInvariant(object):
    def __new__(cls, *system, **kwargs):
        """Create a new object, don't allow direct instances."""
        if cls is LinearTimeInvariant:
            raise NotImplementedError('The LinearTimeInvariant class is not '
                                      'meant to be used directly, use `lti` '
                                      'or `dlti` instead.')
        return super(LinearTimeInvariant, cls).__new__(cls)

    def __init__(self):
        """
        Initialize the `lti` baseclass.

        The heavy lifting is done by the subclasses.
        """
        super(LinearTimeInvariant, self).__init__()

        self.inputs = None
        self.outputs = None
        self._dt = None

    @property
    def dt(self):
        """Return the sampling time of the system, `None` for `lti` systems."""
        return self._dt

    @property
    def _dt_dict(self):
        if self.dt is None:
            return {}
        else:
            return {'dt': self.dt}

    @property
    def zeros(self):
        """Zeros of the system."""
        return self.to_zpk().zeros

    @property
    def poles(self):
        """Poles of the system."""
        return self.to_zpk().poles

    def _as_ss(self):
        """Convert to `StateSpace` system, without copying.

        Returns
        -------
        sys: StateSpace
            The `StateSpace` system. If the class is already an instance of
            `StateSpace` then this instance is returned.
        """
        if isinstance(self, StateSpace):
            return self
        else:
            return self.to_ss()

    def _as_zpk(self):
        """Convert to `ZerosPolesGain` system, without copying.

        Returns
        -------
        sys: ZerosPolesGain
            The `ZerosPolesGain` system. If the class is already an instance of
            `ZerosPolesGain` then this instance is returned.
        """
        if isinstance(self, ZerosPolesGain):
            return self
        else:
            return self.to_zpk()

    def _as_tf(self):
        """Convert to `TransferFunction` system, without copying.

        Returns
        -------
        sys: ZerosPolesGain
            The `TransferFunction` system. If the class is already an instance of
            `TransferFunction` then this instance is returned.
        """
        if isinstance(self, TransferFunction):
            return self
        else:
            return self.to_tf()


class lti(LinearTimeInvariant):
    """
    Continuous-time linear time invariant system base class.

    Parameters
    ----------
    *system : arguments
        The `lti` class can be instantiated with either 2, 3 or 4 arguments.
        The following gives the number of arguments and the corresponding
        continuous-time subclass that is created:

            * 2: `TransferFunction`:  (numerator, denominator)
            * 3: `ZerosPolesGain`: (zeros, poles, gain)
            * 4: `StateSpace`:  (A, B, C, D)

        Each argument can be an array or a sequence.

    See Also
    --------
    ZerosPolesGain, StateSpace, TransferFunction, dlti

    Notes
    -----
    `lti` instances do not exist directly. Instead, `lti` creates an instance
    of one of its subclasses: `StateSpace`, `TransferFunction` or
    `ZerosPolesGain`.

    If (numerator, denominator) is passed in for ``*system``, coefficients for
    both the numerator and denominator should be specified in descending
    exponent order (e.g., ``s^2 + 3s + 5`` would be represented as ``[1, 3,
    5]``).

    Changing the value of properties that are not directly part of the current
    system representation (such as the `zeros` of a `StateSpace` system) is
    very inefficient and may lead to numerical inaccuracies. It is better to
    convert to the specific system representation first. For example, call
    ``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.

    Examples
    --------
    >>> from scipy import signal

    >>> signal.lti(1, 2, 3, 4)
    StateSpaceContinuous(
    array([[1]]),
    array([[2]]),
    array([[3]]),
    array([[4]]),
    dt: None
    )

    >>> signal.lti([1, 2], [3, 4], 5)
    ZerosPolesGainContinuous(
    array([1, 2]),
    array([3, 4]),
    5,
    dt: None
    )

    >>> signal.lti([3, 4], [1, 2])
    TransferFunctionContinuous(
    array([3., 4.]),
    array([1., 2.]),
    dt: None
    )

    """
    def __new__(cls, *system):
        """Create an instance of the appropriate subclass."""
        if cls is lti:
            N = len(system)
            if N == 2:
                return TransferFunctionContinuous.__new__(
                    TransferFunctionContinuous, *system)
            elif N == 3:
                return ZerosPolesGainContinuous.__new__(
                    ZerosPolesGainContinuous, *system)
            elif N == 4:
                return StateSpaceContinuous.__new__(StateSpaceContinuous,
                                                    *system)
            else:
                raise ValueError("`system` needs to be an instance of `lti` "
                                 "or have 2, 3 or 4 arguments.")
        # __new__ was called from a subclass, let it call its own functions
        return super(lti, cls).__new__(cls)

    def __init__(self, *system):
        """
        Initialize the `lti` baseclass.

        The heavy lifting is done by the subclasses.
        """
        super(lti, self).__init__(*system)

    def impulse(self, X0=None, T=None, N=None):
        """
        Return the impulse response of a continuous-time system.
        See `impulse` for details.
        """
        return impulse(self, X0=X0, T=T, N=N)

    def step(self, X0=None, T=None, N=None):
        """
        Return the step response of a continuous-time system.
        See `step` for details.
        """
        return step(self, X0=X0, T=T, N=N)

    def output(self, U, T, X0=None):
        """
        Return the response of a continuous-time system to input `U`.
        See `lsim` for details.
        """
        return lsim(self, U, T, X0=X0)

    def bode(self, w=None, n=100):
        """
        Calculate Bode magnitude and phase data of a continuous-time system.

        Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude
        [dB] and phase [deg]. See `bode` for details.

        Examples
        --------
        >>> from scipy import signal
        >>> import matplotlib.pyplot as plt

        >>> sys = signal.TransferFunction([1], [1, 1])
        >>> w, mag, phase = sys.bode()

        >>> plt.figure()
        >>> plt.semilogx(w, mag)    # Bode magnitude plot
        >>> plt.figure()
        >>> plt.semilogx(w, phase)  # Bode phase plot
        >>> plt.show()

        """
        return bode(self, w=w, n=n)

    def freqresp(self, w=None, n=10000):
        """
        Calculate the frequency response of a continuous-time system.

        Returns a 2-tuple containing arrays of frequencies [rad/s] and
        complex magnitude.
        See `freqresp` for details.
        """
        return freqresp(self, w=w, n=n)

    def to_discrete(self, dt, method='zoh', alpha=None):
        """Return a discretized version of the current system.

        Parameters: See `cont2discrete` for details.

        Returns
        -------
        sys: instance of `dlti`
        """
        raise NotImplementedError('to_discrete is not implemented for this '
                                  'system class.')


class dlti(LinearTimeInvariant):
    """
    Discrete-time linear time invariant system base class.

    Parameters
    ----------
    *system: arguments
        The `dlti` class can be instantiated with either 2, 3 or 4 arguments.
        The following gives the number of arguments and the corresponding
        discrete-time subclass that is created:

            * 2: `TransferFunction`:  (numerator, denominator)
            * 3: `ZerosPolesGain`: (zeros, poles, gain)
            * 4: `StateSpace`:  (A, B, C, D)

        Each argument can be an array or a sequence.
    dt: float, optional
        Sampling time [s] of the discrete-time systems. Defaults to ``True``
        (unspecified sampling time). Must be specified as a keyword argument,
        for example, ``dt=0.1``.

    See Also
    --------
    ZerosPolesGain, StateSpace, TransferFunction, lti

    Notes
    -----
    `dlti` instances do not exist directly. Instead, `dlti` creates an instance
    of one of its subclasses: `StateSpace`, `TransferFunction` or
    `ZerosPolesGain`.

    Changing the value of properties that are not directly part of the current
    system representation (such as the `zeros` of a `StateSpace` system) is
    very inefficient and may lead to numerical inaccuracies.  It is better to
    convert to the specific system representation first. For example, call
    ``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.

    If (numerator, denominator) is passed in for ``*system``, coefficients for
    both the numerator and denominator should be specified in descending
    exponent order (e.g., ``z^2 + 3z + 5`` would be represented as ``[1, 3,
    5]``).

    .. versionadded:: 0.18.0

    Examples
    --------
    >>> from scipy import signal

    >>> signal.dlti(1, 2, 3, 4)
    StateSpaceDiscrete(
    array([[1]]),
    array([[2]]),
    array([[3]]),
    array([[4]]),
    dt: True
    )

    >>> signal.dlti(1, 2, 3, 4, dt=0.1)
    StateSpaceDiscrete(
    array([[1]]),
    array([[2]]),
    array([[3]]),
    array([[4]]),
    dt: 0.1
    )

    >>> signal.dlti([1, 2], [3, 4], 5, dt=0.1)
    ZerosPolesGainDiscrete(
    array([1, 2]),
    array([3, 4]),
    5,
    dt: 0.1
    )

    >>> signal.dlti([3, 4], [1, 2], dt=0.1)
    TransferFunctionDiscrete(
    array([3., 4.]),
    array([1., 2.]),
    dt: 0.1
    )

    """
    def __new__(cls, *system, **kwargs):
        """Create an instance of the appropriate subclass."""
        if cls is dlti:
            N = len(system)
            if N == 2:
                return TransferFunctionDiscrete.__new__(
                    TransferFunctionDiscrete, *system, **kwargs)
            elif N == 3:
                return ZerosPolesGainDiscrete.__new__(ZerosPolesGainDiscrete,
                                                      *system, **kwargs)
            elif N == 4:
                return StateSpaceDiscrete.__new__(StateSpaceDiscrete, *system,
                                                  **kwargs)
            else:
                raise ValueError("`system` needs to be an instance of `dlti` "
                                 "or have 2, 3 or 4 arguments.")
        # __new__ was called from a subclass, let it call its own functions
        return super(dlti, cls).__new__(cls)

    def __init__(self, *system, **kwargs):
        """
        Initialize the `lti` baseclass.

        The heavy lifting is done by the subclasses.
        """
        dt = kwargs.pop('dt', True)
        super(dlti, self).__init__(*system, **kwargs)

        self.dt = dt

    @property
    def dt(self):
        """Return the sampling time of the system."""
        return self._dt

    @dt.setter
    def dt(self, dt):
        self._dt = dt

    def impulse(self, x0=None, t=None, n=None):
        """
        Return the impulse response of the discrete-time `dlti` system.
        See `dimpulse` for details.
        """
        return dimpulse(self, x0=x0, t=t, n=n)

    def step(self, x0=None, t=None, n=None):
        """
        Return the step response of the discrete-time `dlti` system.
        See `dstep` for details.
        """
        return dstep(self, x0=x0, t=t, n=n)

    def output(self, u, t, x0=None):
        """
        Return the response of the discrete-time system to input `u`.
        See `dlsim` for details.
        """
        return dlsim(self, u, t, x0=x0)

    def bode(self, w=None, n=100):
        """
        Calculate Bode magnitude and phase data of a discrete-time system.

        Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude
        [dB] and phase [deg]. See `dbode` for details.

        Examples
        --------
        >>> from scipy import signal
        >>> import matplotlib.pyplot as plt

        Transfer function: H(z) = 1 / (z^2 + 2z + 3) with sampling time 0.5s

        >>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.5)

        Equivalent: signal.dbode(sys)

        >>> w, mag, phase = sys.bode()

        >>> plt.figure()
        >>> plt.semilogx(w, mag)    # Bode magnitude plot
        >>> plt.figure()
        >>> plt.semilogx(w, phase)  # Bode phase plot
        >>> plt.show()

        """
        return dbode(self, w=w, n=n)

    def freqresp(self, w=None, n=10000, whole=False):
        """
        Calculate the frequency response of a discrete-time system.

        Returns a 2-tuple containing arrays of frequencies [rad/s] and
        complex magnitude.
        See `dfreqresp` for details.

        """
        return dfreqresp(self, w=w, n=n, whole=whole)


class TransferFunction(LinearTimeInvariant):
    r"""Linear Time Invariant system class in transfer function form.

    Represents the system as the continuous-time transfer function
    :math:`H(s)=\sum_{i=0}^N b[N-i] s^i / \sum_{j=0}^M a[M-j] s^j` or the
    discrete-time transfer function
    :math:`H(s)=\sum_{i=0}^N b[N-i] z^i / \sum_{j=0}^M a[M-j] z^j`, where
    :math:`b` are elements of the numerator `num`, :math:`a` are elements of
    the denominator `den`, and ``N == len(b) - 1``, ``M == len(a) - 1``.
    `TransferFunction` systems inherit additional
    functionality from the `lti`, respectively the `dlti` classes, depending on
    which system representation is used.

    Parameters
    ----------
    *system: arguments
        The `TransferFunction` class can be instantiated with 1 or 2
        arguments. The following gives the number of input arguments and their
        interpretation:

            * 1: `lti` or `dlti` system: (`StateSpace`, `TransferFunction` or
              `ZerosPolesGain`)
            * 2: array_like: (numerator, denominator)
    dt: float, optional
        Sampling time [s] of the discrete-time systems. Defaults to `None`
        (continuous-time). Must be specified as a keyword argument, for
        example, ``dt=0.1``.

    See Also
    --------
    ZerosPolesGain, StateSpace, lti, dlti
    tf2ss, tf2zpk, tf2sos

    Notes
    -----
    Changing the value of properties that are not part of the
    `TransferFunction` system representation (such as the `A`, `B`, `C`, `D`
    state-space matrices) is very inefficient and may lead to numerical
    inaccuracies.  It is better to convert to the specific system
    representation first. For example, call ``sys = sys.to_ss()`` before
    accessing/changing the A, B, C, D system matrices.

    If (numerator, denominator) is passed in for ``*system``, coefficients
    for both the numerator and denominator should be specified in descending
    exponent order (e.g. ``s^2 + 3s + 5`` or ``z^2 + 3z + 5`` would be
    represented as ``[1, 3, 5]``)

    Examples
    --------
    Construct the transfer function:

    .. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}

    >>> from scipy import signal

    >>> num = [1, 3, 3]
    >>> den = [1, 2, 1]

    >>> signal.TransferFunction(num, den)
    TransferFunctionContinuous(
    array([1., 3., 3.]),
    array([1., 2., 1.]),
    dt: None
    )

    Construct the transfer function with a sampling time of 0.1 seconds:

    .. math:: H(z) = \frac{z^2 + 3z + 3}{z^2 + 2z + 1}

    >>> signal.TransferFunction(num, den, dt=0.1)
    TransferFunctionDiscrete(
    array([1., 3., 3.]),
    array([1., 2., 1.]),
    dt: 0.1
    )

    """
    def __new__(cls, *system, **kwargs):
        """Handle object conversion if input is an instance of lti."""
        if len(system) == 1 and isinstance(system[0], LinearTimeInvariant):
            return system[0].to_tf()

        # Choose whether to inherit from `lti` or from `dlti`
        if cls is TransferFunction:
            if kwargs.get('dt') is None:
                return TransferFunctionContinuous.__new__(
                    TransferFunctionContinuous,
                    *system,
                    **kwargs)
            else:
                return TransferFunctionDiscrete.__new__(
                    TransferFunctionDiscrete,
                    *system,
                    **kwargs)

        # No special conversion needed
        return super(TransferFunction, cls).__new__(cls)

    def __init__(self, *system, **kwargs):
        """Initialize the state space LTI system."""
        # Conversion of lti instances is handled in __new__
        if isinstance(system[0], LinearTimeInvariant):
            return

        # Remove system arguments, not needed by parents anymore
        super(TransferFunction, self).__init__(**kwargs)

        self._num = None
        self._den = None

        self.num, self.den = normalize(*system)

    def __repr__(self):
        """Return representation of the system's transfer function"""
        return '{0}(\n{1},\n{2},\ndt: {3}\n)'.format(
            self.__class__.__name__,
            repr(self.num),
            repr(self.den),
            repr(self.dt),
            )

    @property
    def num(self):
        """Numerator of the `TransferFunction` system."""
        return self._num

    @num.setter
    def num(self, num):
        self._num = atleast_1d(num)

        # Update dimensions
        if len(self.num.shape) > 1:
            self.outputs, self.inputs = self.num.shape
        else:
            self.outputs = 1
            self.inputs = 1

    @property
    def den(self):
        """Denominator of the `TransferFunction` system."""
        return self._den

    @den.setter
    def den(self, den):
        self._den = atleast_1d(den)

    def _copy(self, system):
        """
        Copy the parameters of another `TransferFunction` object

        Parameters
        ----------
        system : `TransferFunction`
            The `StateSpace` system that is to be copied

        """
        self.num = system.num
        self.den = system.den

    def to_tf(self):
        """
        Return a copy of the current `TransferFunction` system.

        Returns
        -------
        sys : instance of `TransferFunction`
            The current system (copy)

        """
        return copy.deepcopy(self)

    def to_zpk(self):
        """
        Convert system representation to `ZerosPolesGain`.

        Returns
        -------
        sys : instance of `ZerosPolesGain`
            Zeros, poles, gain representation of the current system

        """
        return ZerosPolesGain(*tf2zpk(self.num, self.den),
                              **self._dt_dict)

    def to_ss(self):
        """
        Convert system representation to `StateSpace`.

        Returns
        -------
        sys : instance of `StateSpace`
            State space model of the current system

        """
        return StateSpace(*tf2ss(self.num, self.den),
                          **self._dt_dict)

    @staticmethod
    def _z_to_zinv(num, den):
        """Change a transfer function from the variable `z` to `z**-1`.

        Parameters
        ----------
        num, den: 1d array_like
            Sequences representing the coefficients of the numerator and
            denominator polynomials, in order of descending degree of 'z'.
            That is, ``5z**2 + 3z + 2`` is presented as ``[5, 3, 2]``.

        Returns
        -------
        num, den: 1d array_like
            Sequences representing the coefficients of the numerator and
            denominator polynomials, in order of ascending degree of 'z**-1'.
            That is, ``5 + 3 z**-1 + 2 z**-2`` is presented as ``[5, 3, 2]``.
        """
        diff = len(num) - len(den)
        if diff > 0:
            den = np.hstack((np.zeros(diff), den))
        elif diff < 0:
            num = np.hstack((np.zeros(-diff), num))
        return num, den

    @staticmethod
    def _zinv_to_z(num, den):
        """Change a transfer function from the variable `z` to `z**-1`.

        Parameters
        ----------
        num, den: 1d array_like
            Sequences representing the coefficients of the numerator and
            denominator polynomials, in order of ascending degree of 'z**-1'.
            That is, ``5 + 3 z**-1 + 2 z**-2`` is presented as ``[5, 3, 2]``.

        Returns
        -------
        num, den: 1d array_like
            Sequences representing the coefficients of the numerator and
            denominator polynomials, in order of descending degree of 'z'.
            That is, ``5z**2 + 3z + 2`` is presented as ``[5, 3, 2]``.
        """
        diff = len(num) - len(den)
        if diff > 0:
            den = np.hstack((den, np.zeros(diff)))
        elif diff < 0:
            num = np.hstack((num, np.zeros(-diff)))
        return num, den


class TransferFunctionContinuous(TransferFunction, lti):
    r"""
    Continuous-time Linear Time Invariant system in transfer function form.

    Represents the system as the transfer function
    :math:`H(s)=\sum_{i=0}^N b[N-i] s^i / \sum_{j=0}^M a[M-j] s^j`, where
    :math:`b` are elements of the numerator `num`, :math:`a` are elements of
    the denominator `den`, and ``N == len(b) - 1``, ``M == len(a) - 1``.
    Continuous-time `TransferFunction` systems inherit additional
    functionality from the `lti` class.

    Parameters
    ----------
    *system: arguments
        The `TransferFunction` class can be instantiated with 1 or 2
        arguments. The following gives the number of input arguments and their
        interpretation:

            * 1: `lti` system: (`StateSpace`, `TransferFunction` or
              `ZerosPolesGain`)
            * 2: array_like: (numerator, denominator)

    See Also
    --------
    ZerosPolesGain, StateSpace, lti
    tf2ss, tf2zpk, tf2sos

    Notes
    -----
    Changing the value of properties that are not part of the
    `TransferFunction` system representation (such as the `A`, `B`, `C`, `D`
    state-space matrices) is very inefficient and may lead to numerical
    inaccuracies.  It is better to convert to the specific system
    representation first. For example, call ``sys = sys.to_ss()`` before
    accessing/changing the A, B, C, D system matrices.

    If (numerator, denominator) is passed in for ``*system``, coefficients
    for both the numerator and denominator should be specified in descending
    exponent order (e.g. ``s^2 + 3s + 5`` would be represented as
    ``[1, 3, 5]``)

    Examples
    --------
    Construct the transfer function:

    .. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}

    >>> from scipy import signal

    >>> num = [1, 3, 3]
    >>> den = [1, 2, 1]

    >>> signal.TransferFunction(num, den)
    TransferFunctionContinuous(
    array([ 1.,  3.,  3.]),
    array([ 1.,  2.,  1.]),
    dt: None
    )

    """
    def to_discrete(self, dt, method='zoh', alpha=None):
        """
        Returns the discretized `TransferFunction` system.

        Parameters: See `cont2discrete` for details.

        Returns
        -------
        sys: instance of `dlti` and `StateSpace`
        """
        return TransferFunction(*cont2discrete((self.num, self.den),
                                               dt,
                                               method=method,
                                               alpha=alpha)[:-1],
                                dt=dt)


class TransferFunctionDiscrete(TransferFunction, dlti):
    r"""
    Discrete-time Linear Time Invariant system in transfer function form.

    Represents the system as the transfer function
    :math:`H(z)=\sum_{i=0}^N b[N-i] z^i / \sum_{j=0}^M a[M-j] z^j`, where
    :math:`b` are elements of the numerator `num`, :math:`a` are elements of
    the denominator `den`, and ``N == len(b) - 1``, ``M == len(a) - 1``.
    Discrete-time `TransferFunction` systems inherit additional functionality
    from the `dlti` class.

    Parameters
    ----------
    *system: arguments
        The `TransferFunction` class can be instantiated with 1 or 2
        arguments. The following gives the number of input arguments and their
        interpretation:

            * 1: `dlti` system: (`StateSpace`, `TransferFunction` or
              `ZerosPolesGain`)
            * 2: array_like: (numerator, denominator)
    dt: float, optional
        Sampling time [s] of the discrete-time systems. Defaults to `True`
        (unspecified sampling time). Must be specified as a keyword argument,
        for example, ``dt=0.1``.

    See Also
    --------
    ZerosPolesGain, StateSpace, dlti
    tf2ss, tf2zpk, tf2sos

    Notes
    -----
    Changing the value of properties that are not part of the
    `TransferFunction` system representation (such as the `A`, `B`, `C`, `D`
    state-space matrices) is very inefficient and may lead to numerical
    inaccuracies.

    If (numerator, denominator) is passed in for ``*system``, coefficients
    for both the numerator and denominator should be specified in descending
    exponent order (e.g., ``z^2 + 3z + 5`` would be represented as
    ``[1, 3, 5]``).

    Examples
    --------
    Construct the transfer function with a sampling time of 0.5 seconds:

    .. math:: H(z) = \frac{z^2 + 3z + 3}{z^2 + 2z + 1}

    >>> from scipy import signal

    >>> num = [1, 3, 3]
    >>> den = [1, 2, 1]

    >>> signal.TransferFunction(num, den, 0.5)
    TransferFunctionDiscrete(
    array([ 1.,  3.,  3.]),
    array([ 1.,  2.,  1.]),
    dt: 0.5
    )

    """
    pass


class ZerosPolesGain(LinearTimeInvariant):
    r"""
    Linear Time Invariant system class in zeros, poles, gain form.

    Represents the system as the continuous- or discrete-time transfer function
    :math:`H(s)=k \prod_i (s - z[i]) / \prod_j (s - p[j])`, where :math:`k` is
    the `gain`, :math:`z` are the `zeros` and :math:`p` are the `poles`.
    `ZerosPolesGain` systems inherit additional functionality from the `lti`,
    respectively the `dlti` classes, depending on which system representation
    is used.

    Parameters
    ----------
    *system : arguments
        The `ZerosPolesGain` class can be instantiated with 1 or 3
        arguments. The following gives the number of input arguments and their
        interpretation:

            * 1: `lti` or `dlti` system: (`StateSpace`, `TransferFunction` or
              `ZerosPolesGain`)
            * 3: array_like: (zeros, poles, gain)
    dt: float, optional
        Sampling time [s] of the discrete-time systems. Defaults to `None`
        (continuous-time). Must be specified as a keyword argument, for
        example, ``dt=0.1``.


    See Also
    --------
    TransferFunction, StateSpace, lti, dlti
    zpk2ss, zpk2tf, zpk2sos

    Notes
    -----
    Changing the value of properties that are not part of the
    `ZerosPolesGain` system representation (such as the `A`, `B`, `C`, `D`
    state-space matrices) is very inefficient and may lead to numerical
    inaccuracies.  It is better to convert to the specific system
    representation first. For example, call ``sys = sys.to_ss()`` before
    accessing/changing the A, B, C, D system matrices.

    Examples
    --------
    >>> from scipy import signal

    Transfer function: H(s) = 5(s - 1)(s - 2) / (s - 3)(s - 4)

    >>> signal.ZerosPolesGain([1, 2], [3, 4], 5)
    ZerosPolesGainContinuous(
    array([1, 2]),
    array([3, 4]),
    5,
    dt: None
    )

    Transfer function: H(z) = 5(z - 1)(z - 2) / (z - 3)(z - 4)

    >>> signal.ZerosPolesGain([1, 2], [3, 4], 5, dt=0.1)
    ZerosPolesGainDiscrete(
    array([1, 2]),
    array([3, 4]),
    5,
    dt: 0.1
    )

    """
    def __new__(cls, *system, **kwargs):
        """Handle object conversion if input is an instance of `lti`"""
        if len(system) == 1 and isinstance(system[0], LinearTimeInvariant):
            return system[0].to_zpk()

        # Choose whether to inherit from `lti` or from `dlti`
        if cls is ZerosPolesGain:
            if kwargs.get('dt') is None:
                return ZerosPolesGainContinuous.__new__(
                    ZerosPolesGainContinuous,
                    *system,
                    **kwargs)
            else:
                return ZerosPolesGainDiscrete.__new__(
                    ZerosPolesGainDiscrete,
                    *system,
                    **kwargs
                    )

        # No special conversion needed
        return super(ZerosPolesGain, cls).__new__(cls)

    def __init__(self, *system, **kwargs):
        """Initialize the zeros, poles, gain system."""
        # Conversion of lti instances is handled in __new__
        if isinstance(system[0], LinearTimeInvariant):
            return

        super(ZerosPolesGain, self).__init__(**kwargs)

        self._zeros = None
        self._poles = None
        self._gain = None

        self.zeros, self.poles, self.gain = system

    def __repr__(self):
        """Return representation of the `ZerosPolesGain` system."""
        return '{0}(\n{1},\n{2},\n{3},\ndt: {4}\n)'.format(
            self.__class__.__name__,
            repr(self.zeros),
            repr(self.poles),
            repr(self.gain),
            repr(self.dt),
            )

    @property
    def zeros(self):
        """Zeros of the `ZerosPolesGain` system."""
        return self._zeros

    @zeros.setter
    def zeros(self, zeros):
        self._zeros = atleast_1d(zeros)

        # Update dimensions
        if len(self.zeros.shape) > 1:
            self.outputs, self.inputs = self.zeros.shape
        else:
            self.outputs = 1
            self.inputs = 1

    @property
    def poles(self):
        """Poles of the `ZerosPolesGain` system."""
        return self._poles

    @poles.setter
    def poles(self, poles):
        self._poles = atleast_1d(poles)

    @property
    def gain(self):
        """Gain of the `ZerosPolesGain` system."""
        return self._gain

    @gain.setter
    def gain(self, gain):
        self._gain = gain

    def _copy(self, system):
        """
        Copy the parameters of another `ZerosPolesGain` system.

        Parameters
        ----------
        system : instance of `ZerosPolesGain`
            The zeros, poles gain system that is to be copied

        """
        self.poles = system.poles
        self.zeros = system.zeros
        self.gain = system.gain

    def to_tf(self):
        """
        Convert system representation to `TransferFunction`.

        Returns
        -------
        sys : instance of `TransferFunction`
            Transfer function of the current system

        """
        return TransferFunction(*zpk2tf(self.zeros, self.poles, self.gain),
                                **self._dt_dict)

    def to_zpk(self):
        """
        Return a copy of the current 'ZerosPolesGain' system.

        Returns
        -------
        sys : instance of `ZerosPolesGain`
            The current system (copy)

        """
        return copy.deepcopy(self)

    def to_ss(self):
        """
        Convert system representation to `StateSpace`.

        Returns
        -------
        sys : instance of `StateSpace`
            State space model of the current system

        """
        return StateSpace(*zpk2ss(self.zeros, self.poles, self.gain),
                          **self._dt_dict)


class ZerosPolesGainContinuous(ZerosPolesGain, lti):
    r"""
    Continuous-time Linear Time Invariant system in zeros, poles, gain form.

    Represents the system as the continuous time transfer function
    :math:`H(s)=k \prod_i (s - z[i]) / \prod_j (s - p[j])`, where :math:`k` is
    the `gain`, :math:`z` are the `zeros` and :math:`p` are the `poles`.
    Continuous-time `ZerosPolesGain` systems inherit additional functionality
    from the `lti` class.

    Parameters
    ----------
    *system : arguments
        The `ZerosPolesGain` class can be instantiated with 1 or 3
        arguments. The following gives the number of input arguments and their
        interpretation:

            * 1: `lti` system: (`StateSpace`, `TransferFunction` or
              `ZerosPolesGain`)
            * 3: array_like: (zeros, poles, gain)

    See Also
    --------
    TransferFunction, StateSpace, lti
    zpk2ss, zpk2tf, zpk2sos

    Notes
    -----
    Changing the value of properties that are not part of the
    `ZerosPolesGain` system representation (such as the `A`, `B`, `C`, `D`
    state-space matrices) is very inefficient and may lead to numerical
    inaccuracies.  It is better to convert to the specific system
    representation first. For example, call ``sys = sys.to_ss()`` before
    accessing/changing the A, B, C, D system matrices.

    Examples
    --------
    >>> from scipy import signal

    Transfer function: H(s) = 5(s - 1)(s - 2) / (s - 3)(s - 4)

    >>> signal.ZerosPolesGain([1, 2], [3, 4], 5)
    ZerosPolesGainContinuous(
    array([1, 2]),
    array([3, 4]),
    5,
    dt: None
    )

    """
    def to_discrete(self, dt, method='zoh', alpha=None):
        """
        Returns the discretized `ZerosPolesGain` system.

        Parameters: See `cont2discrete` for details.

        Returns
        -------
        sys: instance of `dlti` and `ZerosPolesGain`
        """
        return ZerosPolesGain(
            *cont2discrete((self.zeros, self.poles, self.gain),
                           dt,
                           method=method,
                           alpha=alpha)[:-1],
            dt=dt)


class ZerosPolesGainDiscrete(ZerosPolesGain, dlti):
    r"""
    Discrete-time Linear Time Invariant system in zeros, poles, gain form.

    Represents the system as the discrete-time transfer function
    :math:`H(s)=k \prod_i (s - z[i]) / \prod_j (s - p[j])`, where :math:`k` is
    the `gain`, :math:`z` are the `zeros` and :math:`p` are the `poles`.
    Discrete-time `ZerosPolesGain` systems inherit additional functionality
    from the `dlti` class.

    Parameters
    ----------
    *system : arguments
        The `ZerosPolesGain` class can be instantiated with 1 or 3
        arguments. The following gives the number of input arguments and their
        interpretation:

            * 1: `dlti` system: (`StateSpace`, `TransferFunction` or
              `ZerosPolesGain`)
            * 3: array_like: (zeros, poles, gain)
    dt: float, optional
        Sampling time [s] of the discrete-time systems. Defaults to `True`
        (unspecified sampling time). Must be specified as a keyword argument,
        for example, ``dt=0.1``.

    See Also
    --------
    TransferFunction, StateSpace, dlti
    zpk2ss, zpk2tf, zpk2sos

    Notes
    -----
    Changing the value of properties that are not part of the
    `ZerosPolesGain` system representation (such as the `A`, `B`, `C`, `D`
    state-space matrices) is very inefficient and may lead to numerical
    inaccuracies.  It is better to convert to the specific system
    representation first. For example, call ``sys = sys.to_ss()`` before
    accessing/changing the A, B, C, D system matrices.

    Examples
    --------
    >>> from scipy import signal

    Transfer function: H(s) = 5(s - 1)(s - 2) / (s - 3)(s - 4)

    >>> signal.ZerosPolesGain([1, 2], [3, 4], 5)
    ZerosPolesGainContinuous(
    array([1, 2]),
    array([3, 4]),
    5,
    dt: None
    )

    Transfer function: H(z) = 5(z - 1)(z - 2) / (z - 3)(z - 4)

    >>> signal.ZerosPolesGain([1, 2], [3, 4], 5, dt=0.1)
    ZerosPolesGainDiscrete(
    array([1, 2]),
    array([3, 4]),
    5,
    dt: 0.1
    )

    """
    pass


def _atleast_2d_or_none(arg):
    if arg is not None:
        return atleast_2d(arg)


class StateSpace(LinearTimeInvariant):
    r"""
    Linear Time Invariant system in state-space form.

    Represents the system as the continuous-time, first order differential
    equation :math:`\dot{x} = A x + B u` or the discrete-time difference
    equation :math:`x[k+1] = A x[k] + B u[k]`. `StateSpace` systems
    inherit additional functionality from the `lti`, respectively the `dlti`
    classes, depending on which system representation is used.

    Parameters
    ----------
    *system: arguments
        The `StateSpace` class can be instantiated with 1 or 3 arguments.
        The following gives the number of input arguments and their
        interpretation:

            * 1: `lti` or `dlti` system: (`StateSpace`, `TransferFunction` or
              `ZerosPolesGain`)
            * 4: array_like: (A, B, C, D)
    dt: float, optional
        Sampling time [s] of the discrete-time systems. Defaults to `None`
        (continuous-time). Must be specified as a keyword argument, for
        example, ``dt=0.1``.

    See Also
    --------
    TransferFunction, ZerosPolesGain, lti, dlti
    ss2zpk, ss2tf, zpk2sos

    Notes
    -----
    Changing the value of properties that are not part of the
    `StateSpace` system representation (such as `zeros` or `poles`) is very
    inefficient and may lead to numerical inaccuracies.  It is better to
    convert to the specific system representation first. For example, call
    ``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.

    Examples
    --------
    >>> from scipy import signal

    >>> a = np.array([[0, 1], [0, 0]])
    >>> b = np.array([[0], [1]])
    >>> c = np.array([[1, 0]])
    >>> d = np.array([[0]])

    >>> sys = signal.StateSpace(a, b, c, d)
    >>> print(sys)
    StateSpaceContinuous(
    array([[0, 1],
           [0, 0]]),
    array([[0],
           [1]]),
    array([[1, 0]]),
    array([[0]]),
    dt: None
    )

    >>> sys.to_discrete(0.1)
    StateSpaceDiscrete(
    array([[1. , 0.1],
           [0. , 1. ]]),
    array([[0.005],
           [0.1  ]]),
    array([[1, 0]]),
    array([[0]]),
    dt: 0.1
    )

    >>> a = np.array([[1, 0.1], [0, 1]])
    >>> b = np.array([[0.005], [0.1]])

    >>> signal.StateSpace(a, b, c, d, dt=0.1)
    StateSpaceDiscrete(
    array([[1. , 0.1],
           [0. , 1. ]]),
    array([[0.005],
           [0.1  ]]),
    array([[1, 0]]),
    array([[0]]),
    dt: 0.1
    )

    """

    # Override NumPy binary operations and ufuncs
    __array_priority__ = 100.0
    __array_ufunc__ = None

    def __new__(cls, *system, **kwargs):
        """Create new StateSpace object and settle inheritance."""
        # Handle object conversion if input is an instance of `lti`
        if len(system) == 1 and isinstance(system[0], LinearTimeInvariant):
            return system[0].to_ss()

        # Choose whether to inherit from `lti` or from `dlti`
        if cls is StateSpace:
            if kwargs.get('dt') is None:
                return StateSpaceContinuous.__new__(StateSpaceContinuous,
                                                    *system, **kwargs)
            else:
                return StateSpaceDiscrete.__new__(StateSpaceDiscrete,
                                                  *system, **kwargs)

        # No special conversion needed
        return super(StateSpace, cls).__new__(cls)

    def __init__(self, *system, **kwargs):
        """Initialize the state space lti/dlti system."""
        # Conversion of lti instances is handled in __new__
        if isinstance(system[0], LinearTimeInvariant):
            return

        # Remove system arguments, not needed by parents anymore
        super(StateSpace, self).__init__(**kwargs)

        self._A = None
        self._B = None
        self._C = None
        self._D = None

        self.A, self.B, self.C, self.D = abcd_normalize(*system)

    def __repr__(self):
        """Return representation of the `StateSpace` system."""
        return '{0}(\n{1},\n{2},\n{3},\n{4},\ndt: {5}\n)'.format(
            self.__class__.__name__,
            repr(self.A),
            repr(self.B),
            repr(self.C),
            repr(self.D),
            repr(self.dt),
            )

    def _check_binop_other(self, other):
        return isinstance(other, (StateSpace, np.ndarray, float, complex,
                                  np.number) + six.integer_types)

    def __mul__(self, other):
        """
        Post-multiply another system or a scalar

        Handles multiplication of systems in the sense of a frequency domain
        multiplication. That means, given two systems E1(s) and E2(s), their
        multiplication, H(s) = E1(s) * E2(s), means that applying H(s) to U(s)
        is equivalent to first applying E2(s), and then E1(s).

        Notes
        -----
        For SISO systems the order of system application does not matter.
        However, for MIMO systems, where the two systems are matrices, the
        order above ensures standard Matrix multiplication rules apply.
        """
        if not self._check_binop_other(other):
            return NotImplemented

        if isinstance(other, StateSpace):
            # Disallow mix of discrete and continuous systems.
            if type(other) is not type(self):
                return NotImplemented

            if self.dt != other.dt:
                raise TypeError('Cannot multiply systems with different `dt`.')

            n1 = self.A.shape[0]
            n2 = other.A.shape[0]

            # Interconnection of systems
            # x1' = A1 x1 + B1 u1
            # y1  = C1 x1 + D1 u1
            # x2' = A2 x2 + B2 y1
            # y2  = C2 x2 + D2 y1
            #
            # Plugging in with u1 = y2 yields
            # [x1']   [A1 B1*C2 ] [x1]   [B1*D2]
            # [x2'] = [0  A2    ] [x2] + [B2   ] u2
            #                    [x1]
            #  y2   = [C1 D1*C2] [x2] + D1*D2 u2
            a = np.vstack((np.hstack((self.A, np.dot(self.B, other.C))),
                           np.hstack((zeros((n2, n1)), other.A))))
            b = np.vstack((np.dot(self.B, other.D), other.B))
            c = np.hstack((self.C, np.dot(self.D, other.C)))
            d = np.dot(self.D, other.D)
        else:
            # Assume that other is a scalar / matrix
            # For post multiplication the input gets scaled
            a = self.A
            b = np.dot(self.B, other)
            c = self.C
            d = np.dot(self.D, other)

        common_dtype = np.find_common_type((a.dtype, b.dtype, c.dtype, d.dtype), ())
        return StateSpace(np.asarray(a, dtype=common_dtype),
                          np.asarray(b, dtype=common_dtype),
                          np.asarray(c, dtype=common_dtype),
                          np.asarray(d, dtype=common_dtype))

    def __rmul__(self, other):
        """Pre-multiply a scalar or matrix (but not StateSpace)"""
        if not self._check_binop_other(other) or isinstance(other, StateSpace):
            return NotImplemented

        # For pre-multiplication only the output gets scaled
        a = self.A
        b = self.B
        c = np.dot(other, self.C)
        d = np.dot(other, self.D)

        common_dtype = np.find_common_type((a.dtype, b.dtype, c.dtype, d.dtype), ())
        return StateSpace(np.asarray(a, dtype=common_dtype),
                          np.asarray(b, dtype=common_dtype),
                          np.asarray(c, dtype=common_dtype),
                          np.asarray(d, dtype=common_dtype))

    def __neg__(self):
        """Negate the system (equivalent to pre-multiplying by -1)."""
        return StateSpace(self.A, self.B, -self.C, -self.D)

    def __add__(self, other):
        """
        Adds two systems in the sense of frequency domain addition.
        """
        if not self._check_binop_other(other):
            return NotImplemented

        if isinstance(other, StateSpace):
            # Disallow mix of discrete and continuous systems.
            if type(other) is not type(self):
                raise TypeError('Cannot add {} and {}'.format(type(self),
                                                              type(other)))

            if self.dt != other.dt:
                raise TypeError('Cannot add systems with different `dt`.')
            # Interconnection of systems
            # x1' = A1 x1 + B1 u
            # y1  = C1 x1 + D1 u
            # x2' = A2 x2 + B2 u
            # y2  = C2 x2 + D2 u
            # y   = y1 + y2
            #
            # Plugging in yields
            # [x1']   [A1 0 ] [x1]   [B1]
            # [x2'] = [0  A2] [x2] + [B2] u
            #                 [x1]
            #  y    = [C1 C2] [x2] + [D1 + D2] u
            a = linalg.block_diag(self.A, other.A)
            b = np.vstack((self.B, other.B))
            c = np.hstack((self.C, other.C))
            d = self.D + other.D
        else:
            other = np.atleast_2d(other)
            if self.D.shape == other.shape:
                # A scalar/matrix is really just a static system (A=0, B=0, C=0)
                a = self.A
                b = self.B
                c = self.C
                d = self.D + other
            else:
                raise ValueError("Cannot add systems with incompatible dimensions")

        common_dtype = np.find_common_type((a.dtype, b.dtype, c.dtype, d.dtype), ())
        return StateSpace(np.asarray(a, dtype=common_dtype),
                          np.asarray(b, dtype=common_dtype),
                          np.asarray(c, dtype=common_dtype),
                          np.asarray(d, dtype=common_dtype))

    def __sub__(self, other):
        if not self._check_binop_other(other):
            return NotImplemented

        return self.__add__(-other)

    def __radd__(self, other):
        if not self._check_binop_other(other):
            return NotImplemented

        return self.__add__(other)

    def __rsub__(self, other):
        if not self._check_binop_other(other):
            return NotImplemented

        return (-self).__add__(other)

    def __truediv__(self, other):
        """
        Divide by a scalar
        """
        # Division by non-StateSpace scalars
        if not self._check_binop_other(other) or isinstance(other, StateSpace):
            return NotImplemented

        if isinstance(other, np.ndarray) and other.ndim > 0:
            # It's ambiguous what this means, so disallow it
            raise ValueError("Cannot divide StateSpace by non-scalar numpy arrays")

        return self.__mul__(1/other)

    @property
    def A(self):
        """State matrix of the `StateSpace` system."""
        return self._A

    @A.setter
    def A(self, A):
        self._A = _atleast_2d_or_none(A)

    @property
    def B(self):
        """Input matrix of the `StateSpace` system."""
        return self._B

    @B.setter
    def B(self, B):
        self._B = _atleast_2d_or_none(B)
        self.inputs = self.B.shape[-1]

    @property
    def C(self):
        """Output matrix of the `StateSpace` system."""
        return self._C

    @C.setter
    def C(self, C):
        self._C = _atleast_2d_or_none(C)
        self.outputs = self.C.shape[0]

    @property
    def D(self):
        """Feedthrough matrix of the `StateSpace` system."""
        return self._D

    @D.setter
    def D(self, D):
        self._D = _atleast_2d_or_none(D)

    def _copy(self, system):
        """
        Copy the parameters of another `StateSpace` system.

        Parameters
        ----------
        system : instance of `StateSpace`
            The state-space system that is to be copied

        """
        self.A = system.A
        self.B = system.B
        self.C = system.C
        self.D = system.D

    def to_tf(self, **kwargs):
        """
        Convert system representation to `TransferFunction`.

        Parameters
        ----------
        kwargs : dict, optional
            Additional keywords passed to `ss2zpk`

        Returns
        -------
        sys : instance of `TransferFunction`
            Transfer function of the current system

        """
        return TransferFunction(*ss2tf(self._A, self._B, self._C, self._D,
                                       **kwargs), **self._dt_dict)

    def to_zpk(self, **kwargs):
        """
        Convert system representation to `ZerosPolesGain`.

        Parameters
        ----------
        kwargs : dict, optional
            Additional keywords passed to `ss2zpk`

        Returns
        -------
        sys : instance of `ZerosPolesGain`
            Zeros, poles, gain representation of the current system

        """
        return ZerosPolesGain(*ss2zpk(self._A, self._B, self._C, self._D,
                                      **kwargs), **self._dt_dict)

    def to_ss(self):
        """
        Return a copy of the current `StateSpace` system.

        Returns
        -------
        sys : instance of `StateSpace`
            The current system (copy)

        """
        return copy.deepcopy(self)


class StateSpaceContinuous(StateSpace, lti):
    r"""
    Continuous-time Linear Time Invariant system in state-space form.

    Represents the system as the continuous-time, first order differential
    equation :math:`\dot{x} = A x + B u`.
    Continuous-time `StateSpace` systems inherit additional functionality
    from the `lti` class.

    Parameters
    ----------
    *system: arguments
        The `StateSpace` class can be instantiated with 1 or 3 arguments.
        The following gives the number of input arguments and their
        interpretation:

            * 1: `lti` system: (`StateSpace`, `TransferFunction` or
              `ZerosPolesGain`)
            * 4: array_like: (A, B, C, D)

    See Also
    --------
    TransferFunction, ZerosPolesGain, lti
    ss2zpk, ss2tf, zpk2sos

    Notes
    -----
    Changing the value of properties that are not part of the
    `StateSpace` system representation (such as `zeros` or `poles`) is very
    inefficient and may lead to numerical inaccuracies.  It is better to
    convert to the specific system representation first. For example, call
    ``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.

    Examples
    --------
    >>> from scipy import signal

    >>> a = np.array([[0, 1], [0, 0]])
    >>> b = np.array([[0], [1]])
    >>> c = np.array([[1, 0]])
    >>> d = np.array([[0]])

    >>> sys = signal.StateSpace(a, b, c, d)
    >>> print(sys)
    StateSpaceContinuous(
    array([[0, 1],
           [0, 0]]),
    array([[0],
           [1]]),
    array([[1, 0]]),
    array([[0]]),
    dt: None
    )

    """
    def to_discrete(self, dt, method='zoh', alpha=None):
        """
        Returns the discretized `StateSpace` system.

        Parameters: See `cont2discrete` for details.

        Returns
        -------
        sys: instance of `dlti` and `StateSpace`
        """
        return StateSpace(*cont2discrete((self.A, self.B, self.C, self.D),
                                         dt,
                                         method=method,
                                         alpha=alpha)[:-1],
                          dt=dt)


class StateSpaceDiscrete(StateSpace, dlti):
    r"""
    Discrete-time Linear Time Invariant system in state-space form.

    Represents the system as the discrete-time difference equation
    :math:`x[k+1] = A x[k] + B u[k]`.
    `StateSpace` systems inherit additional functionality from the `dlti`
    class.

    Parameters
    ----------
    *system: arguments
        The `StateSpace` class can be instantiated with 1 or 3 arguments.
        The following gives the number of input arguments and their
        interpretation:

            * 1: `dlti` system: (`StateSpace`, `TransferFunction` or
              `ZerosPolesGain`)
            * 4: array_like: (A, B, C, D)
    dt: float, optional
        Sampling time [s] of the discrete-time systems. Defaults to `True`
        (unspecified sampling time). Must be specified as a keyword argument,
        for example, ``dt=0.1``.

    See Also
    --------
    TransferFunction, ZerosPolesGain, dlti
    ss2zpk, ss2tf, zpk2sos

    Notes
    -----
    Changing the value of properties that are not part of the
    `StateSpace` system representation (such as `zeros` or `poles`) is very
    inefficient and may lead to numerical inaccuracies.  It is better to
    convert to the specific system representation first. For example, call
    ``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.

    Examples
    --------
    >>> from scipy import signal

    >>> a = np.array([[1, 0.1], [0, 1]])
    >>> b = np.array([[0.005], [0.1]])
    >>> c = np.array([[1, 0]])
    >>> d = np.array([[0]])

    >>> signal.StateSpace(a, b, c, d, dt=0.1)
    StateSpaceDiscrete(
    array([[ 1. ,  0.1],
           [ 0. ,  1. ]]),
    array([[ 0.005],
           [ 0.1  ]]),
    array([[1, 0]]),
    array([[0]]),
    dt: 0.1
    )

    """
    pass


def lsim2(system, U=None, T=None, X0=None, **kwargs):
    """
    Simulate output of a continuous-time linear system, by using
    the ODE solver `scipy.integrate.odeint`.

    Parameters
    ----------
    system : an instance of the `lti` class or a tuple describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

        * 1: (instance of `lti`)
        * 2: (num, den)
        * 3: (zeros, poles, gain)
        * 4: (A, B, C, D)

    U : array_like (1D or 2D), optional
        An input array describing the input at each time T.  Linear
        interpolation is used between given times.  If there are
        multiple inputs, then each column of the rank-2 array
        represents an input.  If U is not given, the input is assumed
        to be zero.
    T : array_like (1D or 2D), optional
        The time steps at which the input is defined and at which the
        output is desired.  The default is 101 evenly spaced points on
        the interval [0,10.0].
    X0 : array_like (1D), optional
        The initial condition of the state vector.  If `X0` is not
        given, the initial conditions are assumed to be 0.
    kwargs : dict
        Additional keyword arguments are passed on to the function
        `odeint`.  See the notes below for more details.

    Returns
    -------
    T : 1D ndarray
        The time values for the output.
    yout : ndarray
        The response of the system.
    xout : ndarray
        The time-evolution of the state-vector.

    Notes
    -----
    This function uses `scipy.integrate.odeint` to solve the
    system's differential equations.  Additional keyword arguments
    given to `lsim2` are passed on to `odeint`.  See the documentation
    for `scipy.integrate.odeint` for the full list of arguments.

    If (num, den) is passed in for ``system``, coefficients for both the
    numerator and denominator should be specified in descending exponent
    order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).

    """
    if isinstance(system, lti):
        sys = system._as_ss()
    elif isinstance(system, dlti):
        raise AttributeError('lsim2 can only be used with continuous-time '
                             'systems.')
    else:
        sys = lti(*system)._as_ss()

    if X0 is None:
        X0 = zeros(sys.B.shape[0], sys.A.dtype)

    if T is None:
        # XXX T should really be a required argument, but U was
        # changed from a required positional argument to a keyword,
        # and T is after U in the argument list.  So we either: change
        # the API and move T in front of U; check here for T being
        # None and raise an exception; or assign a default value to T
        # here.  This code implements the latter.
        T = linspace(0, 10.0, 101)

    T = atleast_1d(T)
    if len(T.shape) != 1:
        raise ValueError("T must be a rank-1 array.")

    if U is not None:
        U = atleast_1d(U)
        if len(U.shape) == 1:
            U = U.reshape(-1, 1)
        sU = U.shape
        if sU[0] != len(T):
            raise ValueError("U must have the same number of rows "
                             "as elements in T.")

        if sU[1] != sys.inputs:
            raise ValueError("The number of inputs in U (%d) is not "
                             "compatible with the number of system "
                             "inputs (%d)" % (sU[1], sys.inputs))
        # Create a callable that uses linear interpolation to
        # calculate the input at any time.
        ufunc = interpolate.interp1d(T, U, kind='linear',
                                     axis=0, bounds_error=False)

        def fprime(x, t, sys, ufunc):
            """The vector field of the linear system."""
            return dot(sys.A, x) + squeeze(dot(sys.B, nan_to_num(ufunc([t]))))
        xout = integrate.odeint(fprime, X0, T, args=(sys, ufunc), **kwargs)
        yout = dot(sys.C, transpose(xout)) + dot(sys.D, transpose(U))
    else:
        def fprime(x, t, sys):
            """The vector field of the linear system."""
            return dot(sys.A, x)
        xout = integrate.odeint(fprime, X0, T, args=(sys,), **kwargs)
        yout = dot(sys.C, transpose(xout))

    return T, squeeze(transpose(yout)), xout


def _cast_to_array_dtype(in1, in2):
    """Cast array to dtype of other array, while avoiding ComplexWarning.

    Those can be raised when casting complex to real.
    """
    if numpy.issubdtype(in2.dtype, numpy.float):
        # dtype to cast to is not complex, so use .real
        in1 = in1.real.astype(in2.dtype)
    else:
        in1 = in1.astype(in2.dtype)

    return in1


def lsim(system, U, T, X0=None, interp=True):
    """
    Simulate output of a continuous-time linear system.

    Parameters
    ----------
    system : an instance of the LTI class or a tuple describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

        * 1: (instance of `lti`)
        * 2: (num, den)
        * 3: (zeros, poles, gain)
        * 4: (A, B, C, D)

    U : array_like
        An input array describing the input at each time `T`
        (interpolation is assumed between given times).  If there are
        multiple inputs, then each column of the rank-2 array
        represents an input.  If U = 0 or None, a zero input is used.
    T : array_like
        The time steps at which the input is defined and at which the
        output is desired.  Must be nonnegative, increasing, and equally spaced.
    X0 : array_like, optional
        The initial conditions on the state vector (zero by default).
    interp : bool, optional
        Whether to use linear (True, the default) or zero-order-hold (False)
        interpolation for the input array.

    Returns
    -------
    T : 1D ndarray
        Time values for the output.
    yout : 1D ndarray
        System response.
    xout : ndarray
        Time evolution of the state vector.

    Notes
    -----
    If (num, den) is passed in for ``system``, coefficients for both the
    numerator and denominator should be specified in descending exponent
    order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).

    Examples
    --------
    Simulate a double integrator y'' = u, with a constant input u = 1

    >>> from scipy import signal
    >>> system = signal.lti([[0., 1.], [0., 0.]], [[0.], [1.]], [[1., 0.]], 0.)
    >>> t = np.linspace(0, 5)
    >>> u = np.ones_like(t)
    >>> tout, y, x = signal.lsim(system, u, t)
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(t, y)
    """
    if isinstance(system, lti):
        sys = system._as_ss()
    elif isinstance(system, dlti):
        raise AttributeError('lsim can only be used with continuous-time '
                             'systems.')
    else:
        sys = lti(*system)._as_ss()
    T = atleast_1d(T)
    if len(T.shape) != 1:
        raise ValueError("T must be a rank-1 array.")

    A, B, C, D = map(np.asarray, (sys.A, sys.B, sys.C, sys.D))
    n_states = A.shape[0]
    n_inputs = B.shape[1]

    n_steps = T.size
    if X0 is None:
        X0 = zeros(n_states, sys.A.dtype)
    xout = zeros((n_steps, n_states), sys.A.dtype)

    if T[0] == 0:
        xout[0] = X0
    elif T[0] > 0:
        # step forward to initial time, with zero input
        xout[0] = dot(X0, linalg.expm(transpose(A) * T[0]))
    else:
        raise ValueError("Initial time must be nonnegative")

    no_input = (U is None or
                (isinstance(U, (int, float)) and U == 0.) or
                not np.any(U))

    if n_steps == 1:
        yout = squeeze(dot(xout, transpose(C)))
        if not no_input:
            yout += squeeze(dot(U, transpose(D)))
        return T, squeeze(yout), squeeze(xout)

    dt = T[1] - T[0]
    if not np.allclose((T[1:] - T[:-1]) / dt, 1.0):
        warnings.warn("Non-uniform timesteps are deprecated. Results may be "
                      "slow and/or inaccurate.", DeprecationWarning)
        return lsim2(system, U, T, X0)

    if no_input:
        # Zero input: just use matrix exponential
        # take transpose because state is a row vector
        expAT_dt = linalg.expm(transpose(A) * dt)
        for i in xrange(1, n_steps):
            xout[i] = dot(xout[i-1], expAT_dt)
        yout = squeeze(dot(xout, transpose(C)))
        return T, squeeze(yout), squeeze(xout)

    # Nonzero input
    U = atleast_1d(U)
    if U.ndim == 1:
        U = U[:, np.newaxis]

    if U.shape[0] != n_steps:
        raise ValueError("U must have the same number of rows "
                         "as elements in T.")

    if U.shape[1] != n_inputs:
        raise ValueError("System does not define that many inputs.")

    if not interp:
        # Zero-order hold
        # Algorithm: to integrate from time 0 to time dt, we solve
        #   xdot = A x + B u,  x(0) = x0
        #   udot = 0,          u(0) = u0.
        #
        # Solution is
        #   [ x(dt) ]       [ A*dt   B*dt ] [ x0 ]
        #   [ u(dt) ] = exp [  0     0    ] [ u0 ]
        M = np.vstack([np.hstack([A * dt, B * dt]),
                       np.zeros((n_inputs, n_states + n_inputs))])
        # transpose everything because the state and input are row vectors
        expMT = linalg.expm(transpose(M))
        Ad = expMT[:n_states, :n_states]
        Bd = expMT[n_states:, :n_states]
        for i in xrange(1, n_steps):
            xout[i] = dot(xout[i-1], Ad) + dot(U[i-1], Bd)
    else:
        # Linear interpolation between steps
        # Algorithm: to integrate from time 0 to time dt, with linear
        # interpolation between inputs u(0) = u0 and u(dt) = u1, we solve
        #   xdot = A x + B u,        x(0) = x0
        #   udot = (u1 - u0) / dt,   u(0) = u0.
        #
        # Solution is
        #   [ x(dt) ]       [ A*dt  B*dt  0 ] [  x0   ]
        #   [ u(dt) ] = exp [  0     0    I ] [  u0   ]
        #   [u1 - u0]       [  0     0    0 ] [u1 - u0]
        M = np.vstack([np.hstack([A * dt, B * dt,
                                  np.zeros((n_states, n_inputs))]),
                       np.hstack([np.zeros((n_inputs, n_states + n_inputs)),
                                  np.identity(n_inputs)]),
                       np.zeros((n_inputs, n_states + 2 * n_inputs))])
        expMT = linalg.expm(transpose(M))
        Ad = expMT[:n_states, :n_states]
        Bd1 = expMT[n_states+n_inputs:, :n_states]
        Bd0 = expMT[n_states:n_states + n_inputs, :n_states] - Bd1
        for i in xrange(1, n_steps):
            xout[i] = (dot(xout[i-1], Ad) + dot(U[i-1], Bd0) + dot(U[i], Bd1))

    yout = (squeeze(dot(xout, transpose(C))) + squeeze(dot(U, transpose(D))))
    return T, squeeze(yout), squeeze(xout)


def _default_response_times(A, n):
    """Compute a reasonable set of time samples for the response time.

    This function is used by `impulse`, `impulse2`, `step` and `step2`
    to compute the response time when the `T` argument to the function
    is None.

    Parameters
    ----------
    A : array_like
        The system matrix, which is square.
    n : int
        The number of time samples to generate.

    Returns
    -------
    t : ndarray
        The 1-D array of length `n` of time samples at which the response
        is to be computed.
    """
    # Create a reasonable time interval.
    # TODO: This could use some more work.
    # For example, what is expected when the system is unstable?
    vals = linalg.eigvals(A)
    r = min(abs(real(vals)))
    if r == 0.0:
        r = 1.0
    tc = 1.0 / r
    t = linspace(0.0, 7 * tc, n)
    return t


def impulse(system, X0=None, T=None, N=None):
    """Impulse response of continuous-time system.

    Parameters
    ----------
    system : an instance of the LTI class or a tuple of array_like
        describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 1 (instance of `lti`)
            * 2 (num, den)
            * 3 (zeros, poles, gain)
            * 4 (A, B, C, D)

    X0 : array_like, optional
        Initial state-vector.  Defaults to zero.
    T : array_like, optional
        Time points.  Computed if not given.
    N : int, optional
        The number of time points to compute (if `T` is not given).

    Returns
    -------
    T : ndarray
        A 1-D array of time points.
    yout : ndarray
        A 1-D array containing the impulse response of the system (except for
        singularities at zero).

    Notes
    -----
    If (num, den) is passed in for ``system``, coefficients for both the
    numerator and denominator should be specified in descending exponent
    order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).

    Examples
    --------
    Second order system with a repeated root: x''(t) + 2*x(t) + x(t) = u(t)

    >>> from scipy import signal
    >>> system = ([1.0], [1.0, 2.0, 1.0])
    >>> t, y = signal.impulse2(system)
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(t, y)

    """
    if isinstance(system, lti):
        sys = system._as_ss()
    elif isinstance(system, dlti):
        raise AttributeError('impulse can only be used with continuous-time '
                             'systems.')
    else:
        sys = lti(*system)._as_ss()
    if X0 is None:
        X = squeeze(sys.B)
    else:
        X = squeeze(sys.B + X0)
    if N is None:
        N = 100
    if T is None:
        T = _default_response_times(sys.A, N)
    else:
        T = asarray(T)

    _, h, _ = lsim(sys, 0., T, X, interp=False)
    return T, h


def impulse2(system, X0=None, T=None, N=None, **kwargs):
    """
    Impulse response of a single-input, continuous-time linear system.

    Parameters
    ----------
    system : an instance of the LTI class or a tuple of array_like
        describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 1 (instance of `lti`)
            * 2 (num, den)
            * 3 (zeros, poles, gain)
            * 4 (A, B, C, D)

    X0 : 1-D array_like, optional
        The initial condition of the state vector.  Default: 0 (the
        zero vector).
    T : 1-D array_like, optional
        The time steps at which the input is defined and at which the
        output is desired.  If `T` is not given, the function will
        generate a set of time samples automatically.
    N : int, optional
        Number of time points to compute.  Default: 100.
    kwargs : various types
        Additional keyword arguments are passed on to the function
        `scipy.signal.lsim2`, which in turn passes them on to
        `scipy.integrate.odeint`; see the latter's documentation for
        information about these arguments.

    Returns
    -------
    T : ndarray
        The time values for the output.
    yout : ndarray
        The output response of the system.

    See Also
    --------
    impulse, lsim2, scipy.integrate.odeint

    Notes
    -----
    The solution is generated by calling `scipy.signal.lsim2`, which uses
    the differential equation solver `scipy.integrate.odeint`.

    If (num, den) is passed in for ``system``, coefficients for both the
    numerator and denominator should be specified in descending exponent
    order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).

    .. versionadded:: 0.8.0

    Examples
    --------
    Second order system with a repeated root: x''(t) + 2*x(t) + x(t) = u(t)

    >>> from scipy import signal
    >>> system = ([1.0], [1.0, 2.0, 1.0])
    >>> t, y = signal.impulse2(system)
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(t, y)

    """
    if isinstance(system, lti):
        sys = system._as_ss()
    elif isinstance(system, dlti):
        raise AttributeError('impulse2 can only be used with continuous-time '
                             'systems.')
    else:
        sys = lti(*system)._as_ss()
    B = sys.B
    if B.shape[-1] != 1:
        raise ValueError("impulse2() requires a single-input system.")
    B = B.squeeze()
    if X0 is None:
        X0 = zeros_like(B)
    if N is None:
        N = 100
    if T is None:
        T = _default_response_times(sys.A, N)

    # Move the impulse in the input to the initial conditions, and then
    # solve using lsim2().
    ic = B + X0
    Tr, Yr, Xr = lsim2(sys, T=T, X0=ic, **kwargs)
    return Tr, Yr


def step(system, X0=None, T=None, N=None):
    """Step response of continuous-time system.

    Parameters
    ----------
    system : an instance of the LTI class or a tuple of array_like
        describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 1 (instance of `lti`)
            * 2 (num, den)
            * 3 (zeros, poles, gain)
            * 4 (A, B, C, D)

    X0 : array_like, optional
        Initial state-vector (default is zero).
    T : array_like, optional
        Time points (computed if not given).
    N : int, optional
        Number of time points to compute if `T` is not given.

    Returns
    -------
    T : 1D ndarray
        Output time points.
    yout : 1D ndarray
        Step response of system.

    See also
    --------
    scipy.signal.step2

    Notes
    -----
    If (num, den) is passed in for ``system``, coefficients for both the
    numerator and denominator should be specified in descending exponent
    order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> lti = signal.lti([1.0], [1.0, 1.0])
    >>> t, y = signal.step(lti)
    >>> plt.plot(t, y)
    >>> plt.xlabel('Time [s]')
    >>> plt.ylabel('Amplitude')
    >>> plt.title('Step response for 1. Order Lowpass')
    >>> plt.grid()

    """
    if isinstance(system, lti):
        sys = system._as_ss()
    elif isinstance(system, dlti):
        raise AttributeError('step can only be used with continuous-time '
                             'systems.')
    else:
        sys = lti(*system)._as_ss()
    if N is None:
        N = 100
    if T is None:
        T = _default_response_times(sys.A, N)
    else:
        T = asarray(T)
    U = ones(T.shape, sys.A.dtype)
    vals = lsim(sys, U, T, X0=X0, interp=False)
    return vals[0], vals[1]


def step2(system, X0=None, T=None, N=None, **kwargs):
    """Step response of continuous-time system.

    This function is functionally the same as `scipy.signal.step`, but
    it uses the function `scipy.signal.lsim2` to compute the step
    response.

    Parameters
    ----------
    system : an instance of the LTI class or a tuple of array_like
        describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 1 (instance of `lti`)
            * 2 (num, den)
            * 3 (zeros, poles, gain)
            * 4 (A, B, C, D)

    X0 : array_like, optional
        Initial state-vector (default is zero).
    T : array_like, optional
        Time points (computed if not given).
    N : int, optional
        Number of time points to compute if `T` is not given.
    kwargs : various types
        Additional keyword arguments are passed on the function
        `scipy.signal.lsim2`, which in turn passes them on to
        `scipy.integrate.odeint`.  See the documentation for
        `scipy.integrate.odeint` for information about these arguments.

    Returns
    -------
    T : 1D ndarray
        Output time points.
    yout : 1D ndarray
        Step response of system.

    See also
    --------
    scipy.signal.step

    Notes
    -----
    If (num, den) is passed in for ``system``, coefficients for both the
    numerator and denominator should be specified in descending exponent
    order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).

    .. versionadded:: 0.8.0

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> lti = signal.lti([1.0], [1.0, 1.0])
    >>> t, y = signal.step2(lti)
    >>> plt.plot(t, y)
    >>> plt.xlabel('Time [s]')
    >>> plt.ylabel('Amplitude')
    >>> plt.title('Step response for 1. Order Lowpass')
    >>> plt.grid()

    """
    if isinstance(system, lti):
        sys = system._as_ss()
    elif isinstance(system, dlti):
        raise AttributeError('step2 can only be used with continuous-time '
                             'systems.')
    else:
        sys = lti(*system)._as_ss()
    if N is None:
        N = 100
    if T is None:
        T = _default_response_times(sys.A, N)
    else:
        T = asarray(T)
    U = ones(T.shape, sys.A.dtype)
    vals = lsim2(sys, U, T, X0=X0, **kwargs)
    return vals[0], vals[1]


def bode(system, w=None, n=100):
    """
    Calculate Bode magnitude and phase data of a continuous-time system.

    Parameters
    ----------
    system : an instance of the LTI class or a tuple describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 1 (instance of `lti`)
            * 2 (num, den)
            * 3 (zeros, poles, gain)
            * 4 (A, B, C, D)

    w : array_like, optional
        Array of frequencies (in rad/s). Magnitude and phase data is calculated
        for every value in this array. If not given a reasonable set will be
        calculated.
    n : int, optional
        Number of frequency points to compute if `w` is not given. The `n`
        frequencies are logarithmically spaced in an interval chosen to
        include the influence of the poles and zeros of the system.

    Returns
    -------
    w : 1D ndarray
        Frequency array [rad/s]
    mag : 1D ndarray
        Magnitude array [dB]
    phase : 1D ndarray
        Phase array [deg]

    Notes
    -----
    If (num, den) is passed in for ``system``, coefficients for both the
    numerator and denominator should be specified in descending exponent
    order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).

    .. versionadded:: 0.11.0

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    >>> sys = signal.TransferFunction([1], [1, 1])
    >>> w, mag, phase = signal.bode(sys)

    >>> plt.figure()
    >>> plt.semilogx(w, mag)    # Bode magnitude plot
    >>> plt.figure()
    >>> plt.semilogx(w, phase)  # Bode phase plot
    >>> plt.show()

    """
    w, y = freqresp(system, w=w, n=n)

    mag = 20.0 * numpy.log10(abs(y))
    phase = numpy.unwrap(numpy.arctan2(y.imag, y.real)) * 180.0 / numpy.pi

    return w, mag, phase


def freqresp(system, w=None, n=10000):
    """Calculate the frequency response of a continuous-time system.

    Parameters
    ----------
    system : an instance of the `lti` class or a tuple describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 1 (instance of `lti`)
            * 2 (num, den)
            * 3 (zeros, poles, gain)
            * 4 (A, B, C, D)

    w : array_like, optional
        Array of frequencies (in rad/s). Magnitude and phase data is
        calculated for every value in this array. If not given, a reasonable
        set will be calculated.
    n : int, optional
        Number of frequency points to compute if `w` is not given. The `n`
        frequencies are logarithmically spaced in an interval chosen to
        include the influence of the poles and zeros of the system.

    Returns
    -------
    w : 1D ndarray
        Frequency array [rad/s]
    H : 1D ndarray
        Array of complex magnitude values

    Notes
    -----
    If (num, den) is passed in for ``system``, coefficients for both the
    numerator and denominator should be specified in descending exponent
    order (e.g. ``s^2 + 3s + 5`` would be represented as ``[1, 3, 5]``).

    Examples
    --------
    Generating the Nyquist plot of a transfer function

    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    Transfer function: H(s) = 5 / (s-1)^3

    >>> s1 = signal.ZerosPolesGain([], [1, 1, 1], [5])

    >>> w, H = signal.freqresp(s1)

    >>> plt.figure()
    >>> plt.plot(H.real, H.imag, "b")
    >>> plt.plot(H.real, -H.imag, "r")
    >>> plt.show()
    """
    if isinstance(system, lti):
        if isinstance(system, (TransferFunction, ZerosPolesGain)):
            sys = system
        else:
            sys = system._as_zpk()
    elif isinstance(system, dlti):
        raise AttributeError('freqresp can only be used with continuous-time '
                             'systems.')
    else:
        sys = lti(*system)._as_zpk()

    if sys.inputs != 1 or sys.outputs != 1:
        raise ValueError("freqresp() requires a SISO (single input, single "
                         "output) system.")

    if w is not None:
        worN = w
    else:
        worN = n

    if isinstance(sys, TransferFunction):
        # In the call to freqs(), sys.num.ravel() is used because there are
        # cases where sys.num is a 2-D array with a single row.
        w, h = freqs(sys.num.ravel(), sys.den, worN=worN)

    elif isinstance(sys, ZerosPolesGain):
        w, h = freqs_zpk(sys.zeros, sys.poles, sys.gain, worN=worN)

    return w, h


# This class will be used by place_poles to return its results
# see https://code.activestate.com/recipes/52308/
class Bunch:
    def __init__(self, **kwds):
        self.__dict__.update(kwds)


def _valid_inputs(A, B, poles, method, rtol, maxiter):
    """
    Check the poles come in complex conjugage pairs
    Check shapes of A, B and poles are compatible.
    Check the method chosen is compatible with provided poles
    Return update method to use and ordered poles

    """
    poles = np.asarray(poles)
    if poles.ndim > 1:
        raise ValueError("Poles must be a 1D array like.")
    # Will raise ValueError if poles do not come in complex conjugates pairs
    poles = _order_complex_poles(poles)
    if A.ndim > 2:
        raise ValueError("A must be a 2D array/matrix.")
    if B.ndim > 2:
        raise ValueError("B must be a 2D array/matrix")
    if A.shape[0] != A.shape[1]:
        raise ValueError("A must be square")
    if len(poles) > A.shape[0]:
        raise ValueError("maximum number of poles is %d but you asked for %d" %
                         (A.shape[0], len(poles)))
    if len(poles) < A.shape[0]:
        raise ValueError("number of poles is %d but you should provide %d" %
                         (len(poles), A.shape[0]))
    r = np.linalg.matrix_rank(B)
    for p in poles:
        if sum(p == poles) > r:
            raise ValueError("at least one of the requested pole is repeated "
                             "more than rank(B) times")
    # Choose update method
    update_loop = _YT_loop
    if method not in ('KNV0','YT'):
        raise ValueError("The method keyword must be one of 'YT' or 'KNV0'")

    if method == "KNV0":
        update_loop = _KNV0_loop
        if not all(np.isreal(poles)):
            raise ValueError("Complex poles are not supported by KNV0")

    if maxiter < 1:
        raise ValueError("maxiter must be at least equal to 1")

    # We do not check rtol <= 0 as the user can use a negative rtol to
    # force maxiter iterations
    if rtol > 1:
        raise ValueError("rtol can not be greater than 1")

    return update_loop, poles


def _order_complex_poles(poles):
    """
    Check we have complex conjugates pairs and reorder P according to YT, ie
    real_poles, complex_i, conjugate complex_i, ....
    The lexicographic sort on the complex poles is added to help the user to
    compare sets of poles.
    """
    ordered_poles = np.sort(poles[np.isreal(poles)])
    im_poles = []
    for p in np.sort(poles[np.imag(poles) < 0]):
        if np.conj(p) in poles:
            im_poles.extend((p, np.conj(p)))

    ordered_poles = np.hstack((ordered_poles, im_poles))

    if poles.shape[0] != len(ordered_poles):
        raise ValueError("Complex poles must come with their conjugates")
    return ordered_poles


def _KNV0(B, ker_pole, transfer_matrix, j, poles):
    """
    Algorithm "KNV0" Kautsky et Al. Robust pole
    assignment in linear state feedback, Int journal of Control
    1985, vol 41 p 1129->1155
    https://la.epfl.ch/files/content/sites/la/files/
        users/105941/public/KautskyNicholsDooren

    """
    # Remove xj form the base
    transfer_matrix_not_j = np.delete(transfer_matrix, j, axis=1)
    # If we QR this matrix in full mode Q=Q0|Q1
    # then Q1 will be a single column orthogonnal to
    # Q0, that's what we are looking for !

    # After merge of gh-4249 great speed improvements could be achieved
    # using QR updates instead of full QR in the line below

    # To debug with numpy qr uncomment the line below
    # Q, R = np.linalg.qr(transfer_matrix_not_j, mode="complete")
    Q, R = s_qr(transfer_matrix_not_j, mode="full")

    mat_ker_pj = np.dot(ker_pole[j], ker_pole[j].T)
    yj = np.dot(mat_ker_pj, Q[:, -1])

    # If Q[:, -1] is "almost" orthogonal to ker_pole[j] its
    # projection into ker_pole[j] will yield a vector
    # close to 0.  As we are looking for a vector in ker_pole[j]
    # simply stick with transfer_matrix[:, j] (unless someone provides me with
    # a better choice ?)

    if not np.allclose(yj, 0):
        xj = yj/np.linalg.norm(yj)
        transfer_matrix[:, j] = xj

        # KNV does not support complex poles, using YT technique the two lines
        # below seem to work 9 out of 10 times but it is not reliable enough:
        # transfer_matrix[:, j]=real(xj)
        # transfer_matrix[:, j+1]=imag(xj)

        # Add this at the beginning of this function if you wish to test
        # complex support:
        #    if ~np.isreal(P[j]) and (j>=B.shape[0]-1 or P[j]!=np.conj(P[j+1])):
        #        return
        # Problems arise when imag(xj)=>0 I have no idea on how to fix this


def _YT_real(ker_pole, Q, transfer_matrix, i, j):
    """
    Applies algorithm from YT section 6.1 page 19 related to real pairs
    """
    # step 1 page 19
    u = Q[:, -2, np.newaxis]
    v = Q[:, -1, np.newaxis]

    # step 2 page 19
    m = np.dot(np.dot(ker_pole[i].T, np.dot(u, v.T) -
        np.dot(v, u.T)), ker_pole[j])

    # step 3 page 19
    um, sm, vm = np.linalg.svd(m)
    # mu1, mu2 two first columns of U => 2 first lines of U.T
    mu1, mu2 = um.T[:2, :, np.newaxis]
    # VM is V.T with numpy we want the first two lines of V.T
    nu1, nu2 = vm[:2, :, np.newaxis]

    # what follows is a rough python translation of the formulas
    # in section 6.2 page 20 (step 4)
    transfer_matrix_j_mo_transfer_matrix_j = np.vstack((
            transfer_matrix[:, i, np.newaxis],
            transfer_matrix[:, j, np.newaxis]))

    if not np.allclose(sm[0], sm[1]):
        ker_pole_imo_mu1 = np.dot(ker_pole[i], mu1)
        ker_pole_i_nu1 = np.dot(ker_pole[j], nu1)
        ker_pole_mu_nu = np.vstack((ker_pole_imo_mu1, ker_pole_i_nu1))
    else:
        ker_pole_ij = np.vstack((
                                np.hstack((ker_pole[i],
                                           np.zeros(ker_pole[i].shape))),
                                np.hstack((np.zeros(ker_pole[j].shape),
                                                    ker_pole[j]))
                                ))
        mu_nu_matrix = np.vstack(
            (np.hstack((mu1, mu2)), np.hstack((nu1, nu2)))
            )
        ker_pole_mu_nu = np.dot(ker_pole_ij, mu_nu_matrix)
    transfer_matrix_ij = np.dot(np.dot(ker_pole_mu_nu, ker_pole_mu_nu.T),
                             transfer_matrix_j_mo_transfer_matrix_j)
    if not np.allclose(transfer_matrix_ij, 0):
        transfer_matrix_ij = (np.sqrt(2)*transfer_matrix_ij /
                              np.linalg.norm(transfer_matrix_ij))
        transfer_matrix[:, i] = transfer_matrix_ij[
            :transfer_matrix[:, i].shape[0], 0
            ]
        transfer_matrix[:, j] = transfer_matrix_ij[
            transfer_matrix[:, i].shape[0]:, 0
            ]
    else:
        # As in knv0 if transfer_matrix_j_mo_transfer_matrix_j is orthogonal to
        # Vect{ker_pole_mu_nu} assign transfer_matrixi/transfer_matrix_j to
        # ker_pole_mu_nu and iterate. As we are looking for a vector in
        # Vect{Matker_pole_MU_NU} (see section 6.1 page 19) this might help
        # (that's a guess, not a claim !)
        transfer_matrix[:, i] = ker_pole_mu_nu[
            :transfer_matrix[:, i].shape[0], 0
            ]
        transfer_matrix[:, j] = ker_pole_mu_nu[
            transfer_matrix[:, i].shape[0]:, 0
            ]


def _YT_complex(ker_pole, Q, transfer_matrix, i, j):
    """
    Applies algorithm from YT section 6.2 page 20 related to complex pairs
    """
    # step 1 page 20
    ur = np.sqrt(2)*Q[:, -2, np.newaxis]
    ui = np.sqrt(2)*Q[:, -1, np.newaxis]
    u = ur + 1j*ui

    # step 2 page 20
    ker_pole_ij = ker_pole[i]
    m = np.dot(np.dot(np.conj(ker_pole_ij.T), np.dot(u, np.conj(u).T) -
               np.dot(np.conj(u), u.T)), ker_pole_ij)

    # step 3 page 20
    e_val, e_vec = np.linalg.eig(m)
    # sort eigenvalues according to their module
    e_val_idx = np.argsort(np.abs(e_val))
    mu1 = e_vec[:, e_val_idx[-1], np.newaxis]
    mu2 = e_vec[:, e_val_idx[-2], np.newaxis]

    # what follows is a rough python translation of the formulas
    # in section 6.2 page 20 (step 4)

    # remember transfer_matrix_i has been split as
    # transfer_matrix[i]=real(transfer_matrix_i) and
    # transfer_matrix[j]=imag(transfer_matrix_i)
    transfer_matrix_j_mo_transfer_matrix_j = (
        transfer_matrix[:, i, np.newaxis] +
        1j*transfer_matrix[:, j, np.newaxis]
        )
    if not np.allclose(np.abs(e_val[e_val_idx[-1]]),
                              np.abs(e_val[e_val_idx[-2]])):
        ker_pole_mu = np.dot(ker_pole_ij, mu1)
    else:
        mu1_mu2_matrix = np.hstack((mu1, mu2))
        ker_pole_mu = np.dot(ker_pole_ij, mu1_mu2_matrix)
    transfer_matrix_i_j = np.dot(np.dot(ker_pole_mu, np.conj(ker_pole_mu.T)),
                              transfer_matrix_j_mo_transfer_matrix_j)

    if not np.allclose(transfer_matrix_i_j, 0):
        transfer_matrix_i_j = (transfer_matrix_i_j /
            np.linalg.norm(transfer_matrix_i_j))
        transfer_matrix[:, i] = np.real(transfer_matrix_i_j[:, 0])
        transfer_matrix[:, j] = np.imag(transfer_matrix_i_j[:, 0])
    else:
        # same idea as in YT_real
        transfer_matrix[:, i] = np.real(ker_pole_mu[:, 0])
        transfer_matrix[:, j] = np.imag(ker_pole_mu[:, 0])


def _YT_loop(ker_pole, transfer_matrix, poles, B, maxiter, rtol):
    """
    Algorithm "YT" Tits, Yang. Globally Convergent
    Algorithms for Robust Pole Assignment by State Feedback
    https://hdl.handle.net/1903/5598
    The poles P have to be sorted accordingly to section 6.2 page 20

    """
    # The IEEE edition of the YT paper gives useful information on the
    # optimal update order for the real poles in order to minimize the number
    # of times we have to loop over all poles, see page 1442
    nb_real = poles[np.isreal(poles)].shape[0]
    # hnb => Half Nb Real
    hnb = nb_real // 2

    # Stick to the indices in the paper and then remove one to get numpy array
    # index it is a bit easier to link the code to the paper this way even if it
    # is not very clean. The paper is unclear about what should be done when
    # there is only one real pole => use KNV0 on this real pole seem to work
    if nb_real > 0:
        #update the biggest real pole with the smallest one
        update_order = [[nb_real], [1]]
    else:
        update_order = [[],[]]

    r_comp = np.arange(nb_real+1, len(poles)+1, 2)
    # step 1.a
    r_p = np.arange(1, hnb+nb_real % 2)
    update_order[0].extend(2*r_p)
    update_order[1].extend(2*r_p+1)
    # step 1.b
    update_order[0].extend(r_comp)
    update_order[1].extend(r_comp+1)
    # step 1.c
    r_p = np.arange(1, hnb+1)
    update_order[0].extend(2*r_p-1)
    update_order[1].extend(2*r_p)
    # step 1.d
    if hnb == 0 and np.isreal(poles[0]):
        update_order[0].append(1)
        update_order[1].append(1)
    update_order[0].extend(r_comp)
    update_order[1].extend(r_comp+1)
    # step 2.a
    r_j = np.arange(2, hnb+nb_real % 2)
    for j in r_j:
        for i in range(1, hnb+1):
            update_order[0].append(i)
            update_order[1].append(i+j)
    # step 2.b
    if hnb == 0 and np.isreal(poles[0]):
        update_order[0].append(1)
        update_order[1].append(1)
    update_order[0].extend(r_comp)
    update_order[1].extend(r_comp+1)
    # step 2.c
    r_j = np.arange(2, hnb+nb_real % 2)
    for j in r_j:
        for i in range(hnb+1, nb_real+1):
            idx_1 = i+j
            if idx_1 > nb_real:
                idx_1 = i+j-nb_real
            update_order[0].append(i)
            update_order[1].append(idx_1)
    # step 2.d
    if hnb == 0 and np.isreal(poles[0]):
        update_order[0].append(1)
        update_order[1].append(1)
    update_order[0].extend(r_comp)
    update_order[1].extend(r_comp+1)
    # step 3.a
    for i in range(1, hnb+1):
        update_order[0].append(i)
        update_order[1].append(i+hnb)
    # step 3.b
    if hnb == 0 and np.isreal(poles[0]):
        update_order[0].append(1)
        update_order[1].append(1)
    update_order[0].extend(r_comp)
    update_order[1].extend(r_comp+1)

    update_order = np.array(update_order).T-1
    stop = False
    nb_try = 0
    while nb_try < maxiter and not stop:
        det_transfer_matrixb = np.abs(np.linalg.det(transfer_matrix))
        for i, j in update_order:
            if i == j:
                assert i == 0, "i!=0 for KNV call in YT"
                assert np.isreal(poles[i]), "calling KNV on a complex pole"
                _KNV0(B, ker_pole, transfer_matrix, i, poles)
            else:
                transfer_matrix_not_i_j = np.delete(transfer_matrix, (i, j),
                                                    axis=1)
                # after merge of gh-4249 great speed improvements could be
                # achieved using QR updates instead of full QR in the line below

                #to debug with numpy qr uncomment the line below
                #Q, _ = np.linalg.qr(transfer_matrix_not_i_j, mode="complete")
                Q, _ = s_qr(transfer_matrix_not_i_j, mode="full")

                if np.isreal(poles[i]):
                    assert np.isreal(poles[j]), "mixing real and complex " + \
                        "in YT_real" + str(poles)
                    _YT_real(ker_pole, Q, transfer_matrix, i, j)
                else:
                    assert ~np.isreal(poles[i]), "mixing real and complex " + \
                        "in YT_real" + str(poles)
                    _YT_complex(ker_pole, Q, transfer_matrix, i, j)

        det_transfer_matrix = np.max((np.sqrt(np.spacing(1)),
                                  np.abs(np.linalg.det(transfer_matrix))))
        cur_rtol = np.abs(
            (det_transfer_matrix -
             det_transfer_matrixb) /
            det_transfer_matrix)
        if cur_rtol < rtol and det_transfer_matrix > np.sqrt(np.spacing(1)):
            # Convergence test from YT page 21
            stop = True
        nb_try += 1
    return stop, cur_rtol, nb_try


def _KNV0_loop(ker_pole, transfer_matrix, poles, B, maxiter, rtol):
    """
    Loop over all poles one by one and apply KNV method 0 algorithm
    """
    # This method is useful only because we need to be able to call
    # _KNV0 from YT without looping over all poles, otherwise it would
    # have been fine to mix _KNV0_loop and _KNV0 in a single function
    stop = False
    nb_try = 0
    while nb_try < maxiter and not stop:
        det_transfer_matrixb = np.abs(np.linalg.det(transfer_matrix))
        for j in range(B.shape[0]):
            _KNV0(B, ker_pole, transfer_matrix, j, poles)

        det_transfer_matrix = np.max((np.sqrt(np.spacing(1)),
                                  np.abs(np.linalg.det(transfer_matrix))))
        cur_rtol = np.abs((det_transfer_matrix - det_transfer_matrixb) /
                       det_transfer_matrix)
        if cur_rtol < rtol and det_transfer_matrix > np.sqrt(np.spacing(1)):
            # Convergence test from YT page 21
            stop = True

        nb_try += 1
    return stop, cur_rtol, nb_try


def place_poles(A, B, poles, method="YT", rtol=1e-3, maxiter=30):
    """
    Compute K such that eigenvalues (A - dot(B, K))=poles.

    K is the gain matrix such as the plant described by the linear system
    ``AX+BU`` will have its closed-loop poles, i.e the eigenvalues ``A - B*K``,
    as close as possible to those asked for in poles.

    SISO, MISO and MIMO systems are supported.

    Parameters
    ----------
    A, B : ndarray
        State-space representation of linear system ``AX + BU``.
    poles : array_like
        Desired real poles and/or complex conjugates poles.
        Complex poles are only supported with ``method="YT"`` (default).
    method: {'YT', 'KNV0'}, optional
        Which method to choose to find the gain matrix K. One of:

            - 'YT': Yang Tits
            - 'KNV0': Kautsky, Nichols, Van Dooren update method 0

        See References and Notes for details on the algorithms.
    rtol: float, optional
        After each iteration the determinant of the eigenvectors of
        ``A - B*K`` is compared to its previous value, when the relative
        error between these two values becomes lower than `rtol` the algorithm
        stops.  Default is 1e-3.
    maxiter: int, optional
        Maximum number of iterations to compute the gain matrix.
        Default is 30.

    Returns
    -------
    full_state_feedback : Bunch object
        full_state_feedback is composed of:
            gain_matrix : 1-D ndarray
                The closed loop matrix K such as the eigenvalues of ``A-BK``
                are as close as possible to the requested poles.
            computed_poles : 1-D ndarray
                The poles corresponding to ``A-BK`` sorted as first the real
                poles in increasing order, then the complex congugates in
                lexicographic order.
            requested_poles : 1-D ndarray
                The poles the algorithm was asked to place sorted as above,
                they may differ from what was achieved.
            X : 2-D ndarray
                The transfer matrix such as ``X * diag(poles) = (A - B*K)*X``
                (see Notes)
            rtol : float
                The relative tolerance achieved on ``det(X)`` (see Notes).
                `rtol` will be NaN if it is possible to solve the system
                ``diag(poles) = (A - B*K)``, or 0 when the optimization
                algorithms can't do anything i.e when ``B.shape[1] == 1``.
            nb_iter : int
                The number of iterations performed before converging.
                `nb_iter` will be NaN if it is possible to solve the system
                ``diag(poles) = (A - B*K)``, or 0 when the optimization
                algorithms can't do anything i.e when ``B.shape[1] == 1``.

    Notes
    -----
    The Tits and Yang (YT), [2]_ paper is an update of the original Kautsky et
    al. (KNV) paper [1]_.  KNV relies on rank-1 updates to find the transfer
    matrix X such that ``X * diag(poles) = (A - B*K)*X``, whereas YT uses
    rank-2 updates. This yields on average more robust solutions (see [2]_
    pp 21-22), furthermore the YT algorithm supports complex poles whereas KNV
    does not in its original version.  Only update method 0 proposed by KNV has
    been implemented here, hence the name ``'KNV0'``.

    KNV extended to complex poles is used in Matlab's ``place`` function, YT is
    distributed under a non-free licence by Slicot under the name ``robpole``.
    It is unclear and undocumented how KNV0 has been extended to complex poles
    (Tits and Yang claim on page 14 of their paper that their method can not be
    used to extend KNV to complex poles), therefore only YT supports them in
    this implementation.

    As the solution to the problem of pole placement is not unique for MIMO
    systems, both methods start with a tentative transfer matrix which is
    altered in various way to increase its determinant.  Both methods have been
    proven to converge to a stable solution, however depending on the way the
    initial transfer matrix is chosen they will converge to different
    solutions and therefore there is absolutely no guarantee that using
    ``'KNV0'`` will yield results similar to Matlab's or any other
    implementation of these algorithms.

    Using the default method ``'YT'`` should be fine in most cases; ``'KNV0'``
    is only provided because it is needed by ``'YT'`` in some specific cases.
    Furthermore ``'YT'`` gives on average more robust results than ``'KNV0'``
    when ``abs(det(X))`` is used as a robustness indicator.

    [2]_ is available as a technical report on the following URL:
    https://hdl.handle.net/1903/5598

    References
    ----------
    .. [1] J. Kautsky, N.K. Nichols and P. van Dooren, "Robust pole assignment
           in linear state feedback", International Journal of Control, Vol. 41
           pp. 1129-1155, 1985.
    .. [2] A.L. Tits and Y. Yang, "Globally convergent algorithms for robust
           pole assignment by state feedback", IEEE Transactions on Automatic
           Control, Vol. 41, pp. 1432-1452, 1996.

    Examples
    --------
    A simple example demonstrating real pole placement using both KNV and YT
    algorithms.  This is example number 1 from section 4 of the reference KNV
    publication ([1]_):

    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    >>> A = np.array([[ 1.380,  -0.2077,  6.715, -5.676  ],
    ...               [-0.5814, -4.290,   0,      0.6750 ],
    ...               [ 1.067,   4.273,  -6.654,  5.893  ],
    ...               [ 0.0480,  4.273,   1.343, -2.104  ]])
    >>> B = np.array([[ 0,      5.679 ],
    ...               [ 1.136,  1.136 ],
    ...               [ 0,      0,    ],
    ...               [-3.146,  0     ]])
    >>> P = np.array([-0.2, -0.5, -5.0566, -8.6659])

    Now compute K with KNV method 0, with the default YT method and with the YT
    method while forcing 100 iterations of the algorithm and print some results
    after each call.

    >>> fsf1 = signal.place_poles(A, B, P, method='KNV0')
    >>> fsf1.gain_matrix
    array([[ 0.20071427, -0.96665799,  0.24066128, -0.10279785],
           [ 0.50587268,  0.57779091,  0.51795763, -0.41991442]])

    >>> fsf2 = signal.place_poles(A, B, P)  # uses YT method
    >>> fsf2.computed_poles
    array([-8.6659, -5.0566, -0.5   , -0.2   ])

    >>> fsf3 = signal.place_poles(A, B, P, rtol=-1, maxiter=100)
    >>> fsf3.X
    array([[ 0.52072442+0.j, -0.08409372+0.j, -0.56847937+0.j,  0.74823657+0.j],
           [-0.04977751+0.j, -0.80872954+0.j,  0.13566234+0.j, -0.29322906+0.j],
           [-0.82266932+0.j, -0.19168026+0.j, -0.56348322+0.j, -0.43815060+0.j],
           [ 0.22267347+0.j,  0.54967577+0.j, -0.58387806+0.j, -0.40271926+0.j]])

    The absolute value of the determinant of X is a good indicator to check the
    robustness of the results, both ``'KNV0'`` and ``'YT'`` aim at maximizing
    it.  Below a comparison of the robustness of the results above:

    >>> abs(np.linalg.det(fsf1.X)) < abs(np.linalg.det(fsf2.X))
    True
    >>> abs(np.linalg.det(fsf2.X)) < abs(np.linalg.det(fsf3.X))
    True

    Now a simple example for complex poles:

    >>> A = np.array([[ 0,  7/3.,  0,   0   ],
    ...               [ 0,   0,    0,  7/9. ],
    ...               [ 0,   0,    0,   0   ],
    ...               [ 0,   0,    0,   0   ]])
    >>> B = np.array([[ 0,  0 ],
    ...               [ 0,  0 ],
    ...               [ 1,  0 ],
    ...               [ 0,  1 ]])
    >>> P = np.array([-3, -1, -2-1j, -2+1j]) / 3.
    >>> fsf = signal.place_poles(A, B, P, method='YT')

    We can plot the desired and computed poles in the complex plane:

    >>> t = np.linspace(0, 2*np.pi, 401)
    >>> plt.plot(np.cos(t), np.sin(t), 'k--')  # unit circle
    >>> plt.plot(fsf.requested_poles.real, fsf.requested_poles.imag,
    ...          'wo', label='Desired')
    >>> plt.plot(fsf.computed_poles.real, fsf.computed_poles.imag, 'bx',
    ...          label='Placed')
    >>> plt.grid()
    >>> plt.axis('image')
    >>> plt.axis([-1.1, 1.1, -1.1, 1.1])
    >>> plt.legend(bbox_to_anchor=(1.05, 1), loc=2, numpoints=1)

    """
    # Move away all the inputs checking, it only adds noise to the code
    update_loop, poles = _valid_inputs(A, B, poles, method, rtol, maxiter)

    # The current value of the relative tolerance we achieved
    cur_rtol = 0
    # The number of iterations needed before converging
    nb_iter = 0

    # Step A: QR decomposition of B page 1132 KN
    # to debug with numpy qr uncomment the line below
    # u, z = np.linalg.qr(B, mode="complete")
    u, z = s_qr(B, mode="full")
    rankB = np.linalg.matrix_rank(B)
    u0 = u[:, :rankB]
    u1 = u[:, rankB:]
    z = z[:rankB, :]

    # If we can use the identity matrix as X the solution is obvious
    if B.shape[0] == rankB:
        # if B is square and full rank there is only one solution
        # such as (A+BK)=inv(X)*diag(P)*X with X=eye(A.shape[0])
        # i.e K=inv(B)*(diag(P)-A)
        # if B has as many lines as its rank (but not square) there are many
        # solutions and we can choose one using least squares
        # => use lstsq in both cases.
        # In both cases the transfer matrix X will be eye(A.shape[0]) and I
        # can hardly think of a better one so there is nothing to optimize
        #
        # for complex poles we use the following trick
        #
        # |a -b| has for eigenvalues a+b and a-b
        # |b a|
        #
        # |a+bi 0| has the obvious eigenvalues a+bi and a-bi
        # |0 a-bi|
        #
        # e.g solving the first one in R gives the solution
        # for the second one in C
        diag_poles = np.zeros(A.shape)
        idx = 0
        while idx < poles.shape[0]:
            p = poles[idx]
            diag_poles[idx, idx] = np.real(p)
            if ~np.isreal(p):
                diag_poles[idx, idx+1] = -np.imag(p)
                diag_poles[idx+1, idx+1] = np.real(p)
                diag_poles[idx+1, idx] = np.imag(p)
                idx += 1  # skip next one
            idx += 1
        gain_matrix = np.linalg.lstsq(B, diag_poles-A, rcond=-1)[0]
        transfer_matrix = np.eye(A.shape[0])
        cur_rtol = np.nan
        nb_iter = np.nan
    else:
        # step A (p1144 KNV) and beginning of step F: decompose
        # dot(U1.T, A-P[i]*I).T and build our set of transfer_matrix vectors
        # in the same loop
        ker_pole = []

        # flag to skip the conjugate of a complex pole
        skip_conjugate = False
        # select orthonormal base ker_pole for each Pole and vectors for
        # transfer_matrix
        for j in range(B.shape[0]):
            if skip_conjugate:
                skip_conjugate = False
                continue
            pole_space_j = np.dot(u1.T, A-poles[j]*np.eye(B.shape[0])).T

            # after QR Q=Q0|Q1
            # only Q0 is used to reconstruct  the qr'ed (dot Q, R) matrix.
            # Q1 is orthogonnal to Q0 and will be multiplied by the zeros in
            # R when using mode "complete". In default mode Q1 and the zeros
            # in R are not computed

            # To debug with numpy qr uncomment the line below
            # Q, _ = np.linalg.qr(pole_space_j, mode="complete")
            Q, _ = s_qr(pole_space_j, mode="full")

            ker_pole_j = Q[:, pole_space_j.shape[1]:]

            # We want to select one vector in ker_pole_j to build the transfer
            # matrix, however qr returns sometimes vectors with zeros on the
            # same line for each pole and this yields very long convergence
            # times.
            # Or some other times a set of vectors, one with zero imaginary
            # part and one (or several) with imaginary parts. After trying
            # many ways to select the best possible one (eg ditch vectors
            # with zero imaginary part for complex poles) I ended up summing
            # all vectors in ker_pole_j, this solves 100% of the problems and
            # is a valid choice for transfer_matrix.
            # This way for complex poles we are sure to have a non zero
            # imaginary part that way, and the problem of lines full of zeros
            # in transfer_matrix is solved too as when a vector from
            # ker_pole_j has a zero the other one(s) when
            # ker_pole_j.shape[1]>1) for sure won't have a zero there.

            transfer_matrix_j = np.sum(ker_pole_j, axis=1)[:, np.newaxis]
            transfer_matrix_j = (transfer_matrix_j /
                                 np.linalg.norm(transfer_matrix_j))
            if ~np.isreal(poles[j]):  # complex pole
                transfer_matrix_j = np.hstack([np.real(transfer_matrix_j),
                                               np.imag(transfer_matrix_j)])
                ker_pole.extend([ker_pole_j, ker_pole_j])

                # Skip next pole as it is the conjugate
                skip_conjugate = True
            else:  # real pole, nothing to do
                ker_pole.append(ker_pole_j)

            if j == 0:
                transfer_matrix = transfer_matrix_j
            else:
                transfer_matrix = np.hstack((transfer_matrix, transfer_matrix_j))

        if rankB > 1:  # otherwise there is nothing we can optimize
            stop, cur_rtol, nb_iter = update_loop(ker_pole, transfer_matrix,
                                                  poles, B, maxiter, rtol)
            if not stop and rtol > 0:
                # if rtol<=0 the user has probably done that on purpose,
                # don't annoy him
                err_msg = (
                    "Convergence was not reached after maxiter iterations.\n"
                    "You asked for a relative tolerance of %f we got %f" %
                    (rtol, cur_rtol)
                    )
                warnings.warn(err_msg)

        # reconstruct transfer_matrix to match complex conjugate pairs,
        # ie transfer_matrix_j/transfer_matrix_j+1 are
        # Re(Complex_pole), Im(Complex_pole) now and will be Re-Im/Re+Im after
        transfer_matrix = transfer_matrix.astype(complex)
        idx = 0
        while idx < poles.shape[0]-1:
            if ~np.isreal(poles[idx]):
                rel = transfer_matrix[:, idx].copy()
                img = transfer_matrix[:, idx+1]
                # rel will be an array referencing a column of transfer_matrix
                # if we don't copy() it will changer after the next line and
                # and the line after will not yield the correct value
                transfer_matrix[:, idx] = rel-1j*img
                transfer_matrix[:, idx+1] = rel+1j*img
                idx += 1  # skip next one
            idx += 1

        try:
            m = np.linalg.solve(transfer_matrix.T, np.dot(np.diag(poles),
                                                          transfer_matrix.T)).T
            gain_matrix = np.linalg.solve(z, np.dot(u0.T, m-A))
        except np.linalg.LinAlgError:
            raise ValueError("The poles you've chosen can't be placed. "
                             "Check the controllability matrix and try "
                             "another set of poles")

    # Beware: Kautsky solves A+BK but the usual form is A-BK
    gain_matrix = -gain_matrix
    # K still contains complex with ~=0j imaginary parts, get rid of them
    gain_matrix = np.real(gain_matrix)

    full_state_feedback = Bunch()
    full_state_feedback.gain_matrix = gain_matrix
    full_state_feedback.computed_poles = _order_complex_poles(
        np.linalg.eig(A - np.dot(B, gain_matrix))[0]
        )
    full_state_feedback.requested_poles = poles
    full_state_feedback.X = transfer_matrix
    full_state_feedback.rtol = cur_rtol
    full_state_feedback.nb_iter = nb_iter

    return full_state_feedback


def dlsim(system, u, t=None, x0=None):
    """
    Simulate output of a discrete-time linear system.

    Parameters
    ----------
    system : tuple of array_like or instance of `dlti`
        A tuple describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 1: (instance of `dlti`)
            * 3: (num, den, dt)
            * 4: (zeros, poles, gain, dt)
            * 5: (A, B, C, D, dt)

    u : array_like
        An input array describing the input at each time `t` (interpolation is
        assumed between given times).  If there are multiple inputs, then each
        column of the rank-2 array represents an input.
    t : array_like, optional
        The time steps at which the input is defined.  If `t` is given, it
        must be the same length as `u`, and the final value in `t` determines
        the number of steps returned in the output.
    x0 : array_like, optional
        The initial conditions on the state vector (zero by default).

    Returns
    -------
    tout : ndarray
        Time values for the output, as a 1-D array.
    yout : ndarray
        System response, as a 1-D array.
    xout : ndarray, optional
        Time-evolution of the state-vector.  Only generated if the input is a
        `StateSpace` system.

    See Also
    --------
    lsim, dstep, dimpulse, cont2discrete

    Examples
    --------
    A simple integrator transfer function with a discrete time step of 1.0
    could be implemented as:

    >>> from scipy import signal
    >>> tf = ([1.0,], [1.0, -1.0], 1.0)
    >>> t_in = [0.0, 1.0, 2.0, 3.0]
    >>> u = np.asarray([0.0, 0.0, 1.0, 1.0])
    >>> t_out, y = signal.dlsim(tf, u, t=t_in)
    >>> y.T
    array([[ 0.,  0.,  0.,  1.]])

    """
    # Convert system to dlti-StateSpace
    if isinstance(system, lti):
        raise AttributeError('dlsim can only be used with discrete-time dlti '
                             'systems.')
    elif not isinstance(system, dlti):
        system = dlti(*system[:-1], dt=system[-1])

    # Condition needed to ensure output remains compatible
    is_ss_input = isinstance(system, StateSpace)
    system = system._as_ss()

    u = np.atleast_1d(u)

    if u.ndim == 1:
        u = np.atleast_2d(u).T

    if t is None:
        out_samples = len(u)
        stoptime = (out_samples - 1) * system.dt
    else:
        stoptime = t[-1]
        out_samples = int(np.floor(stoptime / system.dt)) + 1

    # Pre-build output arrays
    xout = np.zeros((out_samples, system.A.shape[0]))
    yout = np.zeros((out_samples, system.C.shape[0]))
    tout = np.linspace(0.0, stoptime, num=out_samples)

    # Check initial condition
    if x0 is None:
        xout[0, :] = np.zeros((system.A.shape[1],))
    else:
        xout[0, :] = np.asarray(x0)

    # Pre-interpolate inputs into the desired time steps
    if t is None:
        u_dt = u
    else:
        if len(u.shape) == 1:
            u = u[:, np.newaxis]

        u_dt_interp = interp1d(t, u.transpose(), copy=False, bounds_error=True)
        u_dt = u_dt_interp(tout).transpose()

    # Simulate the system
    for i in range(0, out_samples - 1):
        xout[i+1, :] = (np.dot(system.A, xout[i, :]) +
                        np.dot(system.B, u_dt[i, :]))
        yout[i, :] = (np.dot(system.C, xout[i, :]) +
                      np.dot(system.D, u_dt[i, :]))

    # Last point
    yout[out_samples-1, :] = (np.dot(system.C, xout[out_samples-1, :]) +
                              np.dot(system.D, u_dt[out_samples-1, :]))

    if is_ss_input:
        return tout, yout, xout
    else:
        return tout, yout


def dimpulse(system, x0=None, t=None, n=None):
    """
    Impulse response of discrete-time system.

    Parameters
    ----------
    system : tuple of array_like or instance of `dlti`
        A tuple describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 1: (instance of `dlti`)
            * 3: (num, den, dt)
            * 4: (zeros, poles, gain, dt)
            * 5: (A, B, C, D, dt)

    x0 : array_like, optional
        Initial state-vector.  Defaults to zero.
    t : array_like, optional
        Time points.  Computed if not given.
    n : int, optional
        The number of time points to compute (if `t` is not given).

    Returns
    -------
    tout : ndarray
        Time values for the output, as a 1-D array.
    yout : tuple of ndarray
        Impulse response of system.  Each element of the tuple represents
        the output of the system based on an impulse in each input.

    See Also
    --------
    impulse, dstep, dlsim, cont2discrete

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    >>> butter = signal.dlti(*signal.butter(3, 0.5))
    >>> t, y = signal.dimpulse(butter, n=25)
    >>> plt.step(t, np.squeeze(y))
    >>> plt.grid()
    >>> plt.xlabel('n [samples]')
    >>> plt.ylabel('Amplitude')

    """
    # Convert system to dlti-StateSpace
    if isinstance(system, dlti):
        system = system._as_ss()
    elif isinstance(system, lti):
        raise AttributeError('dimpulse can only be used with discrete-time '
                             'dlti systems.')
    else:
        system = dlti(*system[:-1], dt=system[-1])._as_ss()

    # Default to 100 samples if unspecified
    if n is None:
        n = 100

    # If time is not specified, use the number of samples
    # and system dt
    if t is None:
        t = np.linspace(0, n * system.dt, n, endpoint=False)
    else:
        t = np.asarray(t)

    # For each input, implement a step change
    yout = None
    for i in range(0, system.inputs):
        u = np.zeros((t.shape[0], system.inputs))
        u[0, i] = 1.0

        one_output = dlsim(system, u, t=t, x0=x0)

        if yout is None:
            yout = (one_output[1],)
        else:
            yout = yout + (one_output[1],)

        tout = one_output[0]

    return tout, yout


def dstep(system, x0=None, t=None, n=None):
    """
    Step response of discrete-time system.

    Parameters
    ----------
    system : tuple of array_like
        A tuple describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 1: (instance of `dlti`)
            * 3: (num, den, dt)
            * 4: (zeros, poles, gain, dt)
            * 5: (A, B, C, D, dt)

    x0 : array_like, optional
        Initial state-vector.  Defaults to zero.
    t : array_like, optional
        Time points.  Computed if not given.
    n : int, optional
        The number of time points to compute (if `t` is not given).

    Returns
    -------
    tout : ndarray
        Output time points, as a 1-D array.
    yout : tuple of ndarray
        Step response of system.  Each element of the tuple represents
        the output of the system based on a step response to each input.

    See Also
    --------
    step, dimpulse, dlsim, cont2discrete

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    >>> butter = signal.dlti(*signal.butter(3, 0.5))
    >>> t, y = signal.dstep(butter, n=25)
    >>> plt.step(t, np.squeeze(y))
    >>> plt.grid()
    >>> plt.xlabel('n [samples]')
    >>> plt.ylabel('Amplitude')
    """
    # Convert system to dlti-StateSpace
    if isinstance(system, dlti):
        system = system._as_ss()
    elif isinstance(system, lti):
        raise AttributeError('dstep can only be used with discrete-time dlti '
                             'systems.')
    else:
        system = dlti(*system[:-1], dt=system[-1])._as_ss()

    # Default to 100 samples if unspecified
    if n is None:
        n = 100

    # If time is not specified, use the number of samples
    # and system dt
    if t is None:
        t = np.linspace(0, n * system.dt, n, endpoint=False)
    else:
        t = np.asarray(t)

    # For each input, implement a step change
    yout = None
    for i in range(0, system.inputs):
        u = np.zeros((t.shape[0], system.inputs))
        u[:, i] = np.ones((t.shape[0],))

        one_output = dlsim(system, u, t=t, x0=x0)

        if yout is None:
            yout = (one_output[1],)
        else:
            yout = yout + (one_output[1],)

        tout = one_output[0]

    return tout, yout


def dfreqresp(system, w=None, n=10000, whole=False):
    """
    Calculate the frequency response of a discrete-time system.

    Parameters
    ----------
    system : an instance of the `dlti` class or a tuple describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 1 (instance of `dlti`)
            * 2 (numerator, denominator, dt)
            * 3 (zeros, poles, gain, dt)
            * 4 (A, B, C, D, dt)

    w : array_like, optional
        Array of frequencies (in radians/sample). Magnitude and phase data is
        calculated for every value in this array. If not given a reasonable
        set will be calculated.
    n : int, optional
        Number of frequency points to compute if `w` is not given. The `n`
        frequencies are logarithmically spaced in an interval chosen to
        include the influence of the poles and zeros of the system.
    whole : bool, optional
        Normally, if 'w' is not given, frequencies are computed from 0 to the
        Nyquist frequency, pi radians/sample (upper-half of unit-circle). If
        `whole` is True, compute frequencies from 0 to 2*pi radians/sample.

    Returns
    -------
    w : 1D ndarray
        Frequency array [radians/sample]
    H : 1D ndarray
        Array of complex magnitude values

    Notes
    -----
    If (num, den) is passed in for ``system``, coefficients for both the
    numerator and denominator should be specified in descending exponent
    order (e.g. ``z^2 + 3z + 5`` would be represented as ``[1, 3, 5]``).

    .. versionadded:: 0.18.0

    Examples
    --------
    Generating the Nyquist plot of a transfer function

    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    Transfer function: H(z) = 1 / (z^2 + 2z + 3)

    >>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.05)

    >>> w, H = signal.dfreqresp(sys)

    >>> plt.figure()
    >>> plt.plot(H.real, H.imag, "b")
    >>> plt.plot(H.real, -H.imag, "r")
    >>> plt.show()

    """
    if not isinstance(system, dlti):
        if isinstance(system, lti):
            raise AttributeError('dfreqresp can only be used with '
                                 'discrete-time systems.')

        system = dlti(*system[:-1], dt=system[-1])

    if isinstance(system, StateSpace):
        # No SS->ZPK code exists right now, just SS->TF->ZPK
        system = system._as_tf()

    if not isinstance(system, (TransferFunction, ZerosPolesGain)):
        raise ValueError('Unknown system type')

    if system.inputs != 1 or system.outputs != 1:
        raise ValueError("dfreqresp requires a SISO (single input, single "
                         "output) system.")

    if w is not None:
        worN = w
    else:
        worN = n

    if isinstance(system, TransferFunction):
        # Convert numerator and denominator from polynomials in the variable
        # 'z' to polynomials in the variable 'z^-1', as freqz expects.
        num, den = TransferFunction._z_to_zinv(system.num.ravel(), system.den)
        w, h = freqz(num, den, worN=worN, whole=whole)

    elif isinstance(system, ZerosPolesGain):
        w, h = freqz_zpk(system.zeros, system.poles, system.gain, worN=worN,
                         whole=whole)

    return w, h


def dbode(system, w=None, n=100):
    """
    Calculate Bode magnitude and phase data of a discrete-time system.

    Parameters
    ----------
    system : an instance of the LTI class or a tuple describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 1 (instance of `dlti`)
            * 2 (num, den, dt)
            * 3 (zeros, poles, gain, dt)
            * 4 (A, B, C, D, dt)

    w : array_like, optional
        Array of frequencies (in radians/sample). Magnitude and phase data is
        calculated for every value in this array. If not given a reasonable
        set will be calculated.
    n : int, optional
        Number of frequency points to compute if `w` is not given. The `n`
        frequencies are logarithmically spaced in an interval chosen to
        include the influence of the poles and zeros of the system.

    Returns
    -------
    w : 1D ndarray
        Frequency array [rad/time_unit]
    mag : 1D ndarray
        Magnitude array [dB]
    phase : 1D ndarray
        Phase array [deg]

    Notes
    -----
    If (num, den) is passed in for ``system``, coefficients for both the
    numerator and denominator should be specified in descending exponent
    order (e.g. ``z^2 + 3z + 5`` would be represented as ``[1, 3, 5]``).

    .. versionadded:: 0.18.0

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    Transfer function: H(z) = 1 / (z^2 + 2z + 3)

    >>> sys = signal.TransferFunction([1], [1, 2, 3], dt=0.05)

    Equivalent: sys.bode()

    >>> w, mag, phase = signal.dbode(sys)

    >>> plt.figure()
    >>> plt.semilogx(w, mag)    # Bode magnitude plot
    >>> plt.figure()
    >>> plt.semilogx(w, phase)  # Bode phase plot
    >>> plt.show()

    """
    w, y = dfreqresp(system, w=w, n=n)

    if isinstance(system, dlti):
        dt = system.dt
    else:
        dt = system[-1]

    mag = 20.0 * numpy.log10(abs(y))
    phase = numpy.rad2deg(numpy.unwrap(numpy.angle(y)))

    return w / dt, mag, phase