train.py
16.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import sys
sys.path.append('/data/private/fast-autoaugment-public') # TODO
import itertools
import json
import logging
import math
import os
from collections import OrderedDict
import torch
from torch import nn, optim
from torch.nn.parallel.data_parallel import DataParallel
from torch.nn.parallel import DistributedDataParallel
import torch.distributed as dist
from tqdm import tqdm
from theconf import Config as C, ConfigArgumentParser
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from FastAutoAugment.common import get_logger, EMA, add_filehandler
from FastAutoAugment.data import get_dataloaders
from FastAutoAugment.lr_scheduler import adjust_learning_rate_resnet
from FastAutoAugment.metrics import accuracy, Accumulator, CrossEntropyLabelSmooth
from FastAutoAugment.networks import get_model, num_class
from FastAutoAugment.tf_port.rmsprop import RMSpropTF
from FastAutoAugment.aug_mixup import CrossEntropyMixUpLabelSmooth, mixup
from warmup_scheduler import GradualWarmupScheduler
logger = get_logger('Fast AutoAugment')
logger.setLevel(logging.INFO)
def run_epoch(model, loader, loss_fn, optimizer, desc_default='', epoch=0, writer=None, verbose=1, scheduler=None, is_master=True, ema=None, wd=0.0, tqdm_disabled=False):
if verbose:
loader = tqdm(loader, disable=tqdm_disabled)
loader.set_description('[%s %04d/%04d]' % (desc_default, epoch, C.get()['epoch']))
params_without_bn = [params for name, params in model.named_parameters() if not ('_bn' in name or '.bn' in name)]
loss_ema = None
metrics = Accumulator()
cnt = 0
total_steps = len(loader)
steps = 0
for data, label in loader:
steps += 1
data, label = data.cuda(), label.cuda()
if C.get().conf.get('mixup', 0.0) <= 0.0 or optimizer is None:
preds = model(data)
loss = loss_fn(preds, label)
else: # mixup
data, targets, shuffled_targets, lam = mixup(data, label, C.get()['mixup'])
preds = model(data)
loss = loss_fn(preds, targets, shuffled_targets, lam)
del shuffled_targets, lam
if optimizer:
loss += wd * (1. / 2.) * sum([torch.sum(p ** 2) for p in params_without_bn])
loss.backward()
if C.get()['optimizer']['clip'] > 0:
nn.utils.clip_grad_norm_(model.parameters(), C.get()['optimizer']['clip'])
optimizer.step()
optimizer.zero_grad()
if ema is not None:
ema(model, (epoch - 1) * total_steps + steps)
top1, top5 = accuracy(preds, label, (1, 5))
metrics.add_dict({
'loss': loss.item() * len(data),
'top1': top1.item() * len(data),
'top5': top5.item() * len(data),
})
cnt += len(data)
if loss_ema:
loss_ema = loss_ema * 0.9 + loss.item() * 0.1
else:
loss_ema = loss.item()
if verbose:
postfix = metrics / cnt
if optimizer:
postfix['lr'] = optimizer.param_groups[0]['lr']
postfix['loss_ema'] = loss_ema
loader.set_postfix(postfix)
if scheduler is not None:
scheduler.step(epoch - 1 + float(steps) / total_steps)
del preds, loss, top1, top5, data, label
if tqdm_disabled and verbose:
if optimizer:
logger.info('[%s %03d/%03d] %s lr=%.6f', desc_default, epoch, C.get()['epoch'], metrics / cnt, optimizer.param_groups[0]['lr'])
else:
logger.info('[%s %03d/%03d] %s', desc_default, epoch, C.get()['epoch'], metrics / cnt)
metrics /= cnt
if optimizer:
metrics.metrics['lr'] = optimizer.param_groups[0]['lr']
if verbose:
for key, value in metrics.items():
writer.add_scalar(key, value, epoch)
return metrics
def train_and_eval(tag, dataroot, test_ratio=0.0, cv_fold=0, reporter=None, metric='last', save_path=None, only_eval=False, local_rank=-1, evaluation_interval=5):
total_batch = C.get()["batch"]
if local_rank >= 0:
dist.init_process_group(backend='nccl', init_method='env://', world_size=int(os.environ['WORLD_SIZE']))
device = torch.device('cuda', local_rank)
torch.cuda.set_device(device)
C.get()['lr'] *= dist.get_world_size()
logger.info(f'local batch={C.get()["batch"]} world_size={dist.get_world_size()} ----> total batch={C.get()["batch"] * dist.get_world_size()}')
total_batch = C.get()["batch"] * dist.get_world_size()
is_master = local_rank < 0 or dist.get_rank() == 0
if is_master:
add_filehandler(logger, args.save + '.log')
if not reporter:
reporter = lambda **kwargs: 0
max_epoch = C.get()['epoch']
trainsampler, trainloader, validloader, testloader_ = get_dataloaders(C.get()['dataset'], C.get()['batch'], dataroot, test_ratio, split_idx=cv_fold, multinode=(local_rank >= 0))
# create a model & an optimizer
model = get_model(C.get()['model'], num_class(C.get()['dataset']), local_rank=local_rank)
model_ema = get_model(C.get()['model'], num_class(C.get()['dataset']), local_rank=-1)
model_ema.eval()
criterion_ce = criterion = CrossEntropyLabelSmooth(num_class(C.get()['dataset']), C.get().conf.get('lb_smooth', 0))
if C.get().conf.get('mixup', 0.0) > 0.0:
criterion = CrossEntropyMixUpLabelSmooth(num_class(C.get()['dataset']), C.get().conf.get('lb_smooth', 0))
if C.get()['optimizer']['type'] == 'sgd':
optimizer = optim.SGD(
model.parameters(),
lr=C.get()['lr'],
momentum=C.get()['optimizer'].get('momentum', 0.9),
weight_decay=0.0,
nesterov=C.get()['optimizer'].get('nesterov', True)
)
elif C.get()['optimizer']['type'] == 'rmsprop':
optimizer = RMSpropTF(
model.parameters(),
lr=C.get()['lr'],
weight_decay=0.0,
alpha=0.9, momentum=0.9,
eps=0.001
)
else:
raise ValueError('invalid optimizer type=%s' % C.get()['optimizer']['type'])
lr_scheduler_type = C.get()['lr_schedule'].get('type', 'cosine')
if lr_scheduler_type == 'cosine':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=C.get()['epoch'], eta_min=0.)
elif lr_scheduler_type == 'resnet':
scheduler = adjust_learning_rate_resnet(optimizer)
elif lr_scheduler_type == 'efficientnet':
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda x: 0.97 ** int((x + C.get()['lr_schedule']['warmup']['epoch']) / 2.4))
else:
raise ValueError('invalid lr_schduler=%s' % lr_scheduler_type)
if C.get()['lr_schedule'].get('warmup', None) and C.get()['lr_schedule']['warmup']['epoch'] > 0:
scheduler = GradualWarmupScheduler(
optimizer,
multiplier=C.get()['lr_schedule']['warmup']['multiplier'],
total_epoch=C.get()['lr_schedule']['warmup']['epoch'],
after_scheduler=scheduler
)
if not tag or not is_master:
from FastAutoAugment.metrics import SummaryWriterDummy as SummaryWriter
logger.warning('tag not provided, no tensorboard log.')
else:
from tensorboardX import SummaryWriter
writers = [SummaryWriter(log_dir='./logs/%s/%s' % (tag, x)) for x in ['train', 'valid', 'test']]
if C.get()['optimizer']['ema'] > 0.0 and is_master:
# https://discuss.pytorch.org/t/how-to-apply-exponential-moving-average-decay-for-variables/10856/4?u=ildoonet
ema = EMA(C.get()['optimizer']['ema'])
else:
ema = None
result = OrderedDict()
epoch_start = 1
if save_path != 'test.pth': # and is_master: --> should load all data(not able to be broadcasted)
if save_path and os.path.exists(save_path):
logger.info('%s file found. loading...' % save_path)
data = torch.load(save_path)
key = 'model' if 'model' in data else 'state_dict'
if 'epoch' not in data:
model.load_state_dict(data)
else:
logger.info('checkpoint epoch@%d' % data['epoch'])
if not isinstance(model, (DataParallel, DistributedDataParallel)):
model.load_state_dict({k.replace('module.', ''): v for k, v in data[key].items()})
else:
model.load_state_dict({k if 'module.' in k else 'module.'+k: v for k, v in data[key].items()})
logger.info('optimizer.load_state_dict+')
optimizer.load_state_dict(data['optimizer'])
if data['epoch'] < C.get()['epoch']:
epoch_start = data['epoch']
else:
only_eval = True
if ema is not None:
ema.shadow = data.get('ema', {}) if isinstance(data.get('ema', {}), dict) else data['ema'].state_dict()
del data
else:
logger.info('"%s" file not found. skip to pretrain weights...' % save_path)
if only_eval:
logger.warning('model checkpoint not found. only-evaluation mode is off.')
only_eval = False
if local_rank >= 0:
for name, x in model.state_dict().items():
dist.broadcast(x, 0)
logger.info(f'multinode init. local_rank={dist.get_rank()} is_master={is_master}')
torch.cuda.synchronize()
tqdm_disabled = bool(os.environ.get('TASK_NAME', '')) and local_rank != 0 # KakaoBrain Environment
if only_eval:
logger.info('evaluation only+')
model.eval()
rs = dict()
rs['train'] = run_epoch(model, trainloader, criterion, None, desc_default='train', epoch=0, writer=writers[0], is_master=is_master)
with torch.no_grad():
rs['valid'] = run_epoch(model, validloader, criterion, None, desc_default='valid', epoch=0, writer=writers[1], is_master=is_master)
rs['test'] = run_epoch(model, testloader_, criterion, None, desc_default='*test', epoch=0, writer=writers[2], is_master=is_master)
if ema is not None and len(ema) > 0:
model_ema.load_state_dict({k.replace('module.', ''): v for k, v in ema.state_dict().items()})
rs['valid'] = run_epoch(model_ema, validloader, criterion_ce, None, desc_default='valid(EMA)', epoch=0, writer=writers[1], verbose=is_master, tqdm_disabled=tqdm_disabled)
rs['test'] = run_epoch(model_ema, testloader_, criterion_ce, None, desc_default='*test(EMA)', epoch=0, writer=writers[2], verbose=is_master, tqdm_disabled=tqdm_disabled)
for key, setname in itertools.product(['loss', 'top1', 'top5'], ['train', 'valid', 'test']):
if setname not in rs:
continue
result['%s_%s' % (key, setname)] = rs[setname][key]
result['epoch'] = 0
return result
# train loop
best_top1 = 0
for epoch in range(epoch_start, max_epoch + 1):
if local_rank >= 0:
trainsampler.set_epoch(epoch)
model.train()
rs = dict()
rs['train'] = run_epoch(model, trainloader, criterion, optimizer, desc_default='train', epoch=epoch, writer=writers[0], verbose=(is_master and local_rank <= 0), scheduler=scheduler, ema=ema, wd=C.get()['optimizer']['decay'], tqdm_disabled=tqdm_disabled)
model.eval()
if math.isnan(rs['train']['loss']):
raise Exception('train loss is NaN.')
if ema is not None and C.get()['optimizer']['ema_interval'] > 0 and epoch % C.get()['optimizer']['ema_interval'] == 0:
logger.info(f'ema synced+ rank={dist.get_rank()}')
if ema is not None:
model.load_state_dict(ema.state_dict())
for name, x in model.state_dict().items():
# print(name)
dist.broadcast(x, 0)
torch.cuda.synchronize()
logger.info(f'ema synced- rank={dist.get_rank()}')
if is_master and (epoch % evaluation_interval == 0 or epoch == max_epoch):
with torch.no_grad():
rs['valid'] = run_epoch(model, validloader, criterion_ce, None, desc_default='valid', epoch=epoch, writer=writers[1], verbose=is_master, tqdm_disabled=tqdm_disabled)
rs['test'] = run_epoch(model, testloader_, criterion_ce, None, desc_default='*test', epoch=epoch, writer=writers[2], verbose=is_master, tqdm_disabled=tqdm_disabled)
if ema is not None:
model_ema.load_state_dict({k.replace('module.', ''): v for k, v in ema.state_dict().items()})
rs['valid'] = run_epoch(model_ema, validloader, criterion_ce, None, desc_default='valid(EMA)', epoch=epoch, writer=writers[1], verbose=is_master, tqdm_disabled=tqdm_disabled)
rs['test'] = run_epoch(model_ema, testloader_, criterion_ce, None, desc_default='*test(EMA)', epoch=epoch, writer=writers[2], verbose=is_master, tqdm_disabled=tqdm_disabled)
logger.info(
f'epoch={epoch} '
f'[train] loss={rs["train"]["loss"]:.4f} top1={rs["train"]["top1"]:.4f} '
f'[valid] loss={rs["valid"]["loss"]:.4f} top1={rs["valid"]["top1"]:.4f} '
f'[test] loss={rs["test"]["loss"]:.4f} top1={rs["test"]["top1"]:.4f} '
)
if metric == 'last' or rs[metric]['top1'] > best_top1:
if metric != 'last':
best_top1 = rs[metric]['top1']
for key, setname in itertools.product(['loss', 'top1', 'top5'], ['train', 'valid', 'test']):
result['%s_%s' % (key, setname)] = rs[setname][key]
result['epoch'] = epoch
writers[1].add_scalar('valid_top1/best', rs['valid']['top1'], epoch)
writers[2].add_scalar('test_top1/best', rs['test']['top1'], epoch)
reporter(
loss_valid=rs['valid']['loss'], top1_valid=rs['valid']['top1'],
loss_test=rs['test']['loss'], top1_test=rs['test']['top1']
)
# save checkpoint
if is_master and save_path:
logger.info('save model@%d to %s, err=%.4f' % (epoch, save_path, 1 - best_top1))
torch.save({
'epoch': epoch,
'log': {
'train': rs['train'].get_dict(),
'valid': rs['valid'].get_dict(),
'test': rs['test'].get_dict(),
},
'optimizer': optimizer.state_dict(),
'model': model.state_dict(),
'ema': ema.state_dict() if ema is not None else None,
}, save_path)
del model
result['top1_test'] = best_top1
return result
if __name__ == '__main__':
parser = ConfigArgumentParser(conflict_handler='resolve')
parser.add_argument('--tag', type=str, default='')
parser.add_argument('--dataroot', type=str, default='/data/private/pretrainedmodels', help='torchvision data folder')
parser.add_argument('--save', type=str, default='test.pth')
parser.add_argument('--cv-ratio', type=float, default=0.0)
parser.add_argument('--cv', type=int, default=0)
parser.add_argument('--local_rank', type=int, default=-1)
parser.add_argument('--evaluation-interval', type=int, default=5)
parser.add_argument('--only-eval', action='store_true')
args = parser.parse_args()
assert (args.only_eval and args.save) or not args.only_eval, 'checkpoint path not provided in evaluation mode.'
if not args.only_eval:
if args.save:
logger.info('checkpoint will be saved at %s' % args.save)
else:
logger.warning('Provide --save argument to save the checkpoint. Without it, training result will not be saved!')
import time
t = time.time()
result = train_and_eval(args.tag, args.dataroot, test_ratio=args.cv_ratio, cv_fold=args.cv, save_path=args.save, only_eval=args.only_eval, local_rank=args.local_rank, metric='test', evaluation_interval=args.evaluation_interval)
elapsed = time.time() - t
logger.info('done.')
logger.info('model: %s' % C.get()['model'])
logger.info('augmentation: %s' % C.get()['aug'])
logger.info('\n' + json.dumps(result, indent=4))
logger.info('elapsed time: %.3f Hours' % (elapsed / 3600.))
logger.info('top1 error in testset: %.4f' % (1. - result['top1_test']))
logger.info(args.save)