dok.py
15.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
"""Dictionary Of Keys based matrix"""
from __future__ import division, print_function, absolute_import
__docformat__ = "restructuredtext en"
__all__ = ['dok_matrix', 'isspmatrix_dok']
import itertools
import numpy as np
from scipy._lib.six import zip as izip, xrange, iteritems, iterkeys, itervalues
from .base import spmatrix, isspmatrix
from ._index import IndexMixin
from .sputils import (isdense, getdtype, isshape, isintlike, isscalarlike,
upcast, upcast_scalar, get_index_dtype, check_shape)
try:
from operator import isSequenceType as _is_sequence
except ImportError:
def _is_sequence(x):
return (hasattr(x, '__len__') or hasattr(x, '__next__')
or hasattr(x, 'next'))
class dok_matrix(spmatrix, IndexMixin, dict):
"""
Dictionary Of Keys based sparse matrix.
This is an efficient structure for constructing sparse
matrices incrementally.
This can be instantiated in several ways:
dok_matrix(D)
with a dense matrix, D
dok_matrix(S)
with a sparse matrix, S
dok_matrix((M,N), [dtype])
create the matrix with initial shape (M,N)
dtype is optional, defaulting to dtype='d'
Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
Number of nonzero elements
Notes
-----
Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Allows for efficient O(1) access of individual elements.
Duplicates are not allowed.
Can be efficiently converted to a coo_matrix once constructed.
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import dok_matrix
>>> S = dok_matrix((5, 5), dtype=np.float32)
>>> for i in range(5):
... for j in range(5):
... S[i, j] = i + j # Update element
"""
format = 'dok'
def __init__(self, arg1, shape=None, dtype=None, copy=False):
dict.__init__(self)
spmatrix.__init__(self)
self.dtype = getdtype(dtype, default=float)
if isinstance(arg1, tuple) and isshape(arg1): # (M,N)
M, N = arg1
self._shape = check_shape((M, N))
elif isspmatrix(arg1): # Sparse ctor
if isspmatrix_dok(arg1) and copy:
arg1 = arg1.copy()
else:
arg1 = arg1.todok()
if dtype is not None:
arg1 = arg1.astype(dtype)
dict.update(self, arg1)
self._shape = check_shape(arg1.shape)
self.dtype = arg1.dtype
else: # Dense ctor
try:
arg1 = np.asarray(arg1)
except Exception:
raise TypeError('Invalid input format.')
if len(arg1.shape) != 2:
raise TypeError('Expected rank <=2 dense array or matrix.')
from .coo import coo_matrix
d = coo_matrix(arg1, dtype=dtype).todok()
dict.update(self, d)
self._shape = check_shape(arg1.shape)
self.dtype = d.dtype
def update(self, val):
# Prevent direct usage of update
raise NotImplementedError("Direct modification to dok_matrix element "
"is not allowed.")
def _update(self, data):
"""An update method for dict data defined for direct access to
`dok_matrix` data. Main purpose is to be used for effcient conversion
from other spmatrix classes. Has no checking if `data` is valid."""
return dict.update(self, data)
def set_shape(self, shape):
new_matrix = self.reshape(shape, copy=False).asformat(self.format)
self.__dict__ = new_matrix.__dict__
dict.clear(self)
dict.update(self, new_matrix)
shape = property(fget=spmatrix.get_shape, fset=set_shape)
def getnnz(self, axis=None):
if axis is not None:
raise NotImplementedError("getnnz over an axis is not implemented "
"for DOK format.")
return dict.__len__(self)
def count_nonzero(self):
return sum(x != 0 for x in itervalues(self))
getnnz.__doc__ = spmatrix.getnnz.__doc__
count_nonzero.__doc__ = spmatrix.count_nonzero.__doc__
def __len__(self):
return dict.__len__(self)
def get(self, key, default=0.):
"""This overrides the dict.get method, providing type checking
but otherwise equivalent functionality.
"""
try:
i, j = key
assert isintlike(i) and isintlike(j)
except (AssertionError, TypeError, ValueError):
raise IndexError('Index must be a pair of integers.')
if (i < 0 or i >= self.shape[0] or j < 0 or j >= self.shape[1]):
raise IndexError('Index out of bounds.')
return dict.get(self, key, default)
def _get_intXint(self, row, col):
return dict.get(self, (row, col), self.dtype.type(0))
def _get_intXslice(self, row, col):
return self._get_sliceXslice(slice(row, row+1), col)
def _get_sliceXint(self, row, col):
return self._get_sliceXslice(row, slice(col, col+1))
def _get_sliceXslice(self, row, col):
row_start, row_stop, row_step = row.indices(self.shape[0])
col_start, col_stop, col_step = col.indices(self.shape[1])
row_range = xrange(row_start, row_stop, row_step)
col_range = xrange(col_start, col_stop, col_step)
shape = (len(row_range), len(col_range))
# Switch paths only when advantageous
# (count the iterations in the loops, adjust for complexity)
if len(self) >= 2 * shape[0] * shape[1]:
# O(nr*nc) path: loop over <row x col>
return self._get_columnXarray(row_range, col_range)
# O(nnz) path: loop over entries of self
newdok = dok_matrix(shape, dtype=self.dtype)
for key in iterkeys(self):
i, ri = divmod(int(key[0]) - row_start, row_step)
if ri != 0 or i < 0 or i >= shape[0]:
continue
j, rj = divmod(int(key[1]) - col_start, col_step)
if rj != 0 or j < 0 or j >= shape[1]:
continue
x = dict.__getitem__(self, key)
dict.__setitem__(newdok, (i, j), x)
return newdok
def _get_intXarray(self, row, col):
return self._get_columnXarray([row], col)
def _get_arrayXint(self, row, col):
return self._get_columnXarray(row, [col])
def _get_sliceXarray(self, row, col):
row = list(range(*row.indices(self.shape[0])))
return self._get_columnXarray(row, col)
def _get_arrayXslice(self, row, col):
col = list(range(*col.indices(self.shape[1])))
return self._get_columnXarray(row, col)
def _get_columnXarray(self, row, col):
# outer indexing
newdok = dok_matrix((len(row), len(col)), dtype=self.dtype)
for i, r in enumerate(row):
for j, c in enumerate(col):
v = dict.get(self, (r, c), 0)
if v:
dict.__setitem__(newdok, (i, j), v)
return newdok
def _get_arrayXarray(self, row, col):
# inner indexing
i, j = map(np.atleast_2d, np.broadcast_arrays(row, col))
newdok = dok_matrix(i.shape, dtype=self.dtype)
for key in itertools.product(xrange(i.shape[0]), xrange(i.shape[1])):
v = dict.get(self, (i[key], j[key]), 0)
if v:
dict.__setitem__(newdok, key, v)
return newdok
def _set_intXint(self, row, col, x):
key = (row, col)
if x:
dict.__setitem__(self, key, x)
elif dict.__contains__(self, key):
del self[key]
def _set_arrayXarray(self, row, col, x):
row = list(map(int, row.ravel()))
col = list(map(int, col.ravel()))
x = x.ravel()
dict.update(self, izip(izip(row, col), x))
for i in np.nonzero(x == 0)[0]:
key = (row[i], col[i])
if dict.__getitem__(self, key) == 0:
# may have been superseded by later update
del self[key]
def __add__(self, other):
if isscalarlike(other):
res_dtype = upcast_scalar(self.dtype, other)
new = dok_matrix(self.shape, dtype=res_dtype)
# Add this scalar to every element.
M, N = self.shape
for key in itertools.product(xrange(M), xrange(N)):
aij = dict.get(self, (key), 0) + other
if aij:
new[key] = aij
# new.dtype.char = self.dtype.char
elif isspmatrix_dok(other):
if other.shape != self.shape:
raise ValueError("Matrix dimensions are not equal.")
# We could alternatively set the dimensions to the largest of
# the two matrices to be summed. Would this be a good idea?
res_dtype = upcast(self.dtype, other.dtype)
new = dok_matrix(self.shape, dtype=res_dtype)
dict.update(new, self)
with np.errstate(over='ignore'):
dict.update(new,
((k, new[k] + other[k]) for k in iterkeys(other)))
elif isspmatrix(other):
csc = self.tocsc()
new = csc + other
elif isdense(other):
new = self.todense() + other
else:
return NotImplemented
return new
def __radd__(self, other):
if isscalarlike(other):
new = dok_matrix(self.shape, dtype=self.dtype)
M, N = self.shape
for key in itertools.product(xrange(M), xrange(N)):
aij = dict.get(self, (key), 0) + other
if aij:
new[key] = aij
elif isspmatrix_dok(other):
if other.shape != self.shape:
raise ValueError("Matrix dimensions are not equal.")
new = dok_matrix(self.shape, dtype=self.dtype)
dict.update(new, self)
dict.update(new,
((k, self[k] + other[k]) for k in iterkeys(other)))
elif isspmatrix(other):
csc = self.tocsc()
new = csc + other
elif isdense(other):
new = other + self.todense()
else:
return NotImplemented
return new
def __neg__(self):
if self.dtype.kind == 'b':
raise NotImplementedError('Negating a sparse boolean matrix is not'
' supported.')
new = dok_matrix(self.shape, dtype=self.dtype)
dict.update(new, ((k, -self[k]) for k in iterkeys(self)))
return new
def _mul_scalar(self, other):
res_dtype = upcast_scalar(self.dtype, other)
# Multiply this scalar by every element.
new = dok_matrix(self.shape, dtype=res_dtype)
dict.update(new, ((k, v * other) for k, v in iteritems(self)))
return new
def _mul_vector(self, other):
# matrix * vector
result = np.zeros(self.shape[0], dtype=upcast(self.dtype, other.dtype))
for (i, j), v in iteritems(self):
result[i] += v * other[j]
return result
def _mul_multivector(self, other):
# matrix * multivector
result_shape = (self.shape[0], other.shape[1])
result_dtype = upcast(self.dtype, other.dtype)
result = np.zeros(result_shape, dtype=result_dtype)
for (i, j), v in iteritems(self):
result[i,:] += v * other[j,:]
return result
def __imul__(self, other):
if isscalarlike(other):
dict.update(self, ((k, v * other) for k, v in iteritems(self)))
return self
return NotImplemented
def __truediv__(self, other):
if isscalarlike(other):
res_dtype = upcast_scalar(self.dtype, other)
new = dok_matrix(self.shape, dtype=res_dtype)
dict.update(new, ((k, v / other) for k, v in iteritems(self)))
return new
return self.tocsr() / other
def __itruediv__(self, other):
if isscalarlike(other):
dict.update(self, ((k, v / other) for k, v in iteritems(self)))
return self
return NotImplemented
def __reduce__(self):
# this approach is necessary because __setstate__ is called after
# __setitem__ upon unpickling and since __init__ is not called there
# is no shape attribute hence it is not possible to unpickle it.
return dict.__reduce__(self)
# What should len(sparse) return? For consistency with dense matrices,
# perhaps it should be the number of rows? For now it returns the number
# of non-zeros.
def transpose(self, axes=None, copy=False):
if axes is not None:
raise ValueError("Sparse matrices do not support "
"an 'axes' parameter because swapping "
"dimensions is the only logical permutation.")
M, N = self.shape
new = dok_matrix((N, M), dtype=self.dtype, copy=copy)
dict.update(new, (((right, left), val)
for (left, right), val in iteritems(self)))
return new
transpose.__doc__ = spmatrix.transpose.__doc__
def conjtransp(self):
"""Return the conjugate transpose."""
M, N = self.shape
new = dok_matrix((N, M), dtype=self.dtype)
dict.update(new, (((right, left), np.conj(val))
for (left, right), val in iteritems(self)))
return new
def copy(self):
new = dok_matrix(self.shape, dtype=self.dtype)
dict.update(new, self)
return new
copy.__doc__ = spmatrix.copy.__doc__
def tocoo(self, copy=False):
from .coo import coo_matrix
if self.nnz == 0:
return coo_matrix(self.shape, dtype=self.dtype)
idx_dtype = get_index_dtype(maxval=max(self.shape))
data = np.fromiter(itervalues(self), dtype=self.dtype, count=self.nnz)
row = np.fromiter((i for i, _ in iterkeys(self)), dtype=idx_dtype, count=self.nnz)
col = np.fromiter((j for _, j in iterkeys(self)), dtype=idx_dtype, count=self.nnz)
A = coo_matrix((data, (row, col)), shape=self.shape, dtype=self.dtype)
A.has_canonical_format = True
return A
tocoo.__doc__ = spmatrix.tocoo.__doc__
def todok(self, copy=False):
if copy:
return self.copy()
return self
todok.__doc__ = spmatrix.todok.__doc__
def tocsc(self, copy=False):
return self.tocoo(copy=False).tocsc(copy=copy)
tocsc.__doc__ = spmatrix.tocsc.__doc__
def resize(self, *shape):
shape = check_shape(shape)
newM, newN = shape
M, N = self.shape
if newM < M or newN < N:
# Remove all elements outside new dimensions
for (i, j) in list(iterkeys(self)):
if i >= newM or j >= newN:
del self[i, j]
self._shape = shape
resize.__doc__ = spmatrix.resize.__doc__
def isspmatrix_dok(x):
"""Is x of dok_matrix type?
Parameters
----------
x
object to check for being a dok matrix
Returns
-------
bool
True if x is a dok matrix, False otherwise
Examples
--------
>>> from scipy.sparse import dok_matrix, isspmatrix_dok
>>> isspmatrix_dok(dok_matrix([[5]]))
True
>>> from scipy.sparse import dok_matrix, csr_matrix, isspmatrix_dok
>>> isspmatrix_dok(csr_matrix([[5]]))
False
"""
return isinstance(x, dok_matrix)