matfuncs.py 26.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
"""
Sparse matrix functions
"""

#
# Authors: Travis Oliphant, March 2002
#          Anthony Scopatz, August 2012 (Sparse Updates)
#          Jake Vanderplas, August 2012 (Sparse Updates)
#

from __future__ import division, print_function, absolute_import

__all__ = ['expm', 'inv']

import math

import numpy as np

import scipy.special
from scipy.linalg.basic import solve, solve_triangular

from scipy.sparse.base import isspmatrix
from scipy.sparse.construct import eye as speye
from scipy.sparse.linalg import spsolve
from scipy.sparse.sputils import is_pydata_spmatrix

import scipy.sparse
import scipy.sparse.linalg
from scipy.sparse.linalg.interface import LinearOperator

from ._expm_multiply import _ident_like, _exact_1_norm as _onenorm


UPPER_TRIANGULAR = 'upper_triangular'


def inv(A):
    """
    Compute the inverse of a sparse matrix

    Parameters
    ----------
    A : (M,M) ndarray or sparse matrix
        square matrix to be inverted

    Returns
    -------
    Ainv : (M,M) ndarray or sparse matrix
        inverse of `A`

    Notes
    -----
    This computes the sparse inverse of `A`.  If the inverse of `A` is expected
    to be non-sparse, it will likely be faster to convert `A` to dense and use
    scipy.linalg.inv.

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import inv
    >>> A = csc_matrix([[1., 0.], [1., 2.]])
    >>> Ainv = inv(A)
    >>> Ainv
    <2x2 sparse matrix of type '<class 'numpy.float64'>'
        with 3 stored elements in Compressed Sparse Column format>
    >>> A.dot(Ainv)
    <2x2 sparse matrix of type '<class 'numpy.float64'>'
        with 2 stored elements in Compressed Sparse Column format>
    >>> A.dot(Ainv).todense()
    matrix([[ 1.,  0.],
            [ 0.,  1.]])

    .. versionadded:: 0.12.0

    """
    #check input
    if not (scipy.sparse.isspmatrix(A) or is_pydata_spmatrix(A)):
        raise TypeError('Input must be a sparse matrix')

    I = _ident_like(A)
    Ainv = spsolve(A, I)
    return Ainv


def _onenorm_matrix_power_nnm(A, p):
    """
    Compute the 1-norm of a non-negative integer power of a non-negative matrix.

    Parameters
    ----------
    A : a square ndarray or matrix or sparse matrix
        Input matrix with non-negative entries.
    p : non-negative integer
        The power to which the matrix is to be raised.

    Returns
    -------
    out : float
        The 1-norm of the matrix power p of A.

    """
    # check input
    if int(p) != p or p < 0:
        raise ValueError('expected non-negative integer p')
    p = int(p)
    if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
        raise ValueError('expected A to be like a square matrix')

    # Explicitly make a column vector so that this works when A is a
    # numpy matrix (in addition to ndarray and sparse matrix).
    v = np.ones((A.shape[0], 1), dtype=float)
    M = A.T
    for i in range(p):
        v = M.dot(v)
    return np.max(v)


def _is_upper_triangular(A):
    # This function could possibly be of wider interest.
    if isspmatrix(A):
        lower_part = scipy.sparse.tril(A, -1)
        # Check structural upper triangularity,
        # then coincidental upper triangularity if needed.
        return lower_part.nnz == 0 or lower_part.count_nonzero() == 0
    elif is_pydata_spmatrix(A):
        import sparse
        lower_part = sparse.tril(A, -1)
        return lower_part.nnz == 0
    else:
        return not np.tril(A, -1).any()


def _smart_matrix_product(A, B, alpha=None, structure=None):
    """
    A matrix product that knows about sparse and structured matrices.

    Parameters
    ----------
    A : 2d ndarray
        First matrix.
    B : 2d ndarray
        Second matrix.
    alpha : float
        The matrix product will be scaled by this constant.
    structure : str, optional
        A string describing the structure of both matrices `A` and `B`.
        Only `upper_triangular` is currently supported.

    Returns
    -------
    M : 2d ndarray
        Matrix product of A and B.

    """
    if len(A.shape) != 2:
        raise ValueError('expected A to be a rectangular matrix')
    if len(B.shape) != 2:
        raise ValueError('expected B to be a rectangular matrix')
    f = None
    if structure == UPPER_TRIANGULAR:
        if (not isspmatrix(A) and not isspmatrix(B)
                and not is_pydata_spmatrix(A) and not is_pydata_spmatrix(B)):
            f, = scipy.linalg.get_blas_funcs(('trmm',), (A, B))
    if f is not None:
        if alpha is None:
            alpha = 1.
        out = f(alpha, A, B)
    else:
        if alpha is None:
            out = A.dot(B)
        else:
            out = alpha * A.dot(B)
    return out


class MatrixPowerOperator(LinearOperator):

    def __init__(self, A, p, structure=None):
        if A.ndim != 2 or A.shape[0] != A.shape[1]:
            raise ValueError('expected A to be like a square matrix')
        if p < 0:
            raise ValueError('expected p to be a non-negative integer')
        self._A = A
        self._p = p
        self._structure = structure
        self.dtype = A.dtype
        self.ndim = A.ndim
        self.shape = A.shape

    def _matvec(self, x):
        for i in range(self._p):
            x = self._A.dot(x)
        return x

    def _rmatvec(self, x):
        A_T = self._A.T
        x = x.ravel()
        for i in range(self._p):
            x = A_T.dot(x)
        return x

    def _matmat(self, X):
        for i in range(self._p):
            X = _smart_matrix_product(self._A, X, structure=self._structure)
        return X

    @property
    def T(self):
        return MatrixPowerOperator(self._A.T, self._p)


class ProductOperator(LinearOperator):
    """
    For now, this is limited to products of multiple square matrices.
    """

    def __init__(self, *args, **kwargs):
        self._structure = kwargs.get('structure', None)
        for A in args:
            if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
                raise ValueError(
                        'For now, the ProductOperator implementation is '
                        'limited to the product of multiple square matrices.')
        if args:
            n = args[0].shape[0]
            for A in args:
                for d in A.shape:
                    if d != n:
                        raise ValueError(
                                'The square matrices of the ProductOperator '
                                'must all have the same shape.')
            self.shape = (n, n)
            self.ndim = len(self.shape)
        self.dtype = np.find_common_type([x.dtype for x in args], [])
        self._operator_sequence = args

    def _matvec(self, x):
        for A in reversed(self._operator_sequence):
            x = A.dot(x)
        return x

    def _rmatvec(self, x):
        x = x.ravel()
        for A in self._operator_sequence:
            x = A.T.dot(x)
        return x

    def _matmat(self, X):
        for A in reversed(self._operator_sequence):
            X = _smart_matrix_product(A, X, structure=self._structure)
        return X

    @property
    def T(self):
        T_args = [A.T for A in reversed(self._operator_sequence)]
        return ProductOperator(*T_args)


def _onenormest_matrix_power(A, p,
        t=2, itmax=5, compute_v=False, compute_w=False, structure=None):
    """
    Efficiently estimate the 1-norm of A^p.

    Parameters
    ----------
    A : ndarray
        Matrix whose 1-norm of a power is to be computed.
    p : int
        Non-negative integer power.
    t : int, optional
        A positive parameter controlling the tradeoff between
        accuracy versus time and memory usage.
        Larger values take longer and use more memory
        but give more accurate output.
    itmax : int, optional
        Use at most this many iterations.
    compute_v : bool, optional
        Request a norm-maximizing linear operator input vector if True.
    compute_w : bool, optional
        Request a norm-maximizing linear operator output vector if True.

    Returns
    -------
    est : float
        An underestimate of the 1-norm of the sparse matrix.
    v : ndarray, optional
        The vector such that ||Av||_1 == est*||v||_1.
        It can be thought of as an input to the linear operator
        that gives an output with particularly large norm.
    w : ndarray, optional
        The vector Av which has relatively large 1-norm.
        It can be thought of as an output of the linear operator
        that is relatively large in norm compared to the input.

    """
    return scipy.sparse.linalg.onenormest(
            MatrixPowerOperator(A, p, structure=structure))


def _onenormest_product(operator_seq,
        t=2, itmax=5, compute_v=False, compute_w=False, structure=None):
    """
    Efficiently estimate the 1-norm of the matrix product of the args.

    Parameters
    ----------
    operator_seq : linear operator sequence
        Matrices whose 1-norm of product is to be computed.
    t : int, optional
        A positive parameter controlling the tradeoff between
        accuracy versus time and memory usage.
        Larger values take longer and use more memory
        but give more accurate output.
    itmax : int, optional
        Use at most this many iterations.
    compute_v : bool, optional
        Request a norm-maximizing linear operator input vector if True.
    compute_w : bool, optional
        Request a norm-maximizing linear operator output vector if True.
    structure : str, optional
        A string describing the structure of all operators.
        Only `upper_triangular` is currently supported.

    Returns
    -------
    est : float
        An underestimate of the 1-norm of the sparse matrix.
    v : ndarray, optional
        The vector such that ||Av||_1 == est*||v||_1.
        It can be thought of as an input to the linear operator
        that gives an output with particularly large norm.
    w : ndarray, optional
        The vector Av which has relatively large 1-norm.
        It can be thought of as an output of the linear operator
        that is relatively large in norm compared to the input.

    """
    return scipy.sparse.linalg.onenormest(
            ProductOperator(*operator_seq, structure=structure))


class _ExpmPadeHelper(object):
    """
    Help lazily evaluate a matrix exponential.

    The idea is to not do more work than we need for high expm precision,
    so we lazily compute matrix powers and store or precompute
    other properties of the matrix.

    """
    def __init__(self, A, structure=None, use_exact_onenorm=False):
        """
        Initialize the object.

        Parameters
        ----------
        A : a dense or sparse square numpy matrix or ndarray
            The matrix to be exponentiated.
        structure : str, optional
            A string describing the structure of matrix `A`.
            Only `upper_triangular` is currently supported.
        use_exact_onenorm : bool, optional
            If True then only the exact one-norm of matrix powers and products
            will be used. Otherwise, the one-norm of powers and products
            may initially be estimated.
        """
        self.A = A
        self._A2 = None
        self._A4 = None
        self._A6 = None
        self._A8 = None
        self._A10 = None
        self._d4_exact = None
        self._d6_exact = None
        self._d8_exact = None
        self._d10_exact = None
        self._d4_approx = None
        self._d6_approx = None
        self._d8_approx = None
        self._d10_approx = None
        self.ident = _ident_like(A)
        self.structure = structure
        self.use_exact_onenorm = use_exact_onenorm

    @property
    def A2(self):
        if self._A2 is None:
            self._A2 = _smart_matrix_product(
                    self.A, self.A, structure=self.structure)
        return self._A2

    @property
    def A4(self):
        if self._A4 is None:
            self._A4 = _smart_matrix_product(
                    self.A2, self.A2, structure=self.structure)
        return self._A4

    @property
    def A6(self):
        if self._A6 is None:
            self._A6 = _smart_matrix_product(
                    self.A4, self.A2, structure=self.structure)
        return self._A6

    @property
    def A8(self):
        if self._A8 is None:
            self._A8 = _smart_matrix_product(
                    self.A6, self.A2, structure=self.structure)
        return self._A8

    @property
    def A10(self):
        if self._A10 is None:
            self._A10 = _smart_matrix_product(
                    self.A4, self.A6, structure=self.structure)
        return self._A10

    @property
    def d4_tight(self):
        if self._d4_exact is None:
            self._d4_exact = _onenorm(self.A4)**(1/4.)
        return self._d4_exact

    @property
    def d6_tight(self):
        if self._d6_exact is None:
            self._d6_exact = _onenorm(self.A6)**(1/6.)
        return self._d6_exact

    @property
    def d8_tight(self):
        if self._d8_exact is None:
            self._d8_exact = _onenorm(self.A8)**(1/8.)
        return self._d8_exact

    @property
    def d10_tight(self):
        if self._d10_exact is None:
            self._d10_exact = _onenorm(self.A10)**(1/10.)
        return self._d10_exact

    @property
    def d4_loose(self):
        if self.use_exact_onenorm:
            return self.d4_tight
        if self._d4_exact is not None:
            return self._d4_exact
        else:
            if self._d4_approx is None:
                self._d4_approx = _onenormest_matrix_power(self.A2, 2,
                        structure=self.structure)**(1/4.)
            return self._d4_approx

    @property
    def d6_loose(self):
        if self.use_exact_onenorm:
            return self.d6_tight
        if self._d6_exact is not None:
            return self._d6_exact
        else:
            if self._d6_approx is None:
                self._d6_approx = _onenormest_matrix_power(self.A2, 3,
                        structure=self.structure)**(1/6.)
            return self._d6_approx

    @property
    def d8_loose(self):
        if self.use_exact_onenorm:
            return self.d8_tight
        if self._d8_exact is not None:
            return self._d8_exact
        else:
            if self._d8_approx is None:
                self._d8_approx = _onenormest_matrix_power(self.A4, 2,
                        structure=self.structure)**(1/8.)
            return self._d8_approx

    @property
    def d10_loose(self):
        if self.use_exact_onenorm:
            return self.d10_tight
        if self._d10_exact is not None:
            return self._d10_exact
        else:
            if self._d10_approx is None:
                self._d10_approx = _onenormest_product((self.A4, self.A6),
                        structure=self.structure)**(1/10.)
            return self._d10_approx

    def pade3(self):
        b = (120., 60., 12., 1.)
        U = _smart_matrix_product(self.A,
                b[3]*self.A2 + b[1]*self.ident,
                structure=self.structure)
        V = b[2]*self.A2 + b[0]*self.ident
        return U, V

    def pade5(self):
        b = (30240., 15120., 3360., 420., 30., 1.)
        U = _smart_matrix_product(self.A,
                b[5]*self.A4 + b[3]*self.A2 + b[1]*self.ident,
                structure=self.structure)
        V = b[4]*self.A4 + b[2]*self.A2 + b[0]*self.ident
        return U, V

    def pade7(self):
        b = (17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.)
        U = _smart_matrix_product(self.A,
                b[7]*self.A6 + b[5]*self.A4 + b[3]*self.A2 + b[1]*self.ident,
                structure=self.structure)
        V = b[6]*self.A6 + b[4]*self.A4 + b[2]*self.A2 + b[0]*self.ident
        return U, V

    def pade9(self):
        b = (17643225600., 8821612800., 2075673600., 302702400., 30270240.,
                2162160., 110880., 3960., 90., 1.)
        U = _smart_matrix_product(self.A,
                (b[9]*self.A8 + b[7]*self.A6 + b[5]*self.A4 +
                    b[3]*self.A2 + b[1]*self.ident),
                structure=self.structure)
        V = (b[8]*self.A8 + b[6]*self.A6 + b[4]*self.A4 +
                b[2]*self.A2 + b[0]*self.ident)
        return U, V

    def pade13_scaled(self, s):
        b = (64764752532480000., 32382376266240000., 7771770303897600.,
                1187353796428800., 129060195264000., 10559470521600.,
                670442572800., 33522128640., 1323241920., 40840800., 960960.,
                16380., 182., 1.)
        B = self.A * 2**-s
        B2 = self.A2 * 2**(-2*s)
        B4 = self.A4 * 2**(-4*s)
        B6 = self.A6 * 2**(-6*s)
        U2 = _smart_matrix_product(B6,
                b[13]*B6 + b[11]*B4 + b[9]*B2,
                structure=self.structure)
        U = _smart_matrix_product(B,
                (U2 + b[7]*B6 + b[5]*B4 +
                    b[3]*B2 + b[1]*self.ident),
                structure=self.structure)
        V2 = _smart_matrix_product(B6,
                b[12]*B6 + b[10]*B4 + b[8]*B2,
                structure=self.structure)
        V = V2 + b[6]*B6 + b[4]*B4 + b[2]*B2 + b[0]*self.ident
        return U, V


def expm(A):
    """
    Compute the matrix exponential using Pade approximation.

    Parameters
    ----------
    A : (M,M) array_like or sparse matrix
        2D Array or Matrix (sparse or dense) to be exponentiated

    Returns
    -------
    expA : (M,M) ndarray
        Matrix exponential of `A`

    Notes
    -----
    This is algorithm (6.1) which is a simplification of algorithm (5.1).

    .. versionadded:: 0.12.0

    References
    ----------
    .. [1] Awad H. Al-Mohy and Nicholas J. Higham (2009)
           "A New Scaling and Squaring Algorithm for the Matrix Exponential."
           SIAM Journal on Matrix Analysis and Applications.
           31 (3). pp. 970-989. ISSN 1095-7162

    Examples
    --------
    >>> from scipy.sparse import csc_matrix
    >>> from scipy.sparse.linalg import expm
    >>> A = csc_matrix([[1, 0, 0], [0, 2, 0], [0, 0, 3]])
    >>> A.todense()
    matrix([[1, 0, 0],
            [0, 2, 0],
            [0, 0, 3]], dtype=int64)
    >>> Aexp = expm(A)
    >>> Aexp
    <3x3 sparse matrix of type '<class 'numpy.float64'>'
        with 3 stored elements in Compressed Sparse Column format>
    >>> Aexp.todense()
    matrix([[  2.71828183,   0.        ,   0.        ],
            [  0.        ,   7.3890561 ,   0.        ],
            [  0.        ,   0.        ,  20.08553692]])
    """
    return _expm(A, use_exact_onenorm='auto')


def _expm(A, use_exact_onenorm):
    # Core of expm, separated to allow testing exact and approximate
    # algorithms.

    # Avoid indiscriminate asarray() to allow sparse or other strange arrays.
    if isinstance(A, (list, tuple, np.matrix)):
        A = np.asarray(A)
    if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
        raise ValueError('expected a square matrix')

    # Trivial case
    if A.shape == (1, 1):
        out = [[np.exp(A[0, 0])]]

        # Avoid indiscriminate casting to ndarray to
        # allow for sparse or other strange arrays
        if isspmatrix(A) or is_pydata_spmatrix(A):
            return A.__class__(out)

        return np.array(out)

    # Ensure input is of float type, to avoid integer overflows etc.
    if ((isinstance(A, np.ndarray) or isspmatrix(A) or is_pydata_spmatrix(A))
            and not np.issubdtype(A.dtype, np.inexact)):
        A = A.astype(float)

    # Detect upper triangularity.
    structure = UPPER_TRIANGULAR if _is_upper_triangular(A) else None

    if use_exact_onenorm == "auto":
        # Hardcode a matrix order threshold for exact vs. estimated one-norms.
        use_exact_onenorm = A.shape[0] < 200

    # Track functions of A to help compute the matrix exponential.
    h = _ExpmPadeHelper(
            A, structure=structure, use_exact_onenorm=use_exact_onenorm)

    # Try Pade order 3.
    eta_1 = max(h.d4_loose, h.d6_loose)
    if eta_1 < 1.495585217958292e-002 and _ell(h.A, 3) == 0:
        U, V = h.pade3()
        return _solve_P_Q(U, V, structure=structure)

    # Try Pade order 5.
    eta_2 = max(h.d4_tight, h.d6_loose)
    if eta_2 < 2.539398330063230e-001 and _ell(h.A, 5) == 0:
        U, V = h.pade5()
        return _solve_P_Q(U, V, structure=structure)

    # Try Pade orders 7 and 9.
    eta_3 = max(h.d6_tight, h.d8_loose)
    if eta_3 < 9.504178996162932e-001 and _ell(h.A, 7) == 0:
        U, V = h.pade7()
        return _solve_P_Q(U, V, structure=structure)
    if eta_3 < 2.097847961257068e+000 and _ell(h.A, 9) == 0:
        U, V = h.pade9()
        return _solve_P_Q(U, V, structure=structure)

    # Use Pade order 13.
    eta_4 = max(h.d8_loose, h.d10_loose)
    eta_5 = min(eta_3, eta_4)
    theta_13 = 4.25

    # Choose smallest s>=0 such that 2**(-s) eta_5 <= theta_13
    if eta_5 == 0:
        # Nilpotent special case
        s = 0
    else:
        s = max(int(np.ceil(np.log2(eta_5 / theta_13))), 0)
    s = s + _ell(2**-s * h.A, 13)
    U, V = h.pade13_scaled(s)
    X = _solve_P_Q(U, V, structure=structure)
    if structure == UPPER_TRIANGULAR:
        # Invoke Code Fragment 2.1.
        X = _fragment_2_1(X, h.A, s)
    else:
        # X = r_13(A)^(2^s) by repeated squaring.
        for i in range(s):
            X = X.dot(X)
    return X


def _solve_P_Q(U, V, structure=None):
    """
    A helper function for expm_2009.

    Parameters
    ----------
    U : ndarray
        Pade numerator.
    V : ndarray
        Pade denominator.
    structure : str, optional
        A string describing the structure of both matrices `U` and `V`.
        Only `upper_triangular` is currently supported.

    Notes
    -----
    The `structure` argument is inspired by similar args
    for theano and cvxopt functions.

    """
    P = U + V
    Q = -U + V
    if isspmatrix(U) or is_pydata_spmatrix(U):
        return spsolve(Q, P)
    elif structure is None:
        return solve(Q, P)
    elif structure == UPPER_TRIANGULAR:
        return solve_triangular(Q, P)
    else:
        raise ValueError('unsupported matrix structure: ' + str(structure))


def _sinch(x):
    """
    Stably evaluate sinch.

    Notes
    -----
    The strategy of falling back to a sixth order Taylor expansion
    was suggested by the Spallation Neutron Source docs
    which was found on the internet by google search.
    http://www.ornl.gov/~t6p/resources/xal/javadoc/gov/sns/tools/math/ElementaryFunction.html
    The details of the cutoff point and the Horner-like evaluation
    was picked without reference to anything in particular.

    Note that sinch is not currently implemented in scipy.special,
    whereas the "engineer's" definition of sinc is implemented.
    The implementation of sinc involves a scaling factor of pi
    that distinguishes it from the "mathematician's" version of sinc.

    """

    # If x is small then use sixth order Taylor expansion.
    # How small is small? I am using the point where the relative error
    # of the approximation is less than 1e-14.
    # If x is large then directly evaluate sinh(x) / x.
    x2 = x*x
    if abs(x) < 0.0135:
        return 1 + (x2/6.)*(1 + (x2/20.)*(1 + (x2/42.)))
    else:
        return np.sinh(x) / x


def _eq_10_42(lam_1, lam_2, t_12):
    """
    Equation (10.42) of Functions of Matrices: Theory and Computation.

    Notes
    -----
    This is a helper function for _fragment_2_1 of expm_2009.
    Equation (10.42) is on page 251 in the section on Schur algorithms.
    In particular, section 10.4.3 explains the Schur-Parlett algorithm.
    expm([[lam_1, t_12], [0, lam_1])
    =
    [[exp(lam_1), t_12*exp((lam_1 + lam_2)/2)*sinch((lam_1 - lam_2)/2)],
    [0, exp(lam_2)]
    """

    # The plain formula t_12 * (exp(lam_2) - exp(lam_2)) / (lam_2 - lam_1)
    # apparently suffers from cancellation, according to Higham's textbook.
    # A nice implementation of sinch, defined as sinh(x)/x,
    # will apparently work around the cancellation.
    a = 0.5 * (lam_1 + lam_2)
    b = 0.5 * (lam_1 - lam_2)
    return t_12 * np.exp(a) * _sinch(b)


def _fragment_2_1(X, T, s):
    """
    A helper function for expm_2009.

    Notes
    -----
    The argument X is modified in-place, but this modification is not the same
    as the returned value of the function.
    This function also takes pains to do things in ways that are compatible
    with sparse matrices, for example by avoiding fancy indexing
    and by using methods of the matrices whenever possible instead of
    using functions of the numpy or scipy libraries themselves.

    """
    # Form X = r_m(2^-s T)
    # Replace diag(X) by exp(2^-s diag(T)).
    n = X.shape[0]
    diag_T = np.ravel(T.diagonal().copy())

    # Replace diag(X) by exp(2^-s diag(T)).
    scale = 2 ** -s
    exp_diag = np.exp(scale * diag_T)
    for k in range(n):
        X[k, k] = exp_diag[k]

    for i in range(s-1, -1, -1):
        X = X.dot(X)

        # Replace diag(X) by exp(2^-i diag(T)).
        scale = 2 ** -i
        exp_diag = np.exp(scale * diag_T)
        for k in range(n):
            X[k, k] = exp_diag[k]

        # Replace (first) superdiagonal of X by explicit formula
        # for superdiagonal of exp(2^-i T) from Eq (10.42) of
        # the author's 2008 textbook
        # Functions of Matrices: Theory and Computation.
        for k in range(n-1):
            lam_1 = scale * diag_T[k]
            lam_2 = scale * diag_T[k+1]
            t_12 = scale * T[k, k+1]
            value = _eq_10_42(lam_1, lam_2, t_12)
            X[k, k+1] = value

    # Return the updated X matrix.
    return X


def _ell(A, m):
    """
    A helper function for expm_2009.

    Parameters
    ----------
    A : linear operator
        A linear operator whose norm of power we care about.
    m : int
        The power of the linear operator

    Returns
    -------
    value : int
        A value related to a bound.

    """
    if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
        raise ValueError('expected A to be like a square matrix')

    # The c_i are explained in (2.2) and (2.6) of the 2005 expm paper.
    # They are coefficients of terms of a generating function series expansion.
    choose_2m_m = scipy.special.comb(2*m, m, exact=True)
    abs_c_recip = float(choose_2m_m * math.factorial(2*m + 1))

    # This is explained after Eq. (1.2) of the 2009 expm paper.
    # It is the "unit roundoff" of IEEE double precision arithmetic.
    u = 2**-53

    # Compute the one-norm of matrix power p of abs(A).
    A_abs_onenorm = _onenorm_matrix_power_nnm(abs(A), 2*m + 1)

    # Treat zero norm as a special case.
    if not A_abs_onenorm:
        return 0

    alpha = A_abs_onenorm / (_onenorm(A) * abs_c_recip)
    log2_alpha_div_u = np.log2(alpha/u)
    value = int(np.ceil(log2_alpha_div_u / (2 * m)))
    return max(value, 0)