fitpack.py
25 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
from __future__ import print_function, division, absolute_import
__all__ = ['splrep', 'splprep', 'splev', 'splint', 'sproot', 'spalde',
'bisplrep', 'bisplev', 'insert', 'splder', 'splantider']
import warnings
import numpy as np
from ._fitpack_impl import bisplrep, bisplev, dblint
from . import _fitpack_impl as _impl
from ._bsplines import BSpline
def splprep(x, w=None, u=None, ub=None, ue=None, k=3, task=0, s=None, t=None,
full_output=0, nest=None, per=0, quiet=1):
"""
Find the B-spline representation of an N-dimensional curve.
Given a list of N rank-1 arrays, `x`, which represent a curve in
N-dimensional space parametrized by `u`, find a smooth approximating
spline curve g(`u`). Uses the FORTRAN routine parcur from FITPACK.
Parameters
----------
x : array_like
A list of sample vector arrays representing the curve.
w : array_like, optional
Strictly positive rank-1 array of weights the same length as `x[0]`.
The weights are used in computing the weighted least-squares spline
fit. If the errors in the `x` values have standard-deviation given by
the vector d, then `w` should be 1/d. Default is ``ones(len(x[0]))``.
u : array_like, optional
An array of parameter values. If not given, these values are
calculated automatically as ``M = len(x[0])``, where
v[0] = 0
v[i] = v[i-1] + distance(`x[i]`, `x[i-1]`)
u[i] = v[i] / v[M-1]
ub, ue : int, optional
The end-points of the parameters interval. Defaults to
u[0] and u[-1].
k : int, optional
Degree of the spline. Cubic splines are recommended.
Even values of `k` should be avoided especially with a small s-value.
``1 <= k <= 5``, default is 3.
task : int, optional
If task==0 (default), find t and c for a given smoothing factor, s.
If task==1, find t and c for another value of the smoothing factor, s.
There must have been a previous call with task=0 or task=1
for the same set of data.
If task=-1 find the weighted least square spline for a given set of
knots, t.
s : float, optional
A smoothing condition. The amount of smoothness is determined by
satisfying the conditions: ``sum((w * (y - g))**2,axis=0) <= s``,
where g(x) is the smoothed interpolation of (x,y). The user can
use `s` to control the trade-off between closeness and smoothness
of fit. Larger `s` means more smoothing while smaller values of `s`
indicate less smoothing. Recommended values of `s` depend on the
weights, w. If the weights represent the inverse of the
standard-deviation of y, then a good `s` value should be found in
the range ``(m-sqrt(2*m),m+sqrt(2*m))``, where m is the number of
data points in x, y, and w.
t : int, optional
The knots needed for task=-1.
full_output : int, optional
If non-zero, then return optional outputs.
nest : int, optional
An over-estimate of the total number of knots of the spline to
help in determining the storage space. By default nest=m/2.
Always large enough is nest=m+k+1.
per : int, optional
If non-zero, data points are considered periodic with period
``x[m-1] - x[0]`` and a smooth periodic spline approximation is
returned. Values of ``y[m-1]`` and ``w[m-1]`` are not used.
quiet : int, optional
Non-zero to suppress messages.
This parameter is deprecated; use standard Python warning filters
instead.
Returns
-------
tck : tuple
(t,c,k) a tuple containing the vector of knots, the B-spline
coefficients, and the degree of the spline.
u : array
An array of the values of the parameter.
fp : float
The weighted sum of squared residuals of the spline approximation.
ier : int
An integer flag about splrep success. Success is indicated
if ier<=0. If ier in [1,2,3] an error occurred but was not raised.
Otherwise an error is raised.
msg : str
A message corresponding to the integer flag, ier.
See Also
--------
splrep, splev, sproot, spalde, splint,
bisplrep, bisplev
UnivariateSpline, BivariateSpline
BSpline
make_interp_spline
Notes
-----
See `splev` for evaluation of the spline and its derivatives.
The number of dimensions N must be smaller than 11.
The number of coefficients in the `c` array is ``k+1`` less then the number
of knots, ``len(t)``. This is in contrast with `splrep`, which zero-pads
the array of coefficients to have the same length as the array of knots.
These additional coefficients are ignored by evaluation routines, `splev`
and `BSpline`.
References
----------
.. [1] P. Dierckx, "Algorithms for smoothing data with periodic and
parametric splines, Computer Graphics and Image Processing",
20 (1982) 171-184.
.. [2] P. Dierckx, "Algorithms for smoothing data with periodic and
parametric splines", report tw55, Dept. Computer Science,
K.U.Leuven, 1981.
.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs on
Numerical Analysis, Oxford University Press, 1993.
Examples
--------
Generate a discretization of a limacon curve in the polar coordinates:
>>> phi = np.linspace(0, 2.*np.pi, 40)
>>> r = 0.5 + np.cos(phi) # polar coords
>>> x, y = r * np.cos(phi), r * np.sin(phi) # convert to cartesian
And interpolate:
>>> from scipy.interpolate import splprep, splev
>>> tck, u = splprep([x, y], s=0)
>>> new_points = splev(u, tck)
Notice that (i) we force interpolation by using `s=0`,
(ii) the parameterization, ``u``, is generated automatically.
Now plot the result:
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> ax.plot(x, y, 'ro')
>>> ax.plot(new_points[0], new_points[1], 'r-')
>>> plt.show()
"""
res = _impl.splprep(x, w, u, ub, ue, k, task, s, t, full_output, nest, per,
quiet)
return res
def splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None,
full_output=0, per=0, quiet=1):
"""
Find the B-spline representation of 1-D curve.
Given the set of data points ``(x[i], y[i])`` determine a smooth spline
approximation of degree k on the interval ``xb <= x <= xe``.
Parameters
----------
x, y : array_like
The data points defining a curve y = f(x).
w : array_like, optional
Strictly positive rank-1 array of weights the same length as x and y.
The weights are used in computing the weighted least-squares spline
fit. If the errors in the y values have standard-deviation given by the
vector d, then w should be 1/d. Default is ones(len(x)).
xb, xe : float, optional
The interval to fit. If None, these default to x[0] and x[-1]
respectively.
k : int, optional
The degree of the spline fit. It is recommended to use cubic splines.
Even values of k should be avoided especially with small s values.
1 <= k <= 5
task : {1, 0, -1}, optional
If task==0 find t and c for a given smoothing factor, s.
If task==1 find t and c for another value of the smoothing factor, s.
There must have been a previous call with task=0 or task=1 for the same
set of data (t will be stored an used internally)
If task=-1 find the weighted least square spline for a given set of
knots, t. These should be interior knots as knots on the ends will be
added automatically.
s : float, optional
A smoothing condition. The amount of smoothness is determined by
satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s where g(x)
is the smoothed interpolation of (x,y). The user can use s to control
the tradeoff between closeness and smoothness of fit. Larger s means
more smoothing while smaller values of s indicate less smoothing.
Recommended values of s depend on the weights, w. If the weights
represent the inverse of the standard-deviation of y, then a good s
value should be found in the range (m-sqrt(2*m),m+sqrt(2*m)) where m is
the number of datapoints in x, y, and w. default : s=m-sqrt(2*m) if
weights are supplied. s = 0.0 (interpolating) if no weights are
supplied.
t : array_like, optional
The knots needed for task=-1. If given then task is automatically set
to -1.
full_output : bool, optional
If non-zero, then return optional outputs.
per : bool, optional
If non-zero, data points are considered periodic with period x[m-1] -
x[0] and a smooth periodic spline approximation is returned. Values of
y[m-1] and w[m-1] are not used.
quiet : bool, optional
Non-zero to suppress messages.
This parameter is deprecated; use standard Python warning filters
instead.
Returns
-------
tck : tuple
A tuple (t,c,k) containing the vector of knots, the B-spline
coefficients, and the degree of the spline.
fp : array, optional
The weighted sum of squared residuals of the spline approximation.
ier : int, optional
An integer flag about splrep success. Success is indicated if ier<=0.
If ier in [1,2,3] an error occurred but was not raised. Otherwise an
error is raised.
msg : str, optional
A message corresponding to the integer flag, ier.
See Also
--------
UnivariateSpline, BivariateSpline
splprep, splev, sproot, spalde, splint
bisplrep, bisplev
BSpline
make_interp_spline
Notes
-----
See `splev` for evaluation of the spline and its derivatives. Uses the
FORTRAN routine ``curfit`` from FITPACK.
The user is responsible for assuring that the values of `x` are unique.
Otherwise, `splrep` will not return sensible results.
If provided, knots `t` must satisfy the Schoenberg-Whitney conditions,
i.e., there must be a subset of data points ``x[j]`` such that
``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``.
This routine zero-pads the coefficients array ``c`` to have the same length
as the array of knots ``t`` (the trailing ``k + 1`` coefficients are ignored
by the evaluation routines, `splev` and `BSpline`.) This is in contrast with
`splprep`, which does not zero-pad the coefficients.
References
----------
Based on algorithms described in [1]_, [2]_, [3]_, and [4]_:
.. [1] P. Dierckx, "An algorithm for smoothing, differentiation and
integration of experimental data using spline functions",
J.Comp.Appl.Maths 1 (1975) 165-184.
.. [2] P. Dierckx, "A fast algorithm for smoothing data on a rectangular
grid while using spline functions", SIAM J.Numer.Anal. 19 (1982)
1286-1304.
.. [3] P. Dierckx, "An improved algorithm for curve fitting with spline
functions", report tw54, Dept. Computer Science,K.U. Leuven, 1981.
.. [4] P. Dierckx, "Curve and surface fitting with splines", Monographs on
Numerical Analysis, Oxford University Press, 1993.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import splev, splrep
>>> x = np.linspace(0, 10, 10)
>>> y = np.sin(x)
>>> spl = splrep(x, y)
>>> x2 = np.linspace(0, 10, 200)
>>> y2 = splev(x2, spl)
>>> plt.plot(x, y, 'o', x2, y2)
>>> plt.show()
"""
res = _impl.splrep(x, y, w, xb, xe, k, task, s, t, full_output, per, quiet)
return res
def splev(x, tck, der=0, ext=0):
"""
Evaluate a B-spline or its derivatives.
Given the knots and coefficients of a B-spline representation, evaluate
the value of the smoothing polynomial and its derivatives. This is a
wrapper around the FORTRAN routines splev and splder of FITPACK.
Parameters
----------
x : array_like
An array of points at which to return the value of the smoothed
spline or its derivatives. If `tck` was returned from `splprep`,
then the parameter values, u should be given.
tck : 3-tuple or a BSpline object
If a tuple, then it should be a sequence of length 3 returned by
`splrep` or `splprep` containing the knots, coefficients, and degree
of the spline. (Also see Notes.)
der : int, optional
The order of derivative of the spline to compute (must be less than
or equal to k, the degree of the spline).
ext : int, optional
Controls the value returned for elements of ``x`` not in the
interval defined by the knot sequence.
* if ext=0, return the extrapolated value.
* if ext=1, return 0
* if ext=2, raise a ValueError
* if ext=3, return the boundary value.
The default value is 0.
Returns
-------
y : ndarray or list of ndarrays
An array of values representing the spline function evaluated at
the points in `x`. If `tck` was returned from `splprep`, then this
is a list of arrays representing the curve in N-dimensional space.
Notes
-----
Manipulating the tck-tuples directly is not recommended. In new code,
prefer using `BSpline` objects.
See Also
--------
splprep, splrep, sproot, spalde, splint
bisplrep, bisplev
BSpline
References
----------
.. [1] C. de Boor, "On calculating with b-splines", J. Approximation
Theory, 6, p.50-62, 1972.
.. [2] M. G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths
Applics, 10, p.134-149, 1972.
.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs
on Numerical Analysis, Oxford University Press, 1993.
"""
if isinstance(tck, BSpline):
if tck.c.ndim > 1:
mesg = ("Calling splev() with BSpline objects with c.ndim > 1 is "
"not recommended. Use BSpline.__call__(x) instead.")
warnings.warn(mesg, DeprecationWarning)
# remap the out-of-bounds behavior
try:
extrapolate = {0: True, }[ext]
except KeyError:
raise ValueError("Extrapolation mode %s is not supported "
"by BSpline." % ext)
return tck(x, der, extrapolate=extrapolate)
else:
return _impl.splev(x, tck, der, ext)
def splint(a, b, tck, full_output=0):
"""
Evaluate the definite integral of a B-spline between two given points.
Parameters
----------
a, b : float
The end-points of the integration interval.
tck : tuple or a BSpline instance
If a tuple, then it should be a sequence of length 3, containing the
vector of knots, the B-spline coefficients, and the degree of the
spline (see `splev`).
full_output : int, optional
Non-zero to return optional output.
Returns
-------
integral : float
The resulting integral.
wrk : ndarray
An array containing the integrals of the normalized B-splines
defined on the set of knots.
(Only returned if `full_output` is non-zero)
Notes
-----
`splint` silently assumes that the spline function is zero outside the data
interval (`a`, `b`).
Manipulating the tck-tuples directly is not recommended. In new code,
prefer using the `BSpline` objects.
See Also
--------
splprep, splrep, sproot, spalde, splev
bisplrep, bisplev
BSpline
References
----------
.. [1] P.W. Gaffney, The calculation of indefinite integrals of b-splines",
J. Inst. Maths Applics, 17, p.37-41, 1976.
.. [2] P. Dierckx, "Curve and surface fitting with splines", Monographs
on Numerical Analysis, Oxford University Press, 1993.
"""
if isinstance(tck, BSpline):
if tck.c.ndim > 1:
mesg = ("Calling splint() with BSpline objects with c.ndim > 1 is "
"not recommended. Use BSpline.integrate() instead.")
warnings.warn(mesg, DeprecationWarning)
if full_output != 0:
mesg = ("full_output = %s is not supported. Proceeding as if "
"full_output = 0" % full_output)
return tck.integrate(a, b, extrapolate=False)
else:
return _impl.splint(a, b, tck, full_output)
def sproot(tck, mest=10):
"""
Find the roots of a cubic B-spline.
Given the knots (>=8) and coefficients of a cubic B-spline return the
roots of the spline.
Parameters
----------
tck : tuple or a BSpline object
If a tuple, then it should be a sequence of length 3, containing the
vector of knots, the B-spline coefficients, and the degree of the
spline.
The number of knots must be >= 8, and the degree must be 3.
The knots must be a montonically increasing sequence.
mest : int, optional
An estimate of the number of zeros (Default is 10).
Returns
-------
zeros : ndarray
An array giving the roots of the spline.
Notes
-----
Manipulating the tck-tuples directly is not recommended. In new code,
prefer using the `BSpline` objects.
See also
--------
splprep, splrep, splint, spalde, splev
bisplrep, bisplev
BSpline
References
----------
.. [1] C. de Boor, "On calculating with b-splines", J. Approximation
Theory, 6, p.50-62, 1972.
.. [2] M. G. Cox, "The numerical evaluation of b-splines", J. Inst. Maths
Applics, 10, p.134-149, 1972.
.. [3] P. Dierckx, "Curve and surface fitting with splines", Monographs
on Numerical Analysis, Oxford University Press, 1993.
"""
if isinstance(tck, BSpline):
if tck.c.ndim > 1:
mesg = ("Calling sproot() with BSpline objects with c.ndim > 1 is "
"not recommended.")
warnings.warn(mesg, DeprecationWarning)
t, c, k = tck.tck
# _impl.sproot expects the interpolation axis to be last, so roll it.
# NB: This transpose is a no-op if c is 1D.
sh = tuple(range(c.ndim))
c = c.transpose(sh[1:] + (0,))
return _impl.sproot((t, c, k), mest)
else:
return _impl.sproot(tck, mest)
def spalde(x, tck):
"""
Evaluate all derivatives of a B-spline.
Given the knots and coefficients of a cubic B-spline compute all
derivatives up to order k at a point (or set of points).
Parameters
----------
x : array_like
A point or a set of points at which to evaluate the derivatives.
Note that ``t(k) <= x <= t(n-k+1)`` must hold for each `x`.
tck : tuple
A tuple ``(t, c, k)``, containing the vector of knots, the B-spline
coefficients, and the degree of the spline (see `splev`).
Returns
-------
results : {ndarray, list of ndarrays}
An array (or a list of arrays) containing all derivatives
up to order k inclusive for each point `x`.
See Also
--------
splprep, splrep, splint, sproot, splev, bisplrep, bisplev,
BSpline
References
----------
.. [1] C. de Boor: On calculating with b-splines, J. Approximation Theory
6 (1972) 50-62.
.. [2] M. G. Cox : The numerical evaluation of b-splines, J. Inst. Maths
applics 10 (1972) 134-149.
.. [3] P. Dierckx : Curve and surface fitting with splines, Monographs on
Numerical Analysis, Oxford University Press, 1993.
"""
if isinstance(tck, BSpline):
raise TypeError("spalde does not accept BSpline instances.")
else:
return _impl.spalde(x, tck)
def insert(x, tck, m=1, per=0):
"""
Insert knots into a B-spline.
Given the knots and coefficients of a B-spline representation, create a
new B-spline with a knot inserted `m` times at point `x`.
This is a wrapper around the FORTRAN routine insert of FITPACK.
Parameters
----------
x (u) : array_like
A 1-D point at which to insert a new knot(s). If `tck` was returned
from ``splprep``, then the parameter values, u should be given.
tck : a `BSpline` instance or a tuple
If tuple, then it is expected to be a tuple (t,c,k) containing
the vector of knots, the B-spline coefficients, and the degree of
the spline.
m : int, optional
The number of times to insert the given knot (its multiplicity).
Default is 1.
per : int, optional
If non-zero, the input spline is considered periodic.
Returns
-------
BSpline instance or a tuple
A new B-spline with knots t, coefficients c, and degree k.
``t(k+1) <= x <= t(n-k)``, where k is the degree of the spline.
In case of a periodic spline (``per != 0``) there must be
either at least k interior knots t(j) satisfying ``t(k+1)<t(j)<=x``
or at least k interior knots t(j) satisfying ``x<=t(j)<t(n-k)``.
A tuple is returned iff the input argument `tck` is a tuple, otherwise
a BSpline object is constructed and returned.
Notes
-----
Based on algorithms from [1]_ and [2]_.
Manipulating the tck-tuples directly is not recommended. In new code,
prefer using the `BSpline` objects.
References
----------
.. [1] W. Boehm, "Inserting new knots into b-spline curves.",
Computer Aided Design, 12, p.199-201, 1980.
.. [2] P. Dierckx, "Curve and surface fitting with splines, Monographs on
Numerical Analysis", Oxford University Press, 1993.
"""
if isinstance(tck, BSpline):
t, c, k = tck.tck
# FITPACK expects the interpolation axis to be last, so roll it over
# NB: if c array is 1D, transposes are no-ops
sh = tuple(range(c.ndim))
c = c.transpose(sh[1:] + (0,))
t_, c_, k_ = _impl.insert(x, (t, c, k), m, per)
# and roll the last axis back
c_ = np.asarray(c_)
c_ = c_.transpose((sh[-1],) + sh[:-1])
return BSpline(t_, c_, k_)
else:
return _impl.insert(x, tck, m, per)
def splder(tck, n=1):
"""
Compute the spline representation of the derivative of a given spline
Parameters
----------
tck : BSpline instance or a tuple of (t, c, k)
Spline whose derivative to compute
n : int, optional
Order of derivative to evaluate. Default: 1
Returns
-------
`BSpline` instance or tuple
Spline of order k2=k-n representing the derivative
of the input spline.
A tuple is returned iff the input argument `tck` is a tuple, otherwise
a BSpline object is constructed and returned.
Notes
-----
.. versionadded:: 0.13.0
See Also
--------
splantider, splev, spalde
BSpline
Examples
--------
This can be used for finding maxima of a curve:
>>> from scipy.interpolate import splrep, splder, sproot
>>> x = np.linspace(0, 10, 70)
>>> y = np.sin(x)
>>> spl = splrep(x, y, k=4)
Now, differentiate the spline and find the zeros of the
derivative. (NB: `sproot` only works for order 3 splines, so we
fit an order 4 spline):
>>> dspl = splder(spl)
>>> sproot(dspl) / np.pi
array([ 0.50000001, 1.5 , 2.49999998])
This agrees well with roots :math:`\\pi/2 + n\\pi` of
:math:`\\cos(x) = \\sin'(x)`.
"""
if isinstance(tck, BSpline):
return tck.derivative(n)
else:
return _impl.splder(tck, n)
def splantider(tck, n=1):
"""
Compute the spline for the antiderivative (integral) of a given spline.
Parameters
----------
tck : BSpline instance or a tuple of (t, c, k)
Spline whose antiderivative to compute
n : int, optional
Order of antiderivative to evaluate. Default: 1
Returns
-------
BSpline instance or a tuple of (t2, c2, k2)
Spline of order k2=k+n representing the antiderivative of the input
spline.
A tuple is returned iff the input argument `tck` is a tuple, otherwise
a BSpline object is constructed and returned.
See Also
--------
splder, splev, spalde
BSpline
Notes
-----
The `splder` function is the inverse operation of this function.
Namely, ``splder(splantider(tck))`` is identical to `tck`, modulo
rounding error.
.. versionadded:: 0.13.0
Examples
--------
>>> from scipy.interpolate import splrep, splder, splantider, splev
>>> x = np.linspace(0, np.pi/2, 70)
>>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
>>> spl = splrep(x, y)
The derivative is the inverse operation of the antiderivative,
although some floating point error accumulates:
>>> splev(1.7, spl), splev(1.7, splder(splantider(spl)))
(array(2.1565429877197317), array(2.1565429877201865))
Antiderivative can be used to evaluate definite integrals:
>>> ispl = splantider(spl)
>>> splev(np.pi/2, ispl) - splev(0, ispl)
2.2572053588768486
This is indeed an approximation to the complete elliptic integral
:math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`:
>>> from scipy.special import ellipk
>>> ellipk(0.8)
2.2572053268208538
"""
if isinstance(tck, BSpline):
return tck.antiderivative(n)
else:
return _impl.splantider(tck, n)