search.py
13.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import copy
import os
import sys
import time
from collections import OrderedDict, defaultdict
import torch
import numpy as np
from hyperopt import hp
import ray
import gorilla
from ray.tune.trial import Trial
from ray.tune.trial_runner import TrialRunner
from ray.tune.suggest import HyperOptSearch
from ray.tune import register_trainable, run_experiments
from tqdm import tqdm
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
from FastAutoAugment.archive import remove_deplicates, policy_decoder
from FastAutoAugment.augmentations import augment_list
from FastAutoAugment.common import get_logger, add_filehandler
from FastAutoAugment.data import get_dataloaders
from FastAutoAugment.metrics import Accumulator
from FastAutoAugment.networks import get_model, num_class
from FastAutoAugment.train import train_and_eval
from theconf import Config as C, ConfigArgumentParser
top1_valid_by_cv = defaultdict(lambda: list)
def step_w_log(self):
original = gorilla.get_original_attribute(ray.tune.trial_runner.TrialRunner, 'step')
# log
cnts = OrderedDict()
for status in [Trial.RUNNING, Trial.TERMINATED, Trial.PENDING, Trial.PAUSED, Trial.ERROR]:
cnt = len(list(filter(lambda x: x.status == status, self._trials)))
cnts[status] = cnt
best_top1_acc = 0.
for trial in filter(lambda x: x.status == Trial.TERMINATED, self._trials):
if not trial.last_result:
continue
best_top1_acc = max(best_top1_acc, trial.last_result['top1_valid'])
print('iter', self._iteration, 'top1_acc=%.3f' % best_top1_acc, cnts, end='\r')
return original(self)
patch = gorilla.Patch(ray.tune.trial_runner.TrialRunner, 'step', step_w_log, settings=gorilla.Settings(allow_hit=True))
gorilla.apply(patch)
logger = get_logger('Fast AutoAugment')
def _get_path(dataset, model, tag):
return os.path.join(os.path.dirname(os.path.realpath(__file__)), 'models/%s_%s_%s.model' % (dataset, model, tag)) # TODO
@ray.remote(num_gpus=4, max_calls=1)
def train_model(config, dataroot, augment, cv_ratio_test, cv_fold, save_path=None, skip_exist=False):
C.get()
C.get().conf = config
C.get()['aug'] = augment
result = train_and_eval(None, dataroot, cv_ratio_test, cv_fold, save_path=save_path, only_eval=skip_exist)
return C.get()['model']['type'], cv_fold, result
def eval_tta(config, augment, reporter):
C.get()
C.get().conf = config
cv_ratio_test, cv_fold, save_path = augment['cv_ratio_test'], augment['cv_fold'], augment['save_path']
# setup - provided augmentation rules
C.get()['aug'] = policy_decoder(augment, augment['num_policy'], augment['num_op'])
# eval
model = get_model(C.get()['model'], num_class(C.get()['dataset']))
ckpt = torch.load(save_path)
if 'model' in ckpt:
model.load_state_dict(ckpt['model'])
else:
model.load_state_dict(ckpt)
model.eval()
loaders = []
for _ in range(augment['num_policy']): # TODO
_, tl, validloader, tl2 = get_dataloaders(C.get()['dataset'], C.get()['batch'], augment['dataroot'], cv_ratio_test, split_idx=cv_fold)
loaders.append(iter(validloader))
del tl, tl2
start_t = time.time()
metrics = Accumulator()
loss_fn = torch.nn.CrossEntropyLoss(reduction='none')
try:
while True:
losses = []
corrects = []
for loader in loaders:
data, label = next(loader)
data = data.cuda()
label = label.cuda()
pred = model(data)
loss = loss_fn(pred, label)
losses.append(loss.detach().cpu().numpy())
_, pred = pred.topk(1, 1, True, True)
pred = pred.t()
correct = pred.eq(label.view(1, -1).expand_as(pred)).detach().cpu().numpy()
corrects.append(correct)
del loss, correct, pred, data, label
losses = np.concatenate(losses)
losses_min = np.min(losses, axis=0).squeeze()
corrects = np.concatenate(corrects)
corrects_max = np.max(corrects, axis=0).squeeze()
metrics.add_dict({
'minus_loss': -1 * np.sum(losses_min),
'correct': np.sum(corrects_max),
'cnt': len(corrects_max)
})
del corrects, corrects_max
except StopIteration:
pass
del model
metrics = metrics / 'cnt'
gpu_secs = (time.time() - start_t) * torch.cuda.device_count()
reporter(minus_loss=metrics['minus_loss'], top1_valid=metrics['correct'], elapsed_time=gpu_secs, done=True)
return metrics['correct']
if __name__ == '__main__':
import json
from pystopwatch2 import PyStopwatch
w = PyStopwatch()
parser = ConfigArgumentParser(conflict_handler='resolve')
parser.add_argument('--dataroot', type=str, default='/data/private/pretrainedmodels', help='torchvision data folder')
parser.add_argument('--until', type=int, default=5)
parser.add_argument('--num-op', type=int, default=2)
parser.add_argument('--num-policy', type=int, default=5)
parser.add_argument('--num-search', type=int, default=200)
parser.add_argument('--cv-ratio', type=float, default=0.4)
parser.add_argument('--decay', type=float, default=-1)
parser.add_argument('--redis', type=str, default='gpu-cloud-vnode30.dakao.io:23655')
parser.add_argument('--per-class', action='store_true')
parser.add_argument('--resume', action='store_true')
parser.add_argument('--smoke-test', action='store_true')
args = parser.parse_args()
if args.decay > 0:
logger.info('decay=%.4f' % args.decay)
C.get()['optimizer']['decay'] = args.decay
add_filehandler(logger, os.path.join('models', '%s_%s_cv%.1f.log' % (C.get()['dataset'], C.get()['model']['type'], args.cv_ratio)))
logger.info('configuration...')
logger.info(json.dumps(C.get().conf, sort_keys=True, indent=4))
logger.info('initialize ray...')
ray.init(redis_address=args.redis)
num_result_per_cv = 10
cv_num = 5
copied_c = copy.deepcopy(C.get().conf)
logger.info('search augmentation policies, dataset=%s model=%s' % (C.get()['dataset'], C.get()['model']['type']))
logger.info('----- Train without Augmentations cv=%d ratio(test)=%.1f -----' % (cv_num, args.cv_ratio))
w.start(tag='train_no_aug')
paths = [_get_path(C.get()['dataset'], C.get()['model']['type'], 'ratio%.1f_fold%d' % (args.cv_ratio, i)) for i in range(cv_num)]
print(paths)
reqs = [
train_model.remote(copy.deepcopy(copied_c), args.dataroot, C.get()['aug'], args.cv_ratio, i, save_path=paths[i], skip_exist=True)
for i in range(cv_num)]
tqdm_epoch = tqdm(range(C.get()['epoch']))
is_done = False
for epoch in tqdm_epoch:
while True:
epochs_per_cv = OrderedDict()
for cv_idx in range(cv_num):
try:
latest_ckpt = torch.load(paths[cv_idx])
if 'epoch' not in latest_ckpt:
epochs_per_cv['cv%d' % (cv_idx + 1)] = C.get()['epoch']
continue
epochs_per_cv['cv%d' % (cv_idx+1)] = latest_ckpt['epoch']
except Exception as e:
continue
tqdm_epoch.set_postfix(epochs_per_cv)
if len(epochs_per_cv) == cv_num and min(epochs_per_cv.values()) >= C.get()['epoch']:
is_done = True
if len(epochs_per_cv) == cv_num and min(epochs_per_cv.values()) >= epoch:
break
time.sleep(10)
if is_done:
break
logger.info('getting results...')
pretrain_results = ray.get(reqs)
for r_model, r_cv, r_dict in pretrain_results:
logger.info('model=%s cv=%d top1_train=%.4f top1_valid=%.4f' % (r_model, r_cv+1, r_dict['top1_train'], r_dict['top1_valid']))
logger.info('processed in %.4f secs' % w.pause('train_no_aug'))
if args.until == 1:
sys.exit(0)
logger.info('----- Search Test-Time Augmentation Policies -----')
w.start(tag='search')
ops = augment_list(False)
space = {}
for i in range(args.num_policy):
for j in range(args.num_op):
space['policy_%d_%d' % (i, j)] = hp.choice('policy_%d_%d' % (i, j), list(range(0, len(ops))))
space['prob_%d_%d' % (i, j)] = hp.uniform('prob_%d_ %d' % (i, j), 0.0, 1.0)
space['level_%d_%d' % (i, j)] = hp.uniform('level_%d_ %d' % (i, j), 0.0, 1.0)
final_policy_set = []
total_computation = 0
reward_attr = 'top1_valid' # top1_valid or minus_loss
for _ in range(1): # run multiple times.
for cv_fold in range(cv_num):
name = "search_%s_%s_fold%d_ratio%.1f" % (C.get()['dataset'], C.get()['model']['type'], cv_fold, args.cv_ratio)
print(name)
register_trainable(name, lambda augs, rpt: eval_tta(copy.deepcopy(copied_c), augs, rpt))
algo = HyperOptSearch(space, max_concurrent=4*20, reward_attr=reward_attr)
exp_config = {
name: {
'run': name,
'num_samples': 4 if args.smoke_test else args.num_search,
'resources_per_trial': {'gpu': 1},
'stop': {'training_iteration': args.num_policy},
'config': {
'dataroot': args.dataroot, 'save_path': paths[cv_fold],
'cv_ratio_test': args.cv_ratio, 'cv_fold': cv_fold,
'num_op': args.num_op, 'num_policy': args.num_policy
},
}
}
results = run_experiments(exp_config, search_alg=algo, scheduler=None, verbose=0, queue_trials=True, resume=args.resume, raise_on_failed_trial=False)
print()
results = [x for x in results if x.last_result is not None]
results = sorted(results, key=lambda x: x.last_result[reward_attr], reverse=True)
# calculate computation usage
for result in results:
total_computation += result.last_result['elapsed_time']
for result in results[:num_result_per_cv]:
final_policy = policy_decoder(result.config, args.num_policy, args.num_op)
logger.info('loss=%.12f top1_valid=%.4f %s' % (result.last_result['minus_loss'], result.last_result['top1_valid'], final_policy))
final_policy = remove_deplicates(final_policy)
final_policy_set.extend(final_policy)
logger.info(json.dumps(final_policy_set))
logger.info('final_policy=%d' % len(final_policy_set))
logger.info('processed in %.4f secs, gpu hours=%.4f' % (w.pause('search'), total_computation / 3600.))
logger.info('----- Train with Augmentations model=%s dataset=%s aug=%s ratio(test)=%.1f -----' % (C.get()['model']['type'], C.get()['dataset'], C.get()['aug'], args.cv_ratio))
w.start(tag='train_aug')
num_experiments = 5
default_path = [_get_path(C.get()['dataset'], C.get()['model']['type'], 'ratio%.1f_default%d' % (args.cv_ratio, _)) for _ in range(num_experiments)]
augment_path = [_get_path(C.get()['dataset'], C.get()['model']['type'], 'ratio%.1f_augment%d' % (args.cv_ratio, _)) for _ in range(num_experiments)]
reqs = [train_model.remote(copy.deepcopy(copied_c), args.dataroot, C.get()['aug'], 0.0, 0, save_path=default_path[_], skip_exist=True) for _ in range(num_experiments)] + \
[train_model.remote(copy.deepcopy(copied_c), args.dataroot, final_policy_set, 0.0, 0, save_path=augment_path[_]) for _ in range(num_experiments)]
tqdm_epoch = tqdm(range(C.get()['epoch']))
is_done = False
for epoch in tqdm_epoch:
while True:
epochs = OrderedDict()
for exp_idx in range(num_experiments):
try:
if os.path.exists(default_path[exp_idx]):
latest_ckpt = torch.load(default_path[exp_idx])
epochs['default_exp%d' % (exp_idx + 1)] = latest_ckpt['epoch']
except:
pass
try:
if os.path.exists(augment_path[exp_idx]):
latest_ckpt = torch.load(augment_path[exp_idx])
epochs['augment_exp%d' % (exp_idx + 1)] = latest_ckpt['epoch']
except:
pass
tqdm_epoch.set_postfix(epochs)
if len(epochs) == num_experiments*2 and min(epochs.values()) >= C.get()['epoch']:
is_done = True
if len(epochs) == num_experiments*2 and min(epochs.values()) >= epoch:
break
time.sleep(10)
if is_done:
break
logger.info('getting results...')
final_results = ray.get(reqs)
for train_mode in ['default', 'augment']:
avg = 0.
for _ in range(num_experiments):
r_model, r_cv, r_dict = final_results.pop(0)
logger.info('[%s] top1_train=%.4f top1_test=%.4f' % (train_mode, r_dict['top1_train'], r_dict['top1_test']))
avg += r_dict['top1_test']
avg /= num_experiments
logger.info('[%s] top1_test average=%.4f (#experiments=%d)' % (train_mode, avg, num_experiments))
logger.info('processed in %.4f secs' % w.pause('train_aug'))
logger.info(w)