spectral.py 71.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
"""Tools for spectral analysis.
"""

from __future__ import division, print_function, absolute_import

import numpy as np
from scipy import fft as sp_fft
from . import signaltools
from .windows import get_window
from ._spectral import _lombscargle
from ._arraytools import const_ext, even_ext, odd_ext, zero_ext
import warnings

from scipy._lib.six import string_types

__all__ = ['periodogram', 'welch', 'lombscargle', 'csd', 'coherence',
           'spectrogram', 'stft', 'istft', 'check_COLA', 'check_NOLA']


def lombscargle(x,
                y,
                freqs,
                precenter=False,
                normalize=False):
    """
    lombscargle(x, y, freqs)

    Computes the Lomb-Scargle periodogram.

    The Lomb-Scargle periodogram was developed by Lomb [1]_ and further
    extended by Scargle [2]_ to find, and test the significance of weak
    periodic signals with uneven temporal sampling.

    When *normalize* is False (default) the computed periodogram
    is unnormalized, it takes the value ``(A**2) * N/4`` for a harmonic
    signal with amplitude A for sufficiently large N.

    When *normalize* is True the computed periodogram is normalized by
    the residuals of the data around a constant reference model (at zero).

    Input arrays should be one-dimensional and will be cast to float64.

    Parameters
    ----------
    x : array_like
        Sample times.
    y : array_like
        Measurement values.
    freqs : array_like
        Angular frequencies for output periodogram.
    precenter : bool, optional
        Pre-center amplitudes by subtracting the mean.
    normalize : bool, optional
        Compute normalized periodogram.

    Returns
    -------
    pgram : array_like
        Lomb-Scargle periodogram.

    Raises
    ------
    ValueError
        If the input arrays `x` and `y` do not have the same shape.

    Notes
    -----
    This subroutine calculates the periodogram using a slightly
    modified algorithm due to Townsend [3]_ which allows the
    periodogram to be calculated using only a single pass through
    the input arrays for each frequency.

    The algorithm running time scales roughly as O(x * freqs) or O(N^2)
    for a large number of samples and frequencies.

    References
    ----------
    .. [1] N.R. Lomb "Least-squares frequency analysis of unequally spaced
           data", Astrophysics and Space Science, vol 39, pp. 447-462, 1976

    .. [2] J.D. Scargle "Studies in astronomical time series analysis. II -
           Statistical aspects of spectral analysis of unevenly spaced data",
           The Astrophysical Journal, vol 263, pp. 835-853, 1982

    .. [3] R.H.D. Townsend, "Fast calculation of the Lomb-Scargle
           periodogram using graphics processing units.", The Astrophysical
           Journal Supplement Series, vol 191, pp. 247-253, 2010

    See Also
    --------
    istft: Inverse Short Time Fourier Transform
    check_COLA: Check whether the Constant OverLap Add (COLA) constraint is met
    welch: Power spectral density by Welch's method
    spectrogram: Spectrogram by Welch's method
    csd: Cross spectral density by Welch's method

    Examples
    --------
    >>> import matplotlib.pyplot as plt

    First define some input parameters for the signal:

    >>> A = 2.
    >>> w = 1.
    >>> phi = 0.5 * np.pi
    >>> nin = 1000
    >>> nout = 100000
    >>> frac_points = 0.9 # Fraction of points to select

    Randomly select a fraction of an array with timesteps:

    >>> r = np.random.rand(nin)
    >>> x = np.linspace(0.01, 10*np.pi, nin)
    >>> x = x[r >= frac_points]

    Plot a sine wave for the selected times:

    >>> y = A * np.sin(w*x+phi)

    Define the array of frequencies for which to compute the periodogram:

    >>> f = np.linspace(0.01, 10, nout)

    Calculate Lomb-Scargle periodogram:

    >>> import scipy.signal as signal
    >>> pgram = signal.lombscargle(x, y, f, normalize=True)

    Now make a plot of the input data:

    >>> plt.subplot(2, 1, 1)
    >>> plt.plot(x, y, 'b+')

    Then plot the normalized periodogram:

    >>> plt.subplot(2, 1, 2)
    >>> plt.plot(f, pgram)
    >>> plt.show()

    """

    x = np.asarray(x, dtype=np.float64)
    y = np.asarray(y, dtype=np.float64)
    freqs = np.asarray(freqs, dtype=np.float64)

    assert x.ndim == 1
    assert y.ndim == 1
    assert freqs.ndim == 1

    if precenter:
        pgram = _lombscargle(x, y - y.mean(), freqs)
    else:
        pgram = _lombscargle(x, y, freqs)

    if normalize:
        pgram *= 2 / np.dot(y, y)

    return pgram


def periodogram(x, fs=1.0, window='boxcar', nfft=None, detrend='constant',
                return_onesided=True, scaling='density', axis=-1):
    """
    Estimate power spectral density using a periodogram.

    Parameters
    ----------
    x : array_like
        Time series of measurement values
    fs : float, optional
        Sampling frequency of the `x` time series. Defaults to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg. Defaults
        to 'boxcar'.
    nfft : int, optional
        Length of the FFT used. If `None` the length of `x` will be
        used.
    detrend : str or function or `False`, optional
        Specifies how to detrend each segment. If `detrend` is a
        string, it is passed as the `type` argument to the `detrend`
        function. If it is a function, it takes a segment and returns a
        detrended segment. If `detrend` is `False`, no detrending is
        done. Defaults to 'constant'.
    return_onesided : bool, optional
        If `True`, return a one-sided spectrum for real data. If
        `False` return a two-sided spectrum. Defaults to `True`, but for
        complex data, a two-sided spectrum is always returned.
    scaling : { 'density', 'spectrum' }, optional
        Selects between computing the power spectral density ('density')
        where `Pxx` has units of V**2/Hz and computing the power
        spectrum ('spectrum') where `Pxx` has units of V**2, if `x`
        is measured in V and `fs` is measured in Hz. Defaults to
        'density'
    axis : int, optional
        Axis along which the periodogram is computed; the default is
        over the last axis (i.e. ``axis=-1``).

    Returns
    -------
    f : ndarray
        Array of sample frequencies.
    Pxx : ndarray
        Power spectral density or power spectrum of `x`.

    Notes
    -----
    .. versionadded:: 0.12.0

    See Also
    --------
    welch: Estimate power spectral density using Welch's method
    lombscargle: Lomb-Scargle periodogram for unevenly sampled data

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> np.random.seed(1234)

    Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by
    0.001 V**2/Hz of white noise sampled at 10 kHz.

    >>> fs = 10e3
    >>> N = 1e5
    >>> amp = 2*np.sqrt(2)
    >>> freq = 1234.0
    >>> noise_power = 0.001 * fs / 2
    >>> time = np.arange(N) / fs
    >>> x = amp*np.sin(2*np.pi*freq*time)
    >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)

    Compute and plot the power spectral density.

    >>> f, Pxx_den = signal.periodogram(x, fs)
    >>> plt.semilogy(f, Pxx_den)
    >>> plt.ylim([1e-7, 1e2])
    >>> plt.xlabel('frequency [Hz]')
    >>> plt.ylabel('PSD [V**2/Hz]')
    >>> plt.show()

    If we average the last half of the spectral density, to exclude the
    peak, we can recover the noise power on the signal.

    >>> np.mean(Pxx_den[25000:])
    0.00099728892368242854

    Now compute and plot the power spectrum.

    >>> f, Pxx_spec = signal.periodogram(x, fs, 'flattop', scaling='spectrum')
    >>> plt.figure()
    >>> plt.semilogy(f, np.sqrt(Pxx_spec))
    >>> plt.ylim([1e-4, 1e1])
    >>> plt.xlabel('frequency [Hz]')
    >>> plt.ylabel('Linear spectrum [V RMS]')
    >>> plt.show()

    The peak height in the power spectrum is an estimate of the RMS
    amplitude.

    >>> np.sqrt(Pxx_spec.max())
    2.0077340678640727

    """
    x = np.asarray(x)

    if x.size == 0:
        return np.empty(x.shape), np.empty(x.shape)

    if window is None:
        window = 'boxcar'

    if nfft is None:
        nperseg = x.shape[axis]
    elif nfft == x.shape[axis]:
        nperseg = nfft
    elif nfft > x.shape[axis]:
        nperseg = x.shape[axis]
    elif nfft < x.shape[axis]:
        s = [np.s_[:]]*len(x.shape)
        s[axis] = np.s_[:nfft]
        x = x[tuple(s)]
        nperseg = nfft
        nfft = None

    return welch(x, fs=fs, window=window, nperseg=nperseg, noverlap=0,
                 nfft=nfft, detrend=detrend, return_onesided=return_onesided,
                 scaling=scaling, axis=axis)


def welch(x, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
          detrend='constant', return_onesided=True, scaling='density',
          axis=-1, average='mean'):
    r"""
    Estimate power spectral density using Welch's method.

    Welch's method [1]_ computes an estimate of the power spectral
    density by dividing the data into overlapping segments, computing a
    modified periodogram for each segment and averaging the
    periodograms.

    Parameters
    ----------
    x : array_like
        Time series of measurement values
    fs : float, optional
        Sampling frequency of the `x` time series. Defaults to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg. Defaults
        to a Hann window.
    nperseg : int, optional
        Length of each segment. Defaults to None, but if window is str or
        tuple, is set to 256, and if window is array_like, is set to the
        length of the window.
    noverlap : int, optional
        Number of points to overlap between segments. If `None`,
        ``noverlap = nperseg // 2``. Defaults to `None`.
    nfft : int, optional
        Length of the FFT used, if a zero padded FFT is desired. If
        `None`, the FFT length is `nperseg`. Defaults to `None`.
    detrend : str or function or `False`, optional
        Specifies how to detrend each segment. If `detrend` is a
        string, it is passed as the `type` argument to the `detrend`
        function. If it is a function, it takes a segment and returns a
        detrended segment. If `detrend` is `False`, no detrending is
        done. Defaults to 'constant'.
    return_onesided : bool, optional
        If `True`, return a one-sided spectrum for real data. If
        `False` return a two-sided spectrum. Defaults to `True`, but for
        complex data, a two-sided spectrum is always returned.
    scaling : { 'density', 'spectrum' }, optional
        Selects between computing the power spectral density ('density')
        where `Pxx` has units of V**2/Hz and computing the power
        spectrum ('spectrum') where `Pxx` has units of V**2, if `x`
        is measured in V and `fs` is measured in Hz. Defaults to
        'density'
    axis : int, optional
        Axis along which the periodogram is computed; the default is
        over the last axis (i.e. ``axis=-1``).
    average : { 'mean', 'median' }, optional
        Method to use when averaging periodograms. Defaults to 'mean'.

        .. versionadded:: 1.2.0

    Returns
    -------
    f : ndarray
        Array of sample frequencies.
    Pxx : ndarray
        Power spectral density or power spectrum of x.

    See Also
    --------
    periodogram: Simple, optionally modified periodogram
    lombscargle: Lomb-Scargle periodogram for unevenly sampled data

    Notes
    -----
    An appropriate amount of overlap will depend on the choice of window
    and on your requirements. For the default Hann window an overlap of
    50% is a reasonable trade off between accurately estimating the
    signal power, while not over counting any of the data. Narrower
    windows may require a larger overlap.

    If `noverlap` is 0, this method is equivalent to Bartlett's method
    [2]_.

    .. versionadded:: 0.12.0

    References
    ----------
    .. [1] P. Welch, "The use of the fast Fourier transform for the
           estimation of power spectra: A method based on time averaging
           over short, modified periodograms", IEEE Trans. Audio
           Electroacoust. vol. 15, pp. 70-73, 1967.
    .. [2] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra",
           Biometrika, vol. 37, pp. 1-16, 1950.

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> np.random.seed(1234)

    Generate a test signal, a 2 Vrms sine wave at 1234 Hz, corrupted by
    0.001 V**2/Hz of white noise sampled at 10 kHz.

    >>> fs = 10e3
    >>> N = 1e5
    >>> amp = 2*np.sqrt(2)
    >>> freq = 1234.0
    >>> noise_power = 0.001 * fs / 2
    >>> time = np.arange(N) / fs
    >>> x = amp*np.sin(2*np.pi*freq*time)
    >>> x += np.random.normal(scale=np.sqrt(noise_power), size=time.shape)

    Compute and plot the power spectral density.

    >>> f, Pxx_den = signal.welch(x, fs, nperseg=1024)
    >>> plt.semilogy(f, Pxx_den)
    >>> plt.ylim([0.5e-3, 1])
    >>> plt.xlabel('frequency [Hz]')
    >>> plt.ylabel('PSD [V**2/Hz]')
    >>> plt.show()

    If we average the last half of the spectral density, to exclude the
    peak, we can recover the noise power on the signal.

    >>> np.mean(Pxx_den[256:])
    0.0009924865443739191

    Now compute and plot the power spectrum.

    >>> f, Pxx_spec = signal.welch(x, fs, 'flattop', 1024, scaling='spectrum')
    >>> plt.figure()
    >>> plt.semilogy(f, np.sqrt(Pxx_spec))
    >>> plt.xlabel('frequency [Hz]')
    >>> plt.ylabel('Linear spectrum [V RMS]')
    >>> plt.show()

    The peak height in the power spectrum is an estimate of the RMS
    amplitude.

    >>> np.sqrt(Pxx_spec.max())
    2.0077340678640727

    If we now introduce a discontinuity in the signal, by increasing the
    amplitude of a small portion of the signal by 50, we can see the
    corruption of the mean average power spectral density, but using a
    median average better estimates the normal behaviour.

    >>> x[int(N//2):int(N//2)+10] *= 50.
    >>> f, Pxx_den = signal.welch(x, fs, nperseg=1024)
    >>> f_med, Pxx_den_med = signal.welch(x, fs, nperseg=1024, average='median')
    >>> plt.semilogy(f, Pxx_den, label='mean')
    >>> plt.semilogy(f_med, Pxx_den_med, label='median')
    >>> plt.ylim([0.5e-3, 1])
    >>> plt.xlabel('frequency [Hz]')
    >>> plt.ylabel('PSD [V**2/Hz]')
    >>> plt.legend()
    >>> plt.show()

    """

    freqs, Pxx = csd(x, x, fs=fs, window=window, nperseg=nperseg,
                     noverlap=noverlap, nfft=nfft, detrend=detrend,
                     return_onesided=return_onesided, scaling=scaling,
                     axis=axis, average=average)

    return freqs, Pxx.real


def csd(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
        detrend='constant', return_onesided=True, scaling='density',
        axis=-1, average='mean'):
    r"""
    Estimate the cross power spectral density, Pxy, using Welch's
    method.

    Parameters
    ----------
    x : array_like
        Time series of measurement values
    y : array_like
        Time series of measurement values
    fs : float, optional
        Sampling frequency of the `x` and `y` time series. Defaults
        to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg. Defaults
        to a Hann window.
    nperseg : int, optional
        Length of each segment. Defaults to None, but if window is str or
        tuple, is set to 256, and if window is array_like, is set to the
        length of the window.
    noverlap: int, optional
        Number of points to overlap between segments. If `None`,
        ``noverlap = nperseg // 2``. Defaults to `None`.
    nfft : int, optional
        Length of the FFT used, if a zero padded FFT is desired. If
        `None`, the FFT length is `nperseg`. Defaults to `None`.
    detrend : str or function or `False`, optional
        Specifies how to detrend each segment. If `detrend` is a
        string, it is passed as the `type` argument to the `detrend`
        function. If it is a function, it takes a segment and returns a
        detrended segment. If `detrend` is `False`, no detrending is
        done. Defaults to 'constant'.
    return_onesided : bool, optional
        If `True`, return a one-sided spectrum for real data. If
        `False` return a two-sided spectrum. Defaults to `True`, but for
        complex data, a two-sided spectrum is always returned.
    scaling : { 'density', 'spectrum' }, optional
        Selects between computing the cross spectral density ('density')
        where `Pxy` has units of V**2/Hz and computing the cross spectrum
        ('spectrum') where `Pxy` has units of V**2, if `x` and `y` are
        measured in V and `fs` is measured in Hz. Defaults to 'density'
    axis : int, optional
        Axis along which the CSD is computed for both inputs; the
        default is over the last axis (i.e. ``axis=-1``).
    average : { 'mean', 'median' }, optional
        Method to use when averaging periodograms. Defaults to 'mean'.

        .. versionadded:: 1.2.0

    Returns
    -------
    f : ndarray
        Array of sample frequencies.
    Pxy : ndarray
        Cross spectral density or cross power spectrum of x,y.

    See Also
    --------
    periodogram: Simple, optionally modified periodogram
    lombscargle: Lomb-Scargle periodogram for unevenly sampled data
    welch: Power spectral density by Welch's method. [Equivalent to
           csd(x,x)]
    coherence: Magnitude squared coherence by Welch's method.

    Notes
    --------
    By convention, Pxy is computed with the conjugate FFT of X
    multiplied by the FFT of Y.

    If the input series differ in length, the shorter series will be
    zero-padded to match.

    An appropriate amount of overlap will depend on the choice of window
    and on your requirements. For the default Hann window an overlap of
    50% is a reasonable trade off between accurately estimating the
    signal power, while not over counting any of the data. Narrower
    windows may require a larger overlap.

    .. versionadded:: 0.16.0

    References
    ----------
    .. [1] P. Welch, "The use of the fast Fourier transform for the
           estimation of power spectra: A method based on time averaging
           over short, modified periodograms", IEEE Trans. Audio
           Electroacoust. vol. 15, pp. 70-73, 1967.
    .. [2] Rabiner, Lawrence R., and B. Gold. "Theory and Application of
           Digital Signal Processing" Prentice-Hall, pp. 414-419, 1975

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    Generate two test signals with some common features.

    >>> fs = 10e3
    >>> N = 1e5
    >>> amp = 20
    >>> freq = 1234.0
    >>> noise_power = 0.001 * fs / 2
    >>> time = np.arange(N) / fs
    >>> b, a = signal.butter(2, 0.25, 'low')
    >>> x = np.random.normal(scale=np.sqrt(noise_power), size=time.shape)
    >>> y = signal.lfilter(b, a, x)
    >>> x += amp*np.sin(2*np.pi*freq*time)
    >>> y += np.random.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)

    Compute and plot the magnitude of the cross spectral density.

    >>> f, Pxy = signal.csd(x, y, fs, nperseg=1024)
    >>> plt.semilogy(f, np.abs(Pxy))
    >>> plt.xlabel('frequency [Hz]')
    >>> plt.ylabel('CSD [V**2/Hz]')
    >>> plt.show()
    """

    freqs, _, Pxy = _spectral_helper(x, y, fs, window, nperseg, noverlap, nfft,
                                     detrend, return_onesided, scaling, axis,
                                     mode='psd')

    # Average over windows.
    if len(Pxy.shape) >= 2 and Pxy.size > 0:
        if Pxy.shape[-1] > 1:
            if average == 'median':
                Pxy = np.median(Pxy, axis=-1) / _median_bias(Pxy.shape[-1])
            elif average == 'mean':
                Pxy = Pxy.mean(axis=-1)
            else:
                raise ValueError('average must be "median" or "mean", got %s'
                                 % (average,))
        else:
            Pxy = np.reshape(Pxy, Pxy.shape[:-1])

    return freqs, Pxy


def spectrogram(x, fs=1.0, window=('tukey', .25), nperseg=None, noverlap=None,
                nfft=None, detrend='constant', return_onesided=True,
                scaling='density', axis=-1, mode='psd'):
    """
    Compute a spectrogram with consecutive Fourier transforms.

    Spectrograms can be used as a way of visualizing the change of a
    nonstationary signal's frequency content over time.

    Parameters
    ----------
    x : array_like
        Time series of measurement values
    fs : float, optional
        Sampling frequency of the `x` time series. Defaults to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg.
        Defaults to a Tukey window with shape parameter of 0.25.
    nperseg : int, optional
        Length of each segment. Defaults to None, but if window is str or
        tuple, is set to 256, and if window is array_like, is set to the
        length of the window.
    noverlap : int, optional
        Number of points to overlap between segments. If `None`,
        ``noverlap = nperseg // 8``. Defaults to `None`.
    nfft : int, optional
        Length of the FFT used, if a zero padded FFT is desired. If
        `None`, the FFT length is `nperseg`. Defaults to `None`.
    detrend : str or function or `False`, optional
        Specifies how to detrend each segment. If `detrend` is a
        string, it is passed as the `type` argument to the `detrend`
        function. If it is a function, it takes a segment and returns a
        detrended segment. If `detrend` is `False`, no detrending is
        done. Defaults to 'constant'.
    return_onesided : bool, optional
        If `True`, return a one-sided spectrum for real data. If
        `False` return a two-sided spectrum. Defaults to `True`, but for
        complex data, a two-sided spectrum is always returned.
    scaling : { 'density', 'spectrum' }, optional
        Selects between computing the power spectral density ('density')
        where `Sxx` has units of V**2/Hz and computing the power
        spectrum ('spectrum') where `Sxx` has units of V**2, if `x`
        is measured in V and `fs` is measured in Hz. Defaults to
        'density'.
    axis : int, optional
        Axis along which the spectrogram is computed; the default is over
        the last axis (i.e. ``axis=-1``).
    mode : str, optional
        Defines what kind of return values are expected. Options are
        ['psd', 'complex', 'magnitude', 'angle', 'phase']. 'complex' is
        equivalent to the output of `stft` with no padding or boundary
        extension. 'magnitude' returns the absolute magnitude of the
        STFT. 'angle' and 'phase' return the complex angle of the STFT,
        with and without unwrapping, respectively.

    Returns
    -------
    f : ndarray
        Array of sample frequencies.
    t : ndarray
        Array of segment times.
    Sxx : ndarray
        Spectrogram of x. By default, the last axis of Sxx corresponds
        to the segment times.

    See Also
    --------
    periodogram: Simple, optionally modified periodogram
    lombscargle: Lomb-Scargle periodogram for unevenly sampled data
    welch: Power spectral density by Welch's method.
    csd: Cross spectral density by Welch's method.

    Notes
    -----
    An appropriate amount of overlap will depend on the choice of window
    and on your requirements. In contrast to welch's method, where the
    entire data stream is averaged over, one may wish to use a smaller
    overlap (or perhaps none at all) when computing a spectrogram, to
    maintain some statistical independence between individual segments.
    It is for this reason that the default window is a Tukey window with
    1/8th of a window's length overlap at each end.

    .. versionadded:: 0.16.0

    References
    ----------
    .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
           "Discrete-Time Signal Processing", Prentice Hall, 1999.

    Examples
    --------
    >>> from scipy import signal
    >>> from scipy.fft import fftshift
    >>> import matplotlib.pyplot as plt

    Generate a test signal, a 2 Vrms sine wave whose frequency is slowly
    modulated around 3kHz, corrupted by white noise of exponentially
    decreasing magnitude sampled at 10 kHz.

    >>> fs = 10e3
    >>> N = 1e5
    >>> amp = 2 * np.sqrt(2)
    >>> noise_power = 0.01 * fs / 2
    >>> time = np.arange(N) / float(fs)
    >>> mod = 500*np.cos(2*np.pi*0.25*time)
    >>> carrier = amp * np.sin(2*np.pi*3e3*time + mod)
    >>> noise = np.random.normal(scale=np.sqrt(noise_power), size=time.shape)
    >>> noise *= np.exp(-time/5)
    >>> x = carrier + noise

    Compute and plot the spectrogram.

    >>> f, t, Sxx = signal.spectrogram(x, fs)
    >>> plt.pcolormesh(t, f, Sxx)
    >>> plt.ylabel('Frequency [Hz]')
    >>> plt.xlabel('Time [sec]')
    >>> plt.show()

    Note, if using output that is not one sided, then use the following:

    >>> f, t, Sxx = signal.spectrogram(x, fs, return_onesided=False)
    >>> plt.pcolormesh(t, fftshift(f), fftshift(Sxx, axes=0))
    >>> plt.ylabel('Frequency [Hz]')
    >>> plt.xlabel('Time [sec]')
    >>> plt.show()
    """
    modelist = ['psd', 'complex', 'magnitude', 'angle', 'phase']
    if mode not in modelist:
        raise ValueError('unknown value for mode {}, must be one of {}'
                         .format(mode, modelist))

    # need to set default for nperseg before setting default for noverlap below
    window, nperseg = _triage_segments(window, nperseg,
                                       input_length=x.shape[axis])

    # Less overlap than welch, so samples are more statisically independent
    if noverlap is None:
        noverlap = nperseg // 8

    if mode == 'psd':
        freqs, time, Sxx = _spectral_helper(x, x, fs, window, nperseg,
                                            noverlap, nfft, detrend,
                                            return_onesided, scaling, axis,
                                            mode='psd')

    else:
        freqs, time, Sxx = _spectral_helper(x, x, fs, window, nperseg,
                                            noverlap, nfft, detrend,
                                            return_onesided, scaling, axis,
                                            mode='stft')

        if mode == 'magnitude':
            Sxx = np.abs(Sxx)
        elif mode in ['angle', 'phase']:
            Sxx = np.angle(Sxx)
            if mode == 'phase':
                # Sxx has one additional dimension for time strides
                if axis < 0:
                    axis -= 1
                Sxx = np.unwrap(Sxx, axis=axis)

        # mode =='complex' is same as `stft`, doesn't need modification

    return freqs, time, Sxx


def check_COLA(window, nperseg, noverlap, tol=1e-10):
    r"""
    Check whether the Constant OverLap Add (COLA) constraint is met

    Parameters
    ----------
    window : str or tuple or array_like
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg.
    nperseg : int
        Length of each segment.
    noverlap : int
        Number of points to overlap between segments.
    tol : float, optional
        The allowed variance of a bin's weighted sum from the median bin
        sum.

    Returns
    -------
    verdict : bool
        `True` if chosen combination satisfies COLA within `tol`,
        `False` otherwise

    See Also
    --------
    check_NOLA: Check whether the Nonzero Overlap Add (NOLA) constraint is met
    stft: Short Time Fourier Transform
    istft: Inverse Short Time Fourier Transform

    Notes
    -----
    In order to enable inversion of an STFT via the inverse STFT in
    `istft`, it is sufficient that the signal windowing obeys the constraint of
    "Constant OverLap Add" (COLA). This ensures that every point in the input
    data is equally weighted, thereby avoiding aliasing and allowing full
    reconstruction.

    Some examples of windows that satisfy COLA:
        - Rectangular window at overlap of 0, 1/2, 2/3, 3/4, ...
        - Bartlett window at overlap of 1/2, 3/4, 5/6, ...
        - Hann window at 1/2, 2/3, 3/4, ...
        - Any Blackman family window at 2/3 overlap
        - Any window with ``noverlap = nperseg-1``

    A very comprehensive list of other windows may be found in [2]_,
    wherein the COLA condition is satisfied when the "Amplitude
    Flatness" is unity.

    .. versionadded:: 0.19.0

    References
    ----------
    .. [1] Julius O. Smith III, "Spectral Audio Signal Processing", W3K
           Publishing, 2011,ISBN 978-0-9745607-3-1.
    .. [2] G. Heinzel, A. Ruediger and R. Schilling, "Spectrum and
           spectral density estimation by the Discrete Fourier transform
           (DFT), including a comprehensive list of window functions and
           some new at-top windows", 2002,
           http://hdl.handle.net/11858/00-001M-0000-0013-557A-5

    Examples
    --------
    >>> from scipy import signal

    Confirm COLA condition for rectangular window of 75% (3/4) overlap:

    >>> signal.check_COLA(signal.boxcar(100), 100, 75)
    True

    COLA is not true for 25% (1/4) overlap, though:

    >>> signal.check_COLA(signal.boxcar(100), 100, 25)
    False

    "Symmetrical" Hann window (for filter design) is not COLA:

    >>> signal.check_COLA(signal.hann(120, sym=True), 120, 60)
    False

    "Periodic" or "DFT-even" Hann window (for FFT analysis) is COLA for
    overlap of 1/2, 2/3, 3/4, etc.:

    >>> signal.check_COLA(signal.hann(120, sym=False), 120, 60)
    True

    >>> signal.check_COLA(signal.hann(120, sym=False), 120, 80)
    True

    >>> signal.check_COLA(signal.hann(120, sym=False), 120, 90)
    True

    """

    nperseg = int(nperseg)

    if nperseg < 1:
        raise ValueError('nperseg must be a positive integer')

    if noverlap >= nperseg:
        raise ValueError('noverlap must be less than nperseg.')
    noverlap = int(noverlap)

    if isinstance(window, string_types) or type(window) is tuple:
        win = get_window(window, nperseg)
    else:
        win = np.asarray(window)
        if len(win.shape) != 1:
            raise ValueError('window must be 1-D')
        if win.shape[0] != nperseg:
            raise ValueError('window must have length of nperseg')

    step = nperseg - noverlap
    binsums = sum(win[ii*step:(ii+1)*step] for ii in range(nperseg//step))

    if nperseg % step != 0:
        binsums[:nperseg % step] += win[-(nperseg % step):]

    deviation = binsums - np.median(binsums)
    return np.max(np.abs(deviation)) < tol


def check_NOLA(window, nperseg, noverlap, tol=1e-10):
    r"""
    Check whether the Nonzero Overlap Add (NOLA) constraint is met

    Parameters
    ----------
    window : str or tuple or array_like
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg.
    nperseg : int
        Length of each segment.
    noverlap : int
        Number of points to overlap between segments.
    tol : float, optional
        The allowed variance of a bin's weighted sum from the median bin
        sum.

    Returns
    -------
    verdict : bool
        `True` if chosen combination satisfies the NOLA constraint within
        `tol`, `False` otherwise

    See Also
    --------
    check_COLA: Check whether the Constant OverLap Add (COLA) constraint is met
    stft: Short Time Fourier Transform
    istft: Inverse Short Time Fourier Transform

    Notes
    -----
    In order to enable inversion of an STFT via the inverse STFT in
    `istft`, the signal windowing must obey the constraint of "nonzero
    overlap add" (NOLA):

    .. math:: \sum_{t}w^{2}[n-tH] \ne 0

    for all :math:`n`, where :math:`w` is the window function, :math:`t` is the
    frame index, and :math:`H` is the hop size (:math:`H` = `nperseg` -
    `noverlap`).

    This ensures that the normalization factors in the denominator of the
    overlap-add inversion equation are not zero. Only very pathological windows
    will fail the NOLA constraint.

    .. versionadded:: 1.2.0

    References
    ----------
    .. [1] Julius O. Smith III, "Spectral Audio Signal Processing", W3K
           Publishing, 2011,ISBN 978-0-9745607-3-1.
    .. [2] G. Heinzel, A. Ruediger and R. Schilling, "Spectrum and
           spectral density estimation by the Discrete Fourier transform
           (DFT), including a comprehensive list of window functions and
           some new at-top windows", 2002,
           http://hdl.handle.net/11858/00-001M-0000-0013-557A-5

    Examples
    --------
    >>> from scipy import signal

    Confirm NOLA condition for rectangular window of 75% (3/4) overlap:

    >>> signal.check_NOLA(signal.boxcar(100), 100, 75)
    True

    NOLA is also true for 25% (1/4) overlap:

    >>> signal.check_NOLA(signal.boxcar(100), 100, 25)
    True

    "Symmetrical" Hann window (for filter design) is also NOLA:

    >>> signal.check_NOLA(signal.hann(120, sym=True), 120, 60)
    True

    As long as there is overlap, it takes quite a pathological window to fail
    NOLA:

    >>> w = np.ones(64, dtype="float")
    >>> w[::2] = 0
    >>> signal.check_NOLA(w, 64, 32)
    False

    If there is not enough overlap, a window with zeros at the ends will not
    work:

    >>> signal.check_NOLA(signal.hann(64), 64, 0)
    False
    >>> signal.check_NOLA(signal.hann(64), 64, 1)
    False
    >>> signal.check_NOLA(signal.hann(64), 64, 2)
    True
    """

    nperseg = int(nperseg)

    if nperseg < 1:
        raise ValueError('nperseg must be a positive integer')

    if noverlap >= nperseg:
        raise ValueError('noverlap must be less than nperseg')
    if noverlap < 0:
        raise ValueError('noverlap must be a nonnegative integer')
    noverlap = int(noverlap)

    if isinstance(window, string_types) or type(window) is tuple:
        win = get_window(window, nperseg)
    else:
        win = np.asarray(window)
        if len(win.shape) != 1:
            raise ValueError('window must be 1-D')
        if win.shape[0] != nperseg:
            raise ValueError('window must have length of nperseg')

    step = nperseg - noverlap
    binsums = sum(win[ii*step:(ii+1)*step]**2 for ii in range(nperseg//step))

    if nperseg % step != 0:
        binsums[:nperseg % step] += win[-(nperseg % step):]**2

    return np.min(binsums) > tol


def stft(x, fs=1.0, window='hann', nperseg=256, noverlap=None, nfft=None,
         detrend=False, return_onesided=True, boundary='zeros', padded=True,
         axis=-1):
    r"""
    Compute the Short Time Fourier Transform (STFT).

    STFTs can be used as a way of quantifying the change of a
    nonstationary signal's frequency and phase content over time.

    Parameters
    ----------
    x : array_like
        Time series of measurement values
    fs : float, optional
        Sampling frequency of the `x` time series. Defaults to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg. Defaults
        to a Hann window.
    nperseg : int, optional
        Length of each segment. Defaults to 256.
    noverlap : int, optional
        Number of points to overlap between segments. If `None`,
        ``noverlap = nperseg // 2``. Defaults to `None`. When
        specified, the COLA constraint must be met (see Notes below).
    nfft : int, optional
        Length of the FFT used, if a zero padded FFT is desired. If
        `None`, the FFT length is `nperseg`. Defaults to `None`.
    detrend : str or function or `False`, optional
        Specifies how to detrend each segment. If `detrend` is a
        string, it is passed as the `type` argument to the `detrend`
        function. If it is a function, it takes a segment and returns a
        detrended segment. If `detrend` is `False`, no detrending is
        done. Defaults to `False`.
    return_onesided : bool, optional
        If `True`, return a one-sided spectrum for real data. If
        `False` return a two-sided spectrum. Defaults to `True`, but for
        complex data, a two-sided spectrum is always returned.
    boundary : str or None, optional
        Specifies whether the input signal is extended at both ends, and
        how to generate the new values, in order to center the first
        windowed segment on the first input point. This has the benefit
        of enabling reconstruction of the first input point when the
        employed window function starts at zero. Valid options are
        ``['even', 'odd', 'constant', 'zeros', None]``. Defaults to
        'zeros', for zero padding extension. I.e. ``[1, 2, 3, 4]`` is
        extended to ``[0, 1, 2, 3, 4, 0]`` for ``nperseg=3``.
    padded : bool, optional
        Specifies whether the input signal is zero-padded at the end to
        make the signal fit exactly into an integer number of window
        segments, so that all of the signal is included in the output.
        Defaults to `True`. Padding occurs after boundary extension, if
        `boundary` is not `None`, and `padded` is `True`, as is the
        default.
    axis : int, optional
        Axis along which the STFT is computed; the default is over the
        last axis (i.e. ``axis=-1``).

    Returns
    -------
    f : ndarray
        Array of sample frequencies.
    t : ndarray
        Array of segment times.
    Zxx : ndarray
        STFT of `x`. By default, the last axis of `Zxx` corresponds
        to the segment times.

    See Also
    --------
    istft: Inverse Short Time Fourier Transform
    check_COLA: Check whether the Constant OverLap Add (COLA) constraint
                is met
    check_NOLA: Check whether the Nonzero Overlap Add (NOLA) constraint is met
    welch: Power spectral density by Welch's method.
    spectrogram: Spectrogram by Welch's method.
    csd: Cross spectral density by Welch's method.
    lombscargle: Lomb-Scargle periodogram for unevenly sampled data

    Notes
    -----
    In order to enable inversion of an STFT via the inverse STFT in
    `istft`, the signal windowing must obey the constraint of "Nonzero
    OverLap Add" (NOLA), and the input signal must have complete
    windowing coverage (i.e. ``(x.shape[axis] - nperseg) %
    (nperseg-noverlap) == 0``). The `padded` argument may be used to
    accomplish this.

    Given a time-domain signal :math:`x[n]`, a window :math:`w[n]`, and a hop
    size :math:`H` = `nperseg - noverlap`, the windowed frame at time index
    :math:`t` is given by

    .. math:: x_{t}[n]=x[n]w[n-tH]

    The overlap-add (OLA) reconstruction equation is given by

    .. math:: x[n]=\frac{\sum_{t}x_{t}[n]w[n-tH]}{\sum_{t}w^{2}[n-tH]}

    The NOLA constraint ensures that every normalization term that appears
    in the denomimator of the OLA reconstruction equation is nonzero. Whether a
    choice of `window`, `nperseg`, and `noverlap` satisfy this constraint can
    be tested with `check_NOLA`.

    .. versionadded:: 0.19.0

    References
    ----------
    .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
           "Discrete-Time Signal Processing", Prentice Hall, 1999.
    .. [2] Daniel W. Griffin, Jae S. Lim "Signal Estimation from
           Modified Short-Time Fourier Transform", IEEE 1984,
           10.1109/TASSP.1984.1164317

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    Generate a test signal, a 2 Vrms sine wave whose frequency is slowly
    modulated around 3kHz, corrupted by white noise of exponentially
    decreasing magnitude sampled at 10 kHz.

    >>> fs = 10e3
    >>> N = 1e5
    >>> amp = 2 * np.sqrt(2)
    >>> noise_power = 0.01 * fs / 2
    >>> time = np.arange(N) / float(fs)
    >>> mod = 500*np.cos(2*np.pi*0.25*time)
    >>> carrier = amp * np.sin(2*np.pi*3e3*time + mod)
    >>> noise = np.random.normal(scale=np.sqrt(noise_power),
    ...                          size=time.shape)
    >>> noise *= np.exp(-time/5)
    >>> x = carrier + noise

    Compute and plot the STFT's magnitude.

    >>> f, t, Zxx = signal.stft(x, fs, nperseg=1000)
    >>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp)
    >>> plt.title('STFT Magnitude')
    >>> plt.ylabel('Frequency [Hz]')
    >>> plt.xlabel('Time [sec]')
    >>> plt.show()
    """

    freqs, time, Zxx = _spectral_helper(x, x, fs, window, nperseg, noverlap,
                                        nfft, detrend, return_onesided,
                                        scaling='spectrum', axis=axis,
                                        mode='stft', boundary=boundary,
                                        padded=padded)

    return freqs, time, Zxx


def istft(Zxx, fs=1.0, window='hann', nperseg=None, noverlap=None, nfft=None,
          input_onesided=True, boundary=True, time_axis=-1, freq_axis=-2):
    r"""
    Perform the inverse Short Time Fourier transform (iSTFT).

    Parameters
    ----------
    Zxx : array_like
        STFT of the signal to be reconstructed. If a purely real array
        is passed, it will be cast to a complex data type.
    fs : float, optional
        Sampling frequency of the time series. Defaults to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg. Defaults
        to a Hann window. Must match the window used to generate the
        STFT for faithful inversion.
    nperseg : int, optional
        Number of data points corresponding to each STFT segment. This
        parameter must be specified if the number of data points per
        segment is odd, or if the STFT was padded via ``nfft >
        nperseg``. If `None`, the value depends on the shape of
        `Zxx` and `input_onesided`. If `input_onesided` is `True`,
        ``nperseg=2*(Zxx.shape[freq_axis] - 1)``. Otherwise,
        ``nperseg=Zxx.shape[freq_axis]``. Defaults to `None`.
    noverlap : int, optional
        Number of points to overlap between segments. If `None`, half
        of the segment length. Defaults to `None`. When specified, the
        COLA constraint must be met (see Notes below), and should match
        the parameter used to generate the STFT. Defaults to `None`.
    nfft : int, optional
        Number of FFT points corresponding to each STFT segment. This
        parameter must be specified if the STFT was padded via ``nfft >
        nperseg``. If `None`, the default values are the same as for
        `nperseg`, detailed above, with one exception: if
        `input_onesided` is True and
        ``nperseg==2*Zxx.shape[freq_axis] - 1``, `nfft` also takes on
        that value. This case allows the proper inversion of an
        odd-length unpadded STFT using ``nfft=None``. Defaults to
        `None`.
    input_onesided : bool, optional
        If `True`, interpret the input array as one-sided FFTs, such
        as is returned by `stft` with ``return_onesided=True`` and
        `numpy.fft.rfft`. If `False`, interpret the input as a a
        two-sided FFT. Defaults to `True`.
    boundary : bool, optional
        Specifies whether the input signal was extended at its
        boundaries by supplying a non-`None` ``boundary`` argument to
        `stft`. Defaults to `True`.
    time_axis : int, optional
        Where the time segments of the STFT is located; the default is
        the last axis (i.e. ``axis=-1``).
    freq_axis : int, optional
        Where the frequency axis of the STFT is located; the default is
        the penultimate axis (i.e. ``axis=-2``).

    Returns
    -------
    t : ndarray
        Array of output data times.
    x : ndarray
        iSTFT of `Zxx`.

    See Also
    --------
    stft: Short Time Fourier Transform
    check_COLA: Check whether the Constant OverLap Add (COLA) constraint
                is met
    check_NOLA: Check whether the Nonzero Overlap Add (NOLA) constraint is met

    Notes
    -----
    In order to enable inversion of an STFT via the inverse STFT with
    `istft`, the signal windowing must obey the constraint of "nonzero
    overlap add" (NOLA):

    .. math:: \sum_{t}w^{2}[n-tH] \ne 0

    This ensures that the normalization factors that appear in the denominator
    of the overlap-add reconstruction equation

    .. math:: x[n]=\frac{\sum_{t}x_{t}[n]w[n-tH]}{\sum_{t}w^{2}[n-tH]}

    are not zero. The NOLA constraint can be checked with the `check_NOLA`
    function.

    An STFT which has been modified (via masking or otherwise) is not
    guaranteed to correspond to a exactly realizible signal. This
    function implements the iSTFT via the least-squares estimation
    algorithm detailed in [2]_, which produces a signal that minimizes
    the mean squared error between the STFT of the returned signal and
    the modified STFT.

    .. versionadded:: 0.19.0

    References
    ----------
    .. [1] Oppenheim, Alan V., Ronald W. Schafer, John R. Buck
           "Discrete-Time Signal Processing", Prentice Hall, 1999.
    .. [2] Daniel W. Griffin, Jae S. Lim "Signal Estimation from
           Modified Short-Time Fourier Transform", IEEE 1984,
           10.1109/TASSP.1984.1164317

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    Generate a test signal, a 2 Vrms sine wave at 50Hz corrupted by
    0.001 V**2/Hz of white noise sampled at 1024 Hz.

    >>> fs = 1024
    >>> N = 10*fs
    >>> nperseg = 512
    >>> amp = 2 * np.sqrt(2)
    >>> noise_power = 0.001 * fs / 2
    >>> time = np.arange(N) / float(fs)
    >>> carrier = amp * np.sin(2*np.pi*50*time)
    >>> noise = np.random.normal(scale=np.sqrt(noise_power),
    ...                          size=time.shape)
    >>> x = carrier + noise

    Compute the STFT, and plot its magnitude

    >>> f, t, Zxx = signal.stft(x, fs=fs, nperseg=nperseg)
    >>> plt.figure()
    >>> plt.pcolormesh(t, f, np.abs(Zxx), vmin=0, vmax=amp)
    >>> plt.ylim([f[1], f[-1]])
    >>> plt.title('STFT Magnitude')
    >>> plt.ylabel('Frequency [Hz]')
    >>> plt.xlabel('Time [sec]')
    >>> plt.yscale('log')
    >>> plt.show()

    Zero the components that are 10% or less of the carrier magnitude,
    then convert back to a time series via inverse STFT

    >>> Zxx = np.where(np.abs(Zxx) >= amp/10, Zxx, 0)
    >>> _, xrec = signal.istft(Zxx, fs)

    Compare the cleaned signal with the original and true carrier signals.

    >>> plt.figure()
    >>> plt.plot(time, x, time, xrec, time, carrier)
    >>> plt.xlim([2, 2.1])
    >>> plt.xlabel('Time [sec]')
    >>> plt.ylabel('Signal')
    >>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
    >>> plt.show()

    Note that the cleaned signal does not start as abruptly as the original,
    since some of the coefficients of the transient were also removed:

    >>> plt.figure()
    >>> plt.plot(time, x, time, xrec, time, carrier)
    >>> plt.xlim([0, 0.1])
    >>> plt.xlabel('Time [sec]')
    >>> plt.ylabel('Signal')
    >>> plt.legend(['Carrier + Noise', 'Filtered via STFT', 'True Carrier'])
    >>> plt.show()

    """

    # Make sure input is an ndarray of appropriate complex dtype
    Zxx = np.asarray(Zxx) + 0j
    freq_axis = int(freq_axis)
    time_axis = int(time_axis)

    if Zxx.ndim < 2:
        raise ValueError('Input stft must be at least 2d!')

    if freq_axis == time_axis:
        raise ValueError('Must specify differing time and frequency axes!')

    nseg = Zxx.shape[time_axis]

    if input_onesided:
        # Assume even segment length
        n_default = 2*(Zxx.shape[freq_axis] - 1)
    else:
        n_default = Zxx.shape[freq_axis]

    # Check windowing parameters
    if nperseg is None:
        nperseg = n_default
    else:
        nperseg = int(nperseg)
        if nperseg < 1:
            raise ValueError('nperseg must be a positive integer')

    if nfft is None:
        if (input_onesided) and (nperseg == n_default + 1):
            # Odd nperseg, no FFT padding
            nfft = nperseg
        else:
            nfft = n_default
    elif nfft < nperseg:
        raise ValueError('nfft must be greater than or equal to nperseg.')
    else:
        nfft = int(nfft)

    if noverlap is None:
        noverlap = nperseg//2
    else:
        noverlap = int(noverlap)
    if noverlap >= nperseg:
        raise ValueError('noverlap must be less than nperseg.')
    nstep = nperseg - noverlap

    # Rearrange axes if necessary
    if time_axis != Zxx.ndim-1 or freq_axis != Zxx.ndim-2:
        # Turn negative indices to positive for the call to transpose
        if freq_axis < 0:
            freq_axis = Zxx.ndim + freq_axis
        if time_axis < 0:
            time_axis = Zxx.ndim + time_axis
        zouter = list(range(Zxx.ndim))
        for ax in sorted([time_axis, freq_axis], reverse=True):
            zouter.pop(ax)
        Zxx = np.transpose(Zxx, zouter+[freq_axis, time_axis])

    # Get window as array
    if isinstance(window, string_types) or type(window) is tuple:
        win = get_window(window, nperseg)
    else:
        win = np.asarray(window)
        if len(win.shape) != 1:
            raise ValueError('window must be 1-D')
        if win.shape[0] != nperseg:
            raise ValueError('window must have length of {0}'.format(nperseg))

    ifunc = sp_fft.irfft if input_onesided else sp_fft.ifft
    xsubs = ifunc(Zxx, axis=-2, n=nfft)[..., :nperseg, :]

    # Initialize output and normalization arrays
    outputlength = nperseg + (nseg-1)*nstep
    x = np.zeros(list(Zxx.shape[:-2])+[outputlength], dtype=xsubs.dtype)
    norm = np.zeros(outputlength, dtype=xsubs.dtype)

    if np.result_type(win, xsubs) != xsubs.dtype:
        win = win.astype(xsubs.dtype)

    xsubs *= win.sum()  # This takes care of the 'spectrum' scaling

    # Construct the output from the ifft segments
    # This loop could perhaps be vectorized/strided somehow...
    for ii in range(nseg):
        # Window the ifft
        x[..., ii*nstep:ii*nstep+nperseg] += xsubs[..., ii] * win
        norm[..., ii*nstep:ii*nstep+nperseg] += win**2

    # Remove extension points
    if boundary:
        x = x[..., nperseg//2:-(nperseg//2)]
        norm = norm[..., nperseg//2:-(nperseg//2)]

    # Divide out normalization where non-tiny
    if np.sum(norm > 1e-10) != len(norm):
        warnings.warn("NOLA condition failed, STFT may not be invertible")
    x /= np.where(norm > 1e-10, norm, 1.0)

    if input_onesided:
        x = x.real

    # Put axes back
    if x.ndim > 1:
        if time_axis != Zxx.ndim-1:
            if freq_axis < time_axis:
                time_axis -= 1
            x = np.rollaxis(x, -1, time_axis)

    time = np.arange(x.shape[0])/float(fs)
    return time, x


def coherence(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None,
              nfft=None, detrend='constant', axis=-1):
    r"""
    Estimate the magnitude squared coherence estimate, Cxy, of
    discrete-time signals X and Y using Welch's method.

    ``Cxy = abs(Pxy)**2/(Pxx*Pyy)``, where `Pxx` and `Pyy` are power
    spectral density estimates of X and Y, and `Pxy` is the cross
    spectral density estimate of X and Y.

    Parameters
    ----------
    x : array_like
        Time series of measurement values
    y : array_like
        Time series of measurement values
    fs : float, optional
        Sampling frequency of the `x` and `y` time series. Defaults
        to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg. Defaults
        to a Hann window.
    nperseg : int, optional
        Length of each segment. Defaults to None, but if window is str or
        tuple, is set to 256, and if window is array_like, is set to the
        length of the window.
    noverlap: int, optional
        Number of points to overlap between segments. If `None`,
        ``noverlap = nperseg // 2``. Defaults to `None`.
    nfft : int, optional
        Length of the FFT used, if a zero padded FFT is desired. If
        `None`, the FFT length is `nperseg`. Defaults to `None`.
    detrend : str or function or `False`, optional
        Specifies how to detrend each segment. If `detrend` is a
        string, it is passed as the `type` argument to the `detrend`
        function. If it is a function, it takes a segment and returns a
        detrended segment. If `detrend` is `False`, no detrending is
        done. Defaults to 'constant'.
    axis : int, optional
        Axis along which the coherence is computed for both inputs; the
        default is over the last axis (i.e. ``axis=-1``).

    Returns
    -------
    f : ndarray
        Array of sample frequencies.
    Cxy : ndarray
        Magnitude squared coherence of x and y.

    See Also
    --------
    periodogram: Simple, optionally modified periodogram
    lombscargle: Lomb-Scargle periodogram for unevenly sampled data
    welch: Power spectral density by Welch's method.
    csd: Cross spectral density by Welch's method.

    Notes
    --------
    An appropriate amount of overlap will depend on the choice of window
    and on your requirements. For the default Hann window an overlap of
    50% is a reasonable trade off between accurately estimating the
    signal power, while not over counting any of the data. Narrower
    windows may require a larger overlap.

    .. versionadded:: 0.16.0

    References
    ----------
    .. [1] P. Welch, "The use of the fast Fourier transform for the
           estimation of power spectra: A method based on time averaging
           over short, modified periodograms", IEEE Trans. Audio
           Electroacoust. vol. 15, pp. 70-73, 1967.
    .. [2] Stoica, Petre, and Randolph Moses, "Spectral Analysis of
           Signals" Prentice Hall, 2005

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    Generate two test signals with some common features.

    >>> fs = 10e3
    >>> N = 1e5
    >>> amp = 20
    >>> freq = 1234.0
    >>> noise_power = 0.001 * fs / 2
    >>> time = np.arange(N) / fs
    >>> b, a = signal.butter(2, 0.25, 'low')
    >>> x = np.random.normal(scale=np.sqrt(noise_power), size=time.shape)
    >>> y = signal.lfilter(b, a, x)
    >>> x += amp*np.sin(2*np.pi*freq*time)
    >>> y += np.random.normal(scale=0.1*np.sqrt(noise_power), size=time.shape)

    Compute and plot the coherence.

    >>> f, Cxy = signal.coherence(x, y, fs, nperseg=1024)
    >>> plt.semilogy(f, Cxy)
    >>> plt.xlabel('frequency [Hz]')
    >>> plt.ylabel('Coherence')
    >>> plt.show()
    """

    freqs, Pxx = welch(x, fs=fs, window=window, nperseg=nperseg,
                       noverlap=noverlap, nfft=nfft, detrend=detrend,
                       axis=axis)
    _, Pyy = welch(y, fs=fs, window=window, nperseg=nperseg, noverlap=noverlap,
                   nfft=nfft, detrend=detrend, axis=axis)
    _, Pxy = csd(x, y, fs=fs, window=window, nperseg=nperseg,
                 noverlap=noverlap, nfft=nfft, detrend=detrend, axis=axis)

    Cxy = np.abs(Pxy)**2 / Pxx / Pyy

    return freqs, Cxy


def _spectral_helper(x, y, fs=1.0, window='hann', nperseg=None, noverlap=None,
                     nfft=None, detrend='constant', return_onesided=True,
                     scaling='density', axis=-1, mode='psd', boundary=None,
                     padded=False):
    """
    Calculate various forms of windowed FFTs for PSD, CSD, etc.

    This is a helper function that implements the commonality between
    the stft, psd, csd, and spectrogram functions. It is not designed to
    be called externally. The windows are not averaged over; the result
    from each window is returned.

    Parameters
    ---------
    x : array_like
        Array or sequence containing the data to be analyzed.
    y : array_like
        Array or sequence containing the data to be analyzed. If this is
        the same object in memory as `x` (i.e. ``_spectral_helper(x,
        x, ...)``), the extra computations are spared.
    fs : float, optional
        Sampling frequency of the time series. Defaults to 1.0.
    window : str or tuple or array_like, optional
        Desired window to use. If `window` is a string or tuple, it is
        passed to `get_window` to generate the window values, which are
        DFT-even by default. See `get_window` for a list of windows and
        required parameters. If `window` is array_like it will be used
        directly as the window and its length must be nperseg. Defaults
        to a Hann window.
    nperseg : int, optional
        Length of each segment. Defaults to None, but if window is str or
        tuple, is set to 256, and if window is array_like, is set to the
        length of the window.
    noverlap : int, optional
        Number of points to overlap between segments. If `None`,
        ``noverlap = nperseg // 2``. Defaults to `None`.
    nfft : int, optional
        Length of the FFT used, if a zero padded FFT is desired. If
        `None`, the FFT length is `nperseg`. Defaults to `None`.
    detrend : str or function or `False`, optional
        Specifies how to detrend each segment. If `detrend` is a
        string, it is passed as the `type` argument to the `detrend`
        function. If it is a function, it takes a segment and returns a
        detrended segment. If `detrend` is `False`, no detrending is
        done. Defaults to 'constant'.
    return_onesided : bool, optional
        If `True`, return a one-sided spectrum for real data. If
        `False` return a two-sided spectrum. Defaults to `True`, but for
        complex data, a two-sided spectrum is always returned.
    scaling : { 'density', 'spectrum' }, optional
        Selects between computing the cross spectral density ('density')
        where `Pxy` has units of V**2/Hz and computing the cross
        spectrum ('spectrum') where `Pxy` has units of V**2, if `x`
        and `y` are measured in V and `fs` is measured in Hz.
        Defaults to 'density'
    axis : int, optional
        Axis along which the FFTs are computed; the default is over the
        last axis (i.e. ``axis=-1``).
    mode: str {'psd', 'stft'}, optional
        Defines what kind of return values are expected. Defaults to
        'psd'.
    boundary : str or None, optional
        Specifies whether the input signal is extended at both ends, and
        how to generate the new values, in order to center the first
        windowed segment on the first input point. This has the benefit
        of enabling reconstruction of the first input point when the
        employed window function starts at zero. Valid options are
        ``['even', 'odd', 'constant', 'zeros', None]``. Defaults to
        `None`.
    padded : bool, optional
        Specifies whether the input signal is zero-padded at the end to
        make the signal fit exactly into an integer number of window
        segments, so that all of the signal is included in the output.
        Defaults to `False`. Padding occurs after boundary extension, if
        `boundary` is not `None`, and `padded` is `True`.
    Returns
    -------
    freqs : ndarray
        Array of sample frequencies.
    t : ndarray
        Array of times corresponding to each data segment
    result : ndarray
        Array of output data, contents dependent on *mode* kwarg.

    Notes
    -----
    Adapted from matplotlib.mlab

    .. versionadded:: 0.16.0
    """
    if mode not in ['psd', 'stft']:
        raise ValueError("Unknown value for mode %s, must be one of: "
                         "{'psd', 'stft'}" % mode)

    boundary_funcs = {'even': even_ext,
                      'odd': odd_ext,
                      'constant': const_ext,
                      'zeros': zero_ext,
                      None: None}

    if boundary not in boundary_funcs:
        raise ValueError("Unknown boundary option '{0}', must be one of: {1}"
                         .format(boundary, list(boundary_funcs.keys())))

    # If x and y are the same object we can save ourselves some computation.
    same_data = y is x

    if not same_data and mode != 'psd':
        raise ValueError("x and y must be equal if mode is 'stft'")

    axis = int(axis)

    # Ensure we have np.arrays, get outdtype
    x = np.asarray(x)
    if not same_data:
        y = np.asarray(y)
        outdtype = np.result_type(x, y, np.complex64)
    else:
        outdtype = np.result_type(x, np.complex64)

    if not same_data:
        # Check if we can broadcast the outer axes together
        xouter = list(x.shape)
        youter = list(y.shape)
        xouter.pop(axis)
        youter.pop(axis)
        try:
            outershape = np.broadcast(np.empty(xouter), np.empty(youter)).shape
        except ValueError:
            raise ValueError('x and y cannot be broadcast together.')

    if same_data:
        if x.size == 0:
            return np.empty(x.shape), np.empty(x.shape), np.empty(x.shape)
    else:
        if x.size == 0 or y.size == 0:
            outshape = outershape + (min([x.shape[axis], y.shape[axis]]),)
            emptyout = np.rollaxis(np.empty(outshape), -1, axis)
            return emptyout, emptyout, emptyout

    if x.ndim > 1:
        if axis != -1:
            x = np.rollaxis(x, axis, len(x.shape))
            if not same_data and y.ndim > 1:
                y = np.rollaxis(y, axis, len(y.shape))

    # Check if x and y are the same length, zero-pad if necessary
    if not same_data:
        if x.shape[-1] != y.shape[-1]:
            if x.shape[-1] < y.shape[-1]:
                pad_shape = list(x.shape)
                pad_shape[-1] = y.shape[-1] - x.shape[-1]
                x = np.concatenate((x, np.zeros(pad_shape)), -1)
            else:
                pad_shape = list(y.shape)
                pad_shape[-1] = x.shape[-1] - y.shape[-1]
                y = np.concatenate((y, np.zeros(pad_shape)), -1)

    if nperseg is not None:  # if specified by user
        nperseg = int(nperseg)
        if nperseg < 1:
            raise ValueError('nperseg must be a positive integer')

    # parse window; if array like, then set nperseg = win.shape
    win, nperseg = _triage_segments(window, nperseg, input_length=x.shape[-1])

    if nfft is None:
        nfft = nperseg
    elif nfft < nperseg:
        raise ValueError('nfft must be greater than or equal to nperseg.')
    else:
        nfft = int(nfft)

    if noverlap is None:
        noverlap = nperseg//2
    else:
        noverlap = int(noverlap)
    if noverlap >= nperseg:
        raise ValueError('noverlap must be less than nperseg.')
    nstep = nperseg - noverlap

    # Padding occurs after boundary extension, so that the extended signal ends
    # in zeros, instead of introducing an impulse at the end.
    # I.e. if x = [..., 3, 2]
    # extend then pad -> [..., 3, 2, 2, 3, 0, 0, 0]
    # pad then extend -> [..., 3, 2, 0, 0, 0, 2, 3]

    if boundary is not None:
        ext_func = boundary_funcs[boundary]
        x = ext_func(x, nperseg//2, axis=-1)
        if not same_data:
            y = ext_func(y, nperseg//2, axis=-1)

    if padded:
        # Pad to integer number of windowed segments
        # I.e make x.shape[-1] = nperseg + (nseg-1)*nstep, with integer nseg
        nadd = (-(x.shape[-1]-nperseg) % nstep) % nperseg
        zeros_shape = list(x.shape[:-1]) + [nadd]
        x = np.concatenate((x, np.zeros(zeros_shape)), axis=-1)
        if not same_data:
            zeros_shape = list(y.shape[:-1]) + [nadd]
            y = np.concatenate((y, np.zeros(zeros_shape)), axis=-1)

    # Handle detrending and window functions
    if not detrend:
        def detrend_func(d):
            return d
    elif not hasattr(detrend, '__call__'):
        def detrend_func(d):
            return signaltools.detrend(d, type=detrend, axis=-1)
    elif axis != -1:
        # Wrap this function so that it receives a shape that it could
        # reasonably expect to receive.
        def detrend_func(d):
            d = np.rollaxis(d, -1, axis)
            d = detrend(d)
            return np.rollaxis(d, axis, len(d.shape))
    else:
        detrend_func = detrend

    if np.result_type(win, np.complex64) != outdtype:
        win = win.astype(outdtype)

    if scaling == 'density':
        scale = 1.0 / (fs * (win*win).sum())
    elif scaling == 'spectrum':
        scale = 1.0 / win.sum()**2
    else:
        raise ValueError('Unknown scaling: %r' % scaling)

    if mode == 'stft':
        scale = np.sqrt(scale)

    if return_onesided:
        if np.iscomplexobj(x):
            sides = 'twosided'
            warnings.warn('Input data is complex, switching to '
                          'return_onesided=False')
        else:
            sides = 'onesided'
            if not same_data:
                if np.iscomplexobj(y):
                    sides = 'twosided'
                    warnings.warn('Input data is complex, switching to '
                                  'return_onesided=False')
    else:
        sides = 'twosided'

    if sides == 'twosided':
        freqs = sp_fft.fftfreq(nfft, 1/fs)
    elif sides == 'onesided':
        freqs = sp_fft.rfftfreq(nfft, 1/fs)

    # Perform the windowed FFTs
    result = _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft, sides)

    if not same_data:
        # All the same operations on the y data
        result_y = _fft_helper(y, win, detrend_func, nperseg, noverlap, nfft,
                               sides)
        result = np.conjugate(result) * result_y
    elif mode == 'psd':
        result = np.conjugate(result) * result

    result *= scale
    if sides == 'onesided' and mode == 'psd':
        if nfft % 2:
            result[..., 1:] *= 2
        else:
            # Last point is unpaired Nyquist freq point, don't double
            result[..., 1:-1] *= 2

    time = np.arange(nperseg/2, x.shape[-1] - nperseg/2 + 1,
                     nperseg - noverlap)/float(fs)
    if boundary is not None:
        time -= (nperseg/2) / fs

    result = result.astype(outdtype)

    # All imaginary parts are zero anyways
    if same_data and mode != 'stft':
        result = result.real

    # Output is going to have new last axis for time/window index, so a
    # negative axis index shifts down one
    if axis < 0:
        axis -= 1

    # Roll frequency axis back to axis where the data came from
    result = np.rollaxis(result, -1, axis)

    return freqs, time, result


def _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft, sides):
    """
    Calculate windowed FFT, for internal use by
    scipy.signal._spectral_helper

    This is a helper function that does the main FFT calculation for
    `_spectral helper`. All input validation is performed there, and the
    data axis is assumed to be the last axis of x. It is not designed to
    be called externally. The windows are not averaged over; the result
    from each window is returned.

    Returns
    -------
    result : ndarray
        Array of FFT data

    Notes
    -----
    Adapted from matplotlib.mlab

    .. versionadded:: 0.16.0
    """
    # Created strided array of data segments
    if nperseg == 1 and noverlap == 0:
        result = x[..., np.newaxis]
    else:
        # https://stackoverflow.com/a/5568169
        step = nperseg - noverlap
        shape = x.shape[:-1]+((x.shape[-1]-noverlap)//step, nperseg)
        strides = x.strides[:-1]+(step*x.strides[-1], x.strides[-1])
        result = np.lib.stride_tricks.as_strided(x, shape=shape,
                                                 strides=strides)

    # Detrend each data segment individually
    result = detrend_func(result)

    # Apply window by multiplication
    result = win * result

    # Perform the fft. Acts on last axis by default. Zero-pads automatically
    if sides == 'twosided':
        func = sp_fft.fft
    else:
        result = result.real
        func = sp_fft.rfft
    result = func(result, n=nfft)

    return result


def _triage_segments(window, nperseg, input_length):
    """
    Parses window and nperseg arguments for spectrogram and _spectral_helper.
    This is a helper function, not meant to be called externally.

    Parameters
    ----------
    window : string, tuple, or ndarray
        If window is specified by a string or tuple and nperseg is not
        specified, nperseg is set to the default of 256 and returns a window of
        that length.
        If instead the window is array_like and nperseg is not specified, then
        nperseg is set to the length of the window. A ValueError is raised if
        the user supplies both an array_like window and a value for nperseg but
        nperseg does not equal the length of the window.

    nperseg : int
        Length of each segment

    input_length: int
        Length of input signal, i.e. x.shape[-1]. Used to test for errors.

    Returns
    -------
    win : ndarray
        window. If function was called with string or tuple than this will hold
        the actual array used as a window.

    nperseg : int
        Length of each segment. If window is str or tuple, nperseg is set to
        256. If window is array_like, nperseg is set to the length of the
        6
        window.
    """

    # parse window; if array like, then set nperseg = win.shape
    if isinstance(window, string_types) or isinstance(window, tuple):
        # if nperseg not specified
        if nperseg is None:
            nperseg = 256  # then change to default
        if nperseg > input_length:
            warnings.warn('nperseg = {0:d} is greater than input length '
                          ' = {1:d}, using nperseg = {1:d}'
                          .format(nperseg, input_length))
            nperseg = input_length
        win = get_window(window, nperseg)
    else:
        win = np.asarray(window)
        if len(win.shape) != 1:
            raise ValueError('window must be 1-D')
        if input_length < win.shape[-1]:
            raise ValueError('window is longer than input signal')
        if nperseg is None:
            nperseg = win.shape[0]
        elif nperseg is not None:
            if nperseg != win.shape[0]:
                raise ValueError("value specified for nperseg is different"
                                 " from length of window")
    return win, nperseg


def _median_bias(n):
    """
    Returns the bias of the median of a set of periodograms relative to
    the mean.

    See arXiv:gr-qc/0509116 Appendix B for details.

    Parameters
    ----------
    n : int
        Numbers of periodograms being averaged.

    Returns
    -------
    bias : float
        Calculated bias.
    """
    ii_2 = 2 * np.arange(1., (n-1) // 2 + 1)
    return 1 + np.sum(1. / (ii_2 + 1) - 1. / ii_2)