manager.py 16 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Private utilities for managing multiple TensorBoard processes."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import base64
import collections
import datetime
import errno
import json
import os
import subprocess
import tempfile
import time

import six

from tensorboard import version
from tensorboard.util import tb_logging


# Type descriptors for `TensorBoardInfo` fields.
#
# We represent timestamps as int-seconds-since-epoch rather than
# datetime objects to work around a bug in Python on Windows. See:
# https://github.com/tensorflow/tensorboard/issues/2017.
_FieldType = collections.namedtuple(
    "_FieldType",
    ("serialized_type", "runtime_type", "serialize", "deserialize",),
)
_type_int = _FieldType(
    serialized_type=int,
    runtime_type=int,
    serialize=lambda n: n,
    deserialize=lambda n: n,
)
_type_str = _FieldType(
    serialized_type=six.text_type,  # `json.loads` always gives Unicode
    runtime_type=str,
    serialize=six.text_type,
    deserialize=str,
)

# Information about a running TensorBoard instance.
_TENSORBOARD_INFO_FIELDS = collections.OrderedDict(
    (
        ("version", _type_str),
        ("start_time", _type_int),  # seconds since epoch
        ("pid", _type_int),
        ("port", _type_int),
        ("path_prefix", _type_str),  # may be empty
        ("logdir", _type_str),  # may be empty
        ("db", _type_str),  # may be empty
        ("cache_key", _type_str),  # opaque, as given by `cache_key` below
    )
)
TensorBoardInfo = collections.namedtuple(
    "TensorBoardInfo", _TENSORBOARD_INFO_FIELDS,
)


def data_source_from_info(info):
    """Format the data location for the given TensorBoardInfo.

    Args:
      info: A TensorBoardInfo value.

    Returns:
      A human-readable string describing the logdir or database connection
      used by the server: e.g., "logdir /tmp/logs".
    """
    if info.db:
        return "db %s" % info.db
    else:
        return "logdir %s" % info.logdir


def _info_to_string(info):
    """Convert a `TensorBoardInfo` to string form to be stored on disk.

    The format returned by this function is opaque and should only be
    interpreted by `_info_from_string`.

    Args:
      info: A valid `TensorBoardInfo` object.

    Raises:
      ValueError: If any field on `info` is not of the correct type.

    Returns:
      A string representation of the provided `TensorBoardInfo`.
    """
    for key in _TENSORBOARD_INFO_FIELDS:
        field_type = _TENSORBOARD_INFO_FIELDS[key]
        if not isinstance(getattr(info, key), field_type.runtime_type):
            raise ValueError(
                "expected %r of type %s, but found: %r"
                % (key, field_type.runtime_type, getattr(info, key))
            )
    if info.version != version.VERSION:
        raise ValueError(
            "expected 'version' to be %r, but found: %r"
            % (version.VERSION, info.version)
        )
    json_value = {
        k: _TENSORBOARD_INFO_FIELDS[k].serialize(getattr(info, k))
        for k in _TENSORBOARD_INFO_FIELDS
    }
    return json.dumps(json_value, sort_keys=True, indent=4)


def _info_from_string(info_string):
    """Parse a `TensorBoardInfo` object from its string representation.

    Args:
      info_string: A string representation of a `TensorBoardInfo`, as
        produced by a previous call to `_info_to_string`.

    Returns:
      A `TensorBoardInfo` value.

    Raises:
      ValueError: If the provided string is not valid JSON, or if it is
        missing any required fields, or if any field is of incorrect type.
    """

    try:
        json_value = json.loads(info_string)
    except ValueError:
        raise ValueError("invalid JSON: %r" % (info_string,))
    if not isinstance(json_value, dict):
        raise ValueError("not a JSON object: %r" % (json_value,))
    expected_keys = frozenset(_TENSORBOARD_INFO_FIELDS)
    actual_keys = frozenset(json_value)
    missing_keys = expected_keys - actual_keys
    if missing_keys:
        raise ValueError(
            "TensorBoardInfo missing keys: %r" % (sorted(missing_keys),)
        )
    # For forward compatibility, silently ignore unknown keys.

    # Validate and deserialize fields.
    fields = {}
    for key in _TENSORBOARD_INFO_FIELDS:
        field_type = _TENSORBOARD_INFO_FIELDS[key]
        if not isinstance(json_value[key], field_type.serialized_type):
            raise ValueError(
                "expected %r of type %s, but found: %r"
                % (key, field_type.serialized_type, json_value[key])
            )
        fields[key] = field_type.deserialize(json_value[key])

    return TensorBoardInfo(**fields)


def cache_key(working_directory, arguments, configure_kwargs):
    """Compute a `TensorBoardInfo.cache_key` field.

    The format returned by this function is opaque. Clients may only
    inspect it by comparing it for equality with other results from this
    function.

    Args:
      working_directory: The directory from which TensorBoard was launched
        and relative to which paths like `--logdir` and `--db` are
        resolved.
      arguments: The command-line args to TensorBoard, as `sys.argv[1:]`.
        Should be a list (or tuple), not an unparsed string. If you have a
        raw shell command, use `shlex.split` before passing it to this
        function.
      configure_kwargs: A dictionary of additional argument values to
        override the textual `arguments`, with the same semantics as in
        `tensorboard.program.TensorBoard.configure`. May be an empty
        dictionary.

    Returns:
      A string such that if two (prospective or actual) TensorBoard
      invocations have the same cache key then it is safe to use one in
      place of the other. The converse is not guaranteed: it is often safe
      to change the order of TensorBoard arguments, or to explicitly set
      them to their default values, or to move them between `arguments`
      and `configure_kwargs`, but such invocations may yield distinct
      cache keys.
    """
    if not isinstance(arguments, (list, tuple)):
        raise TypeError(
            "'arguments' should be a list of arguments, but found: %r "
            "(use `shlex.split` if given a string)" % (arguments,)
        )
    datum = {
        "working_directory": working_directory,
        "arguments": arguments,
        "configure_kwargs": configure_kwargs,
    }
    raw = base64.b64encode(
        json.dumps(datum, sort_keys=True, separators=(",", ":")).encode("utf-8")
    )
    # `raw` is of type `bytes`, even though it only contains ASCII
    # characters; we want it to be `str` in both Python 2 and 3.
    return str(raw.decode("ascii"))


def _get_info_dir():
    """Get path to directory in which to store info files.

    The directory returned by this function is "owned" by this module. If
    the contents of the directory are modified other than via the public
    functions of this module, subsequent behavior is undefined.

    The directory will be created if it does not exist.
    """
    path = os.path.join(tempfile.gettempdir(), ".tensorboard-info")
    try:
        os.makedirs(path)
    except OSError as e:
        if e.errno == errno.EEXIST and os.path.isdir(path):
            pass
        else:
            raise
    else:
        os.chmod(path, 0o777)
    return path


def _get_info_file_path():
    """Get path to info file for the current process.

    As with `_get_info_dir`, the info directory will be created if it
    does not exist.
    """
    return os.path.join(_get_info_dir(), "pid-%d.info" % os.getpid())


def write_info_file(tensorboard_info):
    """Write TensorBoardInfo to the current process's info file.

    This should be called by `main` once the server is ready. When the
    server shuts down, `remove_info_file` should be called.

    Args:
      tensorboard_info: A valid `TensorBoardInfo` object.

    Raises:
      ValueError: If any field on `info` is not of the correct type.
    """
    payload = "%s\n" % _info_to_string(tensorboard_info)
    with open(_get_info_file_path(), "w") as outfile:
        outfile.write(payload)


def remove_info_file():
    """Remove the current process's TensorBoardInfo file, if it exists.

    If the file does not exist, no action is taken and no error is
    raised.
    """
    try:
        os.unlink(_get_info_file_path())
    except OSError as e:
        if e.errno == errno.ENOENT:
            # The user may have wiped their temporary directory or something.
            # Not a problem: we're already in the state that we want to be in.
            pass
        else:
            raise


def get_all():
    """Return TensorBoardInfo values for running TensorBoard processes.

    This function may not provide a perfect snapshot of the set of running
    processes. Its result set may be incomplete if the user has cleaned
    their /tmp/ directory while TensorBoard processes are running. It may
    contain extraneous entries if TensorBoard processes exited uncleanly
    (e.g., with SIGKILL or SIGQUIT).

    Entries in the info directory that do not represent valid
    `TensorBoardInfo` values will be silently ignored.

    Returns:
      A fresh list of `TensorBoardInfo` objects.
    """
    info_dir = _get_info_dir()
    results = []
    for filename in os.listdir(info_dir):
        filepath = os.path.join(info_dir, filename)
        try:
            with open(filepath) as infile:
                contents = infile.read()
        except IOError as e:
            if e.errno == errno.EACCES:
                # May have been written by this module in a process whose
                # `umask` includes some bits of 0o444.
                continue
            else:
                raise
        try:
            info = _info_from_string(contents)
        except ValueError:
            # Ignore unrecognized files, logging at debug only.
            tb_logging.get_logger().debug(
                "invalid info file: %r", filepath, exc_info=True,
            )
        else:
            results.append(info)
    return results


# The following five types enumerate the possible return values of the
# `start` function.

# Indicates that a call to `start` was compatible with an existing
# TensorBoard process, which can be reused according to the provided
# info.
StartReused = collections.namedtuple("StartReused", ("info",))

# Indicates that a call to `start` successfully launched a new
# TensorBoard process, which is available with the provided info.
StartLaunched = collections.namedtuple("StartLaunched", ("info",))

# Indicates that a call to `start` tried to launch a new TensorBoard
# instance, but the subprocess exited with the given exit code and
# output streams. (If the contents of the output streams are no longer
# available---e.g., because the user has emptied /tmp/---then the
# corresponding values will be `None`.)
StartFailed = collections.namedtuple(
    "StartFailed",
    (
        "exit_code",  # int, as `Popen.returncode` (negative for signal)
        "stdout",  # str, or `None` if the stream could not be read
        "stderr",  # str, or `None` if the stream could not be read
    ),
)

# Indicates that a call to `start` failed to invoke the subprocess.
#
# If the TensorBoard executable was chosen via the `TENSORBOARD_BINARY`
# environment variable, then the `explicit_binary` field contains the
# path to that binary; otherwise, the field is `None`.
StartExecFailed = collections.namedtuple(
    "StartExecFailed",
    (
        "os_error",  # `OSError` due to `Popen` invocation
        "explicit_binary",  # `str` or `None`; see type-level comment
    ),
)

# Indicates that a call to `start` launched a TensorBoard process, but
# that process neither exited nor wrote its info file within the allowed
# timeout period. The process may still be running under the included
# PID.
StartTimedOut = collections.namedtuple("StartTimedOut", ("pid",))


def start(arguments, timeout=datetime.timedelta(seconds=60)):
    """Start a new TensorBoard instance, or reuse a compatible one.

    If the cache key determined by the provided arguments and the current
    working directory (see `cache_key`) matches the cache key of a running
    TensorBoard process (see `get_all`), that process will be reused.

    Otherwise, a new TensorBoard process will be spawned with the provided
    arguments, using the `tensorboard` binary from the system path.

    Args:
      arguments: List of strings to be passed as arguments to
        `tensorboard`. (If you have a raw command-line string, see
        `shlex.split`.)
      timeout: `datetime.timedelta` object describing how long to wait for
        the subprocess to initialize a TensorBoard server and write its
        `TensorBoardInfo` file. If the info file is not written within
        this time period, `start` will assume that the subprocess is stuck
        in a bad state, and will give up on waiting for it and return a
        `StartTimedOut` result. Note that in such a case the subprocess
        will not be killed. Default value is 60 seconds.

    Returns:
      A `StartReused`, `StartLaunched`, `StartFailed`, or `StartTimedOut`
      object.
    """
    match = _find_matching_instance(
        cache_key(
            working_directory=os.getcwd(),
            arguments=arguments,
            configure_kwargs={},
        ),
    )
    if match:
        return StartReused(info=match)

    (stdout_fd, stdout_path) = tempfile.mkstemp(prefix=".tensorboard-stdout-")
    (stderr_fd, stderr_path) = tempfile.mkstemp(prefix=".tensorboard-stderr-")
    start_time_seconds = time.time()
    explicit_tb = os.environ.get("TENSORBOARD_BINARY", None)
    try:
        p = subprocess.Popen(
            ["tensorboard" if explicit_tb is None else explicit_tb] + arguments,
            stdout=stdout_fd,
            stderr=stderr_fd,
        )
    except OSError as e:
        return StartExecFailed(os_error=e, explicit_binary=explicit_tb)
    finally:
        os.close(stdout_fd)
        os.close(stderr_fd)

    poll_interval_seconds = 0.5
    end_time_seconds = start_time_seconds + timeout.total_seconds()
    while time.time() < end_time_seconds:
        time.sleep(poll_interval_seconds)
        subprocess_result = p.poll()
        if subprocess_result is not None:
            return StartFailed(
                exit_code=subprocess_result,
                stdout=_maybe_read_file(stdout_path),
                stderr=_maybe_read_file(stderr_path),
            )
        for info in get_all():
            if info.pid == p.pid and info.start_time >= start_time_seconds:
                return StartLaunched(info=info)
    else:
        return StartTimedOut(pid=p.pid)


def _find_matching_instance(cache_key):
    """Find a running TensorBoard instance compatible with the cache key.

    Returns:
      A `TensorBoardInfo` object, or `None` if none matches the cache key.
    """
    infos = get_all()
    candidates = [info for info in infos if info.cache_key == cache_key]
    for candidate in sorted(candidates, key=lambda x: x.port):
        # TODO(@wchargin): Check here that the provided port is still live.
        return candidate
    return None


def _maybe_read_file(filename):
    """Read the given file, if it exists.

    Args:
      filename: A path to a file.

    Returns:
      A string containing the file contents, or `None` if the file does
      not exist.
    """
    try:
        with open(filename) as infile:
            return infile.read()
    except IOError as e:
        if e.errno == errno.ENOENT:
            return None