special_matrices.py
33.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
from __future__ import division, print_function, absolute_import
import math
import numpy as np
from scipy._lib.six import xrange
from scipy._lib.six import string_types
from numpy.lib.stride_tricks import as_strided
__all__ = ['tri', 'tril', 'triu', 'toeplitz', 'circulant', 'hankel',
'hadamard', 'leslie', 'kron', 'block_diag', 'companion',
'helmert', 'hilbert', 'invhilbert', 'pascal', 'invpascal', 'dft',
'fiedler', 'fiedler_companion']
# -----------------------------------------------------------------------------
# matrix construction functions
# -----------------------------------------------------------------------------
#
# *Note*: tri{,u,l} is implemented in numpy, but an important bug was fixed in
# 2.0.0.dev-1af2f3, the following tri{,u,l} definitions are here for backwards
# compatibility.
def tri(N, M=None, k=0, dtype=None):
"""
Construct (N, M) matrix filled with ones at and below the k-th diagonal.
The matrix has A[i,j] == 1 for i <= j + k
Parameters
----------
N : int
The size of the first dimension of the matrix.
M : int or None, optional
The size of the second dimension of the matrix. If `M` is None,
`M = N` is assumed.
k : int, optional
Number of subdiagonal below which matrix is filled with ones.
`k` = 0 is the main diagonal, `k` < 0 subdiagonal and `k` > 0
superdiagonal.
dtype : dtype, optional
Data type of the matrix.
Returns
-------
tri : (N, M) ndarray
Tri matrix.
Examples
--------
>>> from scipy.linalg import tri
>>> tri(3, 5, 2, dtype=int)
array([[1, 1, 1, 0, 0],
[1, 1, 1, 1, 0],
[1, 1, 1, 1, 1]])
>>> tri(3, 5, -1, dtype=int)
array([[0, 0, 0, 0, 0],
[1, 0, 0, 0, 0],
[1, 1, 0, 0, 0]])
"""
if M is None:
M = N
if isinstance(M, string_types):
# pearu: any objections to remove this feature?
# As tri(N,'d') is equivalent to tri(N,dtype='d')
dtype = M
M = N
m = np.greater_equal.outer(np.arange(k, N+k), np.arange(M))
if dtype is None:
return m
else:
return m.astype(dtype)
def tril(m, k=0):
"""
Make a copy of a matrix with elements above the k-th diagonal zeroed.
Parameters
----------
m : array_like
Matrix whose elements to return
k : int, optional
Diagonal above which to zero elements.
`k` == 0 is the main diagonal, `k` < 0 subdiagonal and
`k` > 0 superdiagonal.
Returns
-------
tril : ndarray
Return is the same shape and type as `m`.
Examples
--------
>>> from scipy.linalg import tril
>>> tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 0, 0, 0],
[ 4, 0, 0],
[ 7, 8, 0],
[10, 11, 12]])
"""
m = np.asarray(m)
out = tri(m.shape[0], m.shape[1], k=k, dtype=m.dtype.char) * m
return out
def triu(m, k=0):
"""
Make a copy of a matrix with elements below the k-th diagonal zeroed.
Parameters
----------
m : array_like
Matrix whose elements to return
k : int, optional
Diagonal below which to zero elements.
`k` == 0 is the main diagonal, `k` < 0 subdiagonal and
`k` > 0 superdiagonal.
Returns
-------
triu : ndarray
Return matrix with zeroed elements below the k-th diagonal and has
same shape and type as `m`.
Examples
--------
>>> from scipy.linalg import triu
>>> triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
array([[ 1, 2, 3],
[ 4, 5, 6],
[ 0, 8, 9],
[ 0, 0, 12]])
"""
m = np.asarray(m)
out = (1 - tri(m.shape[0], m.shape[1], k - 1, m.dtype.char)) * m
return out
def toeplitz(c, r=None):
"""
Construct a Toeplitz matrix.
The Toeplitz matrix has constant diagonals, with c as its first column
and r as its first row. If r is not given, ``r == conjugate(c)`` is
assumed.
Parameters
----------
c : array_like
First column of the matrix. Whatever the actual shape of `c`, it
will be converted to a 1-D array.
r : array_like, optional
First row of the matrix. If None, ``r = conjugate(c)`` is assumed;
in this case, if c[0] is real, the result is a Hermitian matrix.
r[0] is ignored; the first row of the returned matrix is
``[c[0], r[1:]]``. Whatever the actual shape of `r`, it will be
converted to a 1-D array.
Returns
-------
A : (len(c), len(r)) ndarray
The Toeplitz matrix. Dtype is the same as ``(c[0] + r[0]).dtype``.
See Also
--------
circulant : circulant matrix
hankel : Hankel matrix
solve_toeplitz : Solve a Toeplitz system.
Notes
-----
The behavior when `c` or `r` is a scalar, or when `c` is complex and
`r` is None, was changed in version 0.8.0. The behavior in previous
versions was undocumented and is no longer supported.
Examples
--------
>>> from scipy.linalg import toeplitz
>>> toeplitz([1,2,3], [1,4,5,6])
array([[1, 4, 5, 6],
[2, 1, 4, 5],
[3, 2, 1, 4]])
>>> toeplitz([1.0, 2+3j, 4-1j])
array([[ 1.+0.j, 2.-3.j, 4.+1.j],
[ 2.+3.j, 1.+0.j, 2.-3.j],
[ 4.-1.j, 2.+3.j, 1.+0.j]])
"""
c = np.asarray(c).ravel()
if r is None:
r = c.conjugate()
else:
r = np.asarray(r).ravel()
# Form a 1D array containing a reversed c followed by r[1:] that could be
# strided to give us toeplitz matrix.
vals = np.concatenate((c[::-1], r[1:]))
out_shp = len(c), len(r)
n = vals.strides[0]
return as_strided(vals[len(c)-1:], shape=out_shp, strides=(-n, n)).copy()
def circulant(c):
"""
Construct a circulant matrix.
Parameters
----------
c : (N,) array_like
1-D array, the first column of the matrix.
Returns
-------
A : (N, N) ndarray
A circulant matrix whose first column is `c`.
See Also
--------
toeplitz : Toeplitz matrix
hankel : Hankel matrix
solve_circulant : Solve a circulant system.
Notes
-----
.. versionadded:: 0.8.0
Examples
--------
>>> from scipy.linalg import circulant
>>> circulant([1, 2, 3])
array([[1, 3, 2],
[2, 1, 3],
[3, 2, 1]])
"""
c = np.asarray(c).ravel()
# Form an extended array that could be strided to give circulant version
c_ext = np.concatenate((c[::-1], c[:0:-1]))
L = len(c)
n = c_ext.strides[0]
return as_strided(c_ext[L-1:], shape=(L, L), strides=(-n, n)).copy()
def hankel(c, r=None):
"""
Construct a Hankel matrix.
The Hankel matrix has constant anti-diagonals, with `c` as its
first column and `r` as its last row. If `r` is not given, then
`r = zeros_like(c)` is assumed.
Parameters
----------
c : array_like
First column of the matrix. Whatever the actual shape of `c`, it
will be converted to a 1-D array.
r : array_like, optional
Last row of the matrix. If None, ``r = zeros_like(c)`` is assumed.
r[0] is ignored; the last row of the returned matrix is
``[c[-1], r[1:]]``. Whatever the actual shape of `r`, it will be
converted to a 1-D array.
Returns
-------
A : (len(c), len(r)) ndarray
The Hankel matrix. Dtype is the same as ``(c[0] + r[0]).dtype``.
See Also
--------
toeplitz : Toeplitz matrix
circulant : circulant matrix
Examples
--------
>>> from scipy.linalg import hankel
>>> hankel([1, 17, 99])
array([[ 1, 17, 99],
[17, 99, 0],
[99, 0, 0]])
>>> hankel([1,2,3,4], [4,7,7,8,9])
array([[1, 2, 3, 4, 7],
[2, 3, 4, 7, 7],
[3, 4, 7, 7, 8],
[4, 7, 7, 8, 9]])
"""
c = np.asarray(c).ravel()
if r is None:
r = np.zeros_like(c)
else:
r = np.asarray(r).ravel()
# Form a 1D array of values to be used in the matrix, containing `c`
# followed by r[1:].
vals = np.concatenate((c, r[1:]))
# Stride on concatenated array to get hankel matrix
out_shp = len(c), len(r)
n = vals.strides[0]
return as_strided(vals, shape=out_shp, strides=(n, n)).copy()
def hadamard(n, dtype=int):
"""
Construct a Hadamard matrix.
Constructs an n-by-n Hadamard matrix, using Sylvester's
construction. `n` must be a power of 2.
Parameters
----------
n : int
The order of the matrix. `n` must be a power of 2.
dtype : dtype, optional
The data type of the array to be constructed.
Returns
-------
H : (n, n) ndarray
The Hadamard matrix.
Notes
-----
.. versionadded:: 0.8.0
Examples
--------
>>> from scipy.linalg import hadamard
>>> hadamard(2, dtype=complex)
array([[ 1.+0.j, 1.+0.j],
[ 1.+0.j, -1.-0.j]])
>>> hadamard(4)
array([[ 1, 1, 1, 1],
[ 1, -1, 1, -1],
[ 1, 1, -1, -1],
[ 1, -1, -1, 1]])
"""
# This function is a slightly modified version of the
# function contributed by Ivo in ticket #675.
if n < 1:
lg2 = 0
else:
lg2 = int(math.log(n, 2))
if 2 ** lg2 != n:
raise ValueError("n must be an positive integer, and n must be "
"a power of 2")
H = np.array([[1]], dtype=dtype)
# Sylvester's construction
for i in range(0, lg2):
H = np.vstack((np.hstack((H, H)), np.hstack((H, -H))))
return H
def leslie(f, s):
"""
Create a Leslie matrix.
Given the length n array of fecundity coefficients `f` and the length
n-1 array of survival coefficients `s`, return the associated Leslie
matrix.
Parameters
----------
f : (N,) array_like
The "fecundity" coefficients.
s : (N-1,) array_like
The "survival" coefficients, has to be 1-D. The length of `s`
must be one less than the length of `f`, and it must be at least 1.
Returns
-------
L : (N, N) ndarray
The array is zero except for the first row,
which is `f`, and the first sub-diagonal, which is `s`.
The data-type of the array will be the data-type of ``f[0]+s[0]``.
Notes
-----
.. versionadded:: 0.8.0
The Leslie matrix is used to model discrete-time, age-structured
population growth [1]_ [2]_. In a population with `n` age classes, two sets
of parameters define a Leslie matrix: the `n` "fecundity coefficients",
which give the number of offspring per-capita produced by each age
class, and the `n` - 1 "survival coefficients", which give the
per-capita survival rate of each age class.
References
----------
.. [1] P. H. Leslie, On the use of matrices in certain population
mathematics, Biometrika, Vol. 33, No. 3, 183--212 (Nov. 1945)
.. [2] P. H. Leslie, Some further notes on the use of matrices in
population mathematics, Biometrika, Vol. 35, No. 3/4, 213--245
(Dec. 1948)
Examples
--------
>>> from scipy.linalg import leslie
>>> leslie([0.1, 2.0, 1.0, 0.1], [0.2, 0.8, 0.7])
array([[ 0.1, 2. , 1. , 0.1],
[ 0.2, 0. , 0. , 0. ],
[ 0. , 0.8, 0. , 0. ],
[ 0. , 0. , 0.7, 0. ]])
"""
f = np.atleast_1d(f)
s = np.atleast_1d(s)
if f.ndim != 1:
raise ValueError("Incorrect shape for f. f must be one-dimensional")
if s.ndim != 1:
raise ValueError("Incorrect shape for s. s must be one-dimensional")
if f.size != s.size + 1:
raise ValueError("Incorrect lengths for f and s. The length"
" of s must be one less than the length of f.")
if s.size == 0:
raise ValueError("The length of s must be at least 1.")
tmp = f[0] + s[0]
n = f.size
a = np.zeros((n, n), dtype=tmp.dtype)
a[0] = f
a[list(range(1, n)), list(range(0, n - 1))] = s
return a
def kron(a, b):
"""
Kronecker product.
The result is the block matrix::
a[0,0]*b a[0,1]*b ... a[0,-1]*b
a[1,0]*b a[1,1]*b ... a[1,-1]*b
...
a[-1,0]*b a[-1,1]*b ... a[-1,-1]*b
Parameters
----------
a : (M, N) ndarray
Input array
b : (P, Q) ndarray
Input array
Returns
-------
A : (M*P, N*Q) ndarray
Kronecker product of `a` and `b`.
Examples
--------
>>> from numpy import array
>>> from scipy.linalg import kron
>>> kron(array([[1,2],[3,4]]), array([[1,1,1]]))
array([[1, 1, 1, 2, 2, 2],
[3, 3, 3, 4, 4, 4]])
"""
if not a.flags['CONTIGUOUS']:
a = np.reshape(a, a.shape)
if not b.flags['CONTIGUOUS']:
b = np.reshape(b, b.shape)
o = np.outer(a, b)
o = o.reshape(a.shape + b.shape)
return np.concatenate(np.concatenate(o, axis=1), axis=1)
def block_diag(*arrs):
"""
Create a block diagonal matrix from provided arrays.
Given the inputs `A`, `B` and `C`, the output will have these
arrays arranged on the diagonal::
[[A, 0, 0],
[0, B, 0],
[0, 0, C]]
Parameters
----------
A, B, C, ... : array_like, up to 2-D
Input arrays. A 1-D array or array_like sequence of length `n` is
treated as a 2-D array with shape ``(1,n)``.
Returns
-------
D : ndarray
Array with `A`, `B`, `C`, ... on the diagonal. `D` has the
same dtype as `A`.
Notes
-----
If all the input arrays are square, the output is known as a
block diagonal matrix.
Empty sequences (i.e., array-likes of zero size) will not be ignored.
Noteworthy, both [] and [[]] are treated as matrices with shape ``(1,0)``.
Examples
--------
>>> from scipy.linalg import block_diag
>>> A = [[1, 0],
... [0, 1]]
>>> B = [[3, 4, 5],
... [6, 7, 8]]
>>> C = [[7]]
>>> P = np.zeros((2, 0), dtype='int32')
>>> block_diag(A, B, C)
array([[1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 3, 4, 5, 0],
[0, 0, 6, 7, 8, 0],
[0, 0, 0, 0, 0, 7]])
>>> block_diag(A, P, B, C)
array([[1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0],
[0, 0, 3, 4, 5, 0],
[0, 0, 6, 7, 8, 0],
[0, 0, 0, 0, 0, 7]])
>>> block_diag(1.0, [2, 3], [[4, 5], [6, 7]])
array([[ 1., 0., 0., 0., 0.],
[ 0., 2., 3., 0., 0.],
[ 0., 0., 0., 4., 5.],
[ 0., 0., 0., 6., 7.]])
"""
if arrs == ():
arrs = ([],)
arrs = [np.atleast_2d(a) for a in arrs]
bad_args = [k for k in range(len(arrs)) if arrs[k].ndim > 2]
if bad_args:
raise ValueError("arguments in the following positions have dimension "
"greater than 2: %s" % bad_args)
shapes = np.array([a.shape for a in arrs])
out_dtype = np.find_common_type([arr.dtype for arr in arrs], [])
out = np.zeros(np.sum(shapes, axis=0), dtype=out_dtype)
r, c = 0, 0
for i, (rr, cc) in enumerate(shapes):
out[r:r + rr, c:c + cc] = arrs[i]
r += rr
c += cc
return out
def companion(a):
"""
Create a companion matrix.
Create the companion matrix [1]_ associated with the polynomial whose
coefficients are given in `a`.
Parameters
----------
a : (N,) array_like
1-D array of polynomial coefficients. The length of `a` must be
at least two, and ``a[0]`` must not be zero.
Returns
-------
c : (N-1, N-1) ndarray
The first row of `c` is ``-a[1:]/a[0]``, and the first
sub-diagonal is all ones. The data-type of the array is the same
as the data-type of ``1.0*a[0]``.
Raises
------
ValueError
If any of the following are true: a) ``a.ndim != 1``;
b) ``a.size < 2``; c) ``a[0] == 0``.
Notes
-----
.. versionadded:: 0.8.0
References
----------
.. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK:
Cambridge University Press, 1999, pp. 146-7.
Examples
--------
>>> from scipy.linalg import companion
>>> companion([1, -10, 31, -30])
array([[ 10., -31., 30.],
[ 1., 0., 0.],
[ 0., 1., 0.]])
"""
a = np.atleast_1d(a)
if a.ndim != 1:
raise ValueError("Incorrect shape for `a`. `a` must be "
"one-dimensional.")
if a.size < 2:
raise ValueError("The length of `a` must be at least 2.")
if a[0] == 0:
raise ValueError("The first coefficient in `a` must not be zero.")
first_row = -a[1:] / (1.0 * a[0])
n = a.size
c = np.zeros((n - 1, n - 1), dtype=first_row.dtype)
c[0] = first_row
c[list(range(1, n - 1)), list(range(0, n - 2))] = 1
return c
def helmert(n, full=False):
"""
Create a Helmert matrix of order `n`.
This has applications in statistics, compositional or simplicial analysis,
and in Aitchison geometry.
Parameters
----------
n : int
The size of the array to create.
full : bool, optional
If True the (n, n) ndarray will be returned.
Otherwise the submatrix that does not include the first
row will be returned.
Default: False.
Returns
-------
M : ndarray
The Helmert matrix.
The shape is (n, n) or (n-1, n) depending on the `full` argument.
Examples
--------
>>> from scipy.linalg import helmert
>>> helmert(5, full=True)
array([[ 0.4472136 , 0.4472136 , 0.4472136 , 0.4472136 , 0.4472136 ],
[ 0.70710678, -0.70710678, 0. , 0. , 0. ],
[ 0.40824829, 0.40824829, -0.81649658, 0. , 0. ],
[ 0.28867513, 0.28867513, 0.28867513, -0.8660254 , 0. ],
[ 0.2236068 , 0.2236068 , 0.2236068 , 0.2236068 , -0.89442719]])
"""
H = np.tril(np.ones((n, n)), -1) - np.diag(np.arange(n))
d = np.arange(n) * np.arange(1, n+1)
H[0] = 1
d[0] = n
H_full = H / np.sqrt(d)[:, np.newaxis]
if full:
return H_full
else:
return H_full[1:]
def hilbert(n):
"""
Create a Hilbert matrix of order `n`.
Returns the `n` by `n` array with entries `h[i,j] = 1 / (i + j + 1)`.
Parameters
----------
n : int
The size of the array to create.
Returns
-------
h : (n, n) ndarray
The Hilbert matrix.
See Also
--------
invhilbert : Compute the inverse of a Hilbert matrix.
Notes
-----
.. versionadded:: 0.10.0
Examples
--------
>>> from scipy.linalg import hilbert
>>> hilbert(3)
array([[ 1. , 0.5 , 0.33333333],
[ 0.5 , 0.33333333, 0.25 ],
[ 0.33333333, 0.25 , 0.2 ]])
"""
values = 1.0 / (1.0 + np.arange(2 * n - 1))
h = hankel(values[:n], r=values[n - 1:])
return h
def invhilbert(n, exact=False):
"""
Compute the inverse of the Hilbert matrix of order `n`.
The entries in the inverse of a Hilbert matrix are integers. When `n`
is greater than 14, some entries in the inverse exceed the upper limit
of 64 bit integers. The `exact` argument provides two options for
dealing with these large integers.
Parameters
----------
n : int
The order of the Hilbert matrix.
exact : bool, optional
If False, the data type of the array that is returned is np.float64,
and the array is an approximation of the inverse.
If True, the array is the exact integer inverse array. To represent
the exact inverse when n > 14, the returned array is an object array
of long integers. For n <= 14, the exact inverse is returned as an
array with data type np.int64.
Returns
-------
invh : (n, n) ndarray
The data type of the array is np.float64 if `exact` is False.
If `exact` is True, the data type is either np.int64 (for n <= 14)
or object (for n > 14). In the latter case, the objects in the
array will be long integers.
See Also
--------
hilbert : Create a Hilbert matrix.
Notes
-----
.. versionadded:: 0.10.0
Examples
--------
>>> from scipy.linalg import invhilbert
>>> invhilbert(4)
array([[ 16., -120., 240., -140.],
[ -120., 1200., -2700., 1680.],
[ 240., -2700., 6480., -4200.],
[ -140., 1680., -4200., 2800.]])
>>> invhilbert(4, exact=True)
array([[ 16, -120, 240, -140],
[ -120, 1200, -2700, 1680],
[ 240, -2700, 6480, -4200],
[ -140, 1680, -4200, 2800]], dtype=int64)
>>> invhilbert(16)[7,7]
4.2475099528537506e+19
>>> invhilbert(16, exact=True)[7,7]
42475099528537378560L
"""
from scipy.special import comb
if exact:
if n > 14:
dtype = object
else:
dtype = np.int64
else:
dtype = np.float64
invh = np.empty((n, n), dtype=dtype)
for i in xrange(n):
for j in xrange(0, i + 1):
s = i + j
invh[i, j] = ((-1) ** s * (s + 1) *
comb(n + i, n - j - 1, exact) *
comb(n + j, n - i - 1, exact) *
comb(s, i, exact) ** 2)
if i != j:
invh[j, i] = invh[i, j]
return invh
def pascal(n, kind='symmetric', exact=True):
"""
Returns the n x n Pascal matrix.
The Pascal matrix is a matrix containing the binomial coefficients as
its elements.
Parameters
----------
n : int
The size of the matrix to create; that is, the result is an n x n
matrix.
kind : str, optional
Must be one of 'symmetric', 'lower', or 'upper'.
Default is 'symmetric'.
exact : bool, optional
If `exact` is True, the result is either an array of type
numpy.uint64 (if n < 35) or an object array of Python long integers.
If `exact` is False, the coefficients in the matrix are computed using
`scipy.special.comb` with `exact=False`. The result will be a floating
point array, and the values in the array will not be the exact
coefficients, but this version is much faster than `exact=True`.
Returns
-------
p : (n, n) ndarray
The Pascal matrix.
See Also
--------
invpascal
Notes
-----
See https://en.wikipedia.org/wiki/Pascal_matrix for more information
about Pascal matrices.
.. versionadded:: 0.11.0
Examples
--------
>>> from scipy.linalg import pascal
>>> pascal(4)
array([[ 1, 1, 1, 1],
[ 1, 2, 3, 4],
[ 1, 3, 6, 10],
[ 1, 4, 10, 20]], dtype=uint64)
>>> pascal(4, kind='lower')
array([[1, 0, 0, 0],
[1, 1, 0, 0],
[1, 2, 1, 0],
[1, 3, 3, 1]], dtype=uint64)
>>> pascal(50)[-1, -1]
25477612258980856902730428600L
>>> from scipy.special import comb
>>> comb(98, 49, exact=True)
25477612258980856902730428600L
"""
from scipy.special import comb
if kind not in ['symmetric', 'lower', 'upper']:
raise ValueError("kind must be 'symmetric', 'lower', or 'upper'")
if exact:
if n >= 35:
L_n = np.empty((n, n), dtype=object)
L_n.fill(0)
else:
L_n = np.zeros((n, n), dtype=np.uint64)
for i in range(n):
for j in range(i + 1):
L_n[i, j] = comb(i, j, exact=True)
else:
L_n = comb(*np.ogrid[:n, :n])
if kind == 'lower':
p = L_n
elif kind == 'upper':
p = L_n.T
else:
p = np.dot(L_n, L_n.T)
return p
def invpascal(n, kind='symmetric', exact=True):
"""
Returns the inverse of the n x n Pascal matrix.
The Pascal matrix is a matrix containing the binomial coefficients as
its elements.
Parameters
----------
n : int
The size of the matrix to create; that is, the result is an n x n
matrix.
kind : str, optional
Must be one of 'symmetric', 'lower', or 'upper'.
Default is 'symmetric'.
exact : bool, optional
If `exact` is True, the result is either an array of type
``numpy.int64`` (if `n` <= 35) or an object array of Python integers.
If `exact` is False, the coefficients in the matrix are computed using
`scipy.special.comb` with `exact=False`. The result will be a floating
point array, and for large `n`, the values in the array will not be the
exact coefficients.
Returns
-------
invp : (n, n) ndarray
The inverse of the Pascal matrix.
See Also
--------
pascal
Notes
-----
.. versionadded:: 0.16.0
References
----------
.. [1] "Pascal matrix", https://en.wikipedia.org/wiki/Pascal_matrix
.. [2] Cohen, A. M., "The inverse of a Pascal matrix", Mathematical
Gazette, 59(408), pp. 111-112, 1975.
Examples
--------
>>> from scipy.linalg import invpascal, pascal
>>> invp = invpascal(5)
>>> invp
array([[ 5, -10, 10, -5, 1],
[-10, 30, -35, 19, -4],
[ 10, -35, 46, -27, 6],
[ -5, 19, -27, 17, -4],
[ 1, -4, 6, -4, 1]])
>>> p = pascal(5)
>>> p.dot(invp)
array([[ 1., 0., 0., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 1., 0.],
[ 0., 0., 0., 0., 1.]])
An example of the use of `kind` and `exact`:
>>> invpascal(5, kind='lower', exact=False)
array([[ 1., -0., 0., -0., 0.],
[-1., 1., -0., 0., -0.],
[ 1., -2., 1., -0., 0.],
[-1., 3., -3., 1., -0.],
[ 1., -4., 6., -4., 1.]])
"""
from scipy.special import comb
if kind not in ['symmetric', 'lower', 'upper']:
raise ValueError("'kind' must be 'symmetric', 'lower' or 'upper'.")
if kind == 'symmetric':
if exact:
if n > 34:
dt = object
else:
dt = np.int64
else:
dt = np.float64
invp = np.empty((n, n), dtype=dt)
for i in range(n):
for j in range(0, i + 1):
v = 0
for k in range(n - i):
v += comb(i + k, k, exact=exact) * comb(i + k, i + k - j,
exact=exact)
invp[i, j] = (-1)**(i - j) * v
if i != j:
invp[j, i] = invp[i, j]
else:
# For the 'lower' and 'upper' cases, we computer the inverse by
# changing the sign of every other diagonal of the pascal matrix.
invp = pascal(n, kind=kind, exact=exact)
if invp.dtype == np.uint64:
# This cast from np.uint64 to int64 OK, because if `kind` is not
# "symmetric", the values in invp are all much less than 2**63.
invp = invp.view(np.int64)
# The toeplitz matrix has alternating bands of 1 and -1.
invp *= toeplitz((-1)**np.arange(n)).astype(invp.dtype)
return invp
def dft(n, scale=None):
"""
Discrete Fourier transform matrix.
Create the matrix that computes the discrete Fourier transform of a
sequence [1]_. The n-th primitive root of unity used to generate the
matrix is exp(-2*pi*i/n), where i = sqrt(-1).
Parameters
----------
n : int
Size the matrix to create.
scale : str, optional
Must be None, 'sqrtn', or 'n'.
If `scale` is 'sqrtn', the matrix is divided by `sqrt(n)`.
If `scale` is 'n', the matrix is divided by `n`.
If `scale` is None (the default), the matrix is not normalized, and the
return value is simply the Vandermonde matrix of the roots of unity.
Returns
-------
m : (n, n) ndarray
The DFT matrix.
Notes
-----
When `scale` is None, multiplying a vector by the matrix returned by
`dft` is mathematically equivalent to (but much less efficient than)
the calculation performed by `scipy.fft.fft`.
.. versionadded:: 0.14.0
References
----------
.. [1] "DFT matrix", https://en.wikipedia.org/wiki/DFT_matrix
Examples
--------
>>> from scipy.linalg import dft
>>> np.set_printoptions(precision=2, suppress=True) # for compact output
>>> m = dft(5)
>>> m
array([[ 1. +0.j , 1. +0.j , 1. +0.j , 1. +0.j , 1. +0.j ],
[ 1. +0.j , 0.31-0.95j, -0.81-0.59j, -0.81+0.59j, 0.31+0.95j],
[ 1. +0.j , -0.81-0.59j, 0.31+0.95j, 0.31-0.95j, -0.81+0.59j],
[ 1. +0.j , -0.81+0.59j, 0.31-0.95j, 0.31+0.95j, -0.81-0.59j],
[ 1. +0.j , 0.31+0.95j, -0.81+0.59j, -0.81-0.59j, 0.31-0.95j]])
>>> x = np.array([1, 2, 3, 0, 3])
>>> m @ x # Compute the DFT of x
array([ 9. +0.j , 0.12-0.81j, -2.12+3.44j, -2.12-3.44j, 0.12+0.81j])
Verify that ``m @ x`` is the same as ``fft(x)``.
>>> from scipy.fft import fft
>>> fft(x) # Same result as m @ x
array([ 9. +0.j , 0.12-0.81j, -2.12+3.44j, -2.12-3.44j, 0.12+0.81j])
"""
if scale not in [None, 'sqrtn', 'n']:
raise ValueError("scale must be None, 'sqrtn', or 'n'; "
"%r is not valid." % (scale,))
omegas = np.exp(-2j * np.pi * np.arange(n) / n).reshape(-1, 1)
m = omegas ** np.arange(n)
if scale == 'sqrtn':
m /= math.sqrt(n)
elif scale == 'n':
m /= n
return m
def fiedler(a):
"""Returns a symmetric Fiedler matrix
Given an sequence of numbers `a`, Fiedler matrices have the structure
``F[i, j] = np.abs(a[i] - a[j])``, and hence zero diagonals and nonnegative
entries. A Fiedler matrix has a dominant positive eigenvalue and other
eigenvalues are negative. Although not valid generally, for certain inputs,
the inverse and the determinant can be derived explicitly as given in [1]_.
Parameters
----------
a : (n,) array_like
coefficient array
Returns
-------
F : (n, n) ndarray
See Also
--------
circulant, toeplitz
Notes
-----
.. versionadded:: 1.3.0
References
----------
.. [1] J. Todd, "Basic Numerical Mathematics: Vol.2 : Numerical Algebra",
1977, Birkhauser, :doi:`10.1007/978-3-0348-7286-7`
Examples
--------
>>> from scipy.linalg import det, inv, fiedler
>>> a = [1, 4, 12, 45, 77]
>>> n = len(a)
>>> A = fiedler(a)
>>> A
array([[ 0, 3, 11, 44, 76],
[ 3, 0, 8, 41, 73],
[11, 8, 0, 33, 65],
[44, 41, 33, 0, 32],
[76, 73, 65, 32, 0]])
The explicit formulas for determinant and inverse seem to hold only for
monotonically increasing/decreasing arrays. Note the tridiagonal structure
and the corners.
>>> Ai = inv(A)
>>> Ai[np.abs(Ai) < 1e-12] = 0. # cleanup the numerical noise for display
>>> Ai
array([[-0.16008772, 0.16666667, 0. , 0. , 0.00657895],
[ 0.16666667, -0.22916667, 0.0625 , 0. , 0. ],
[ 0. , 0.0625 , -0.07765152, 0.01515152, 0. ],
[ 0. , 0. , 0.01515152, -0.03077652, 0.015625 ],
[ 0.00657895, 0. , 0. , 0.015625 , -0.00904605]])
>>> det(A)
15409151.999999998
>>> (-1)**(n-1) * 2**(n-2) * np.diff(a).prod() * (a[-1] - a[0])
15409152
"""
a = np.atleast_1d(a)
if a.ndim != 1:
raise ValueError("Input 'a' must be a 1D array.")
if a.size == 0:
return np.array([], dtype=float)
elif a.size == 1:
return np.array([[0.]])
else:
return np.abs(a[:, None] - a)
def fiedler_companion(a):
""" Returns a Fiedler companion matrix
Given a polynomial coefficient array ``a``, this function forms a
pentadiagonal matrix with a special structure whose eigenvalues coincides
with the roots of ``a``.
Parameters
----------
a : (N,) array_like
1-D array of polynomial coefficients in descending order with a nonzero
leading coefficient. For ``N < 2``, an empty array is returned.
Returns
-------
c : (N-1, N-1) ndarray
Resulting companion matrix
Notes
-----
Similar to `companion` the leading coefficient should be nonzero. In case
the leading coefficient is not 1., other coefficients are rescaled before
the array generation. To avoid numerical issues, it is best to provide a
monic polynomial.
.. versionadded:: 1.3.0
See Also
--------
companion
References
----------
.. [1] M. Fiedler, " A note on companion matrices", Linear Algebra and its
Applications, 2003, :doi:`10.1016/S0024-3795(03)00548-2`
Examples
--------
>>> from scipy.linalg import fiedler_companion, eigvals
>>> p = np.poly(np.arange(1, 9, 2)) # [1., -16., 86., -176., 105.]
>>> fc = fiedler_companion(p)
>>> fc
array([[ 16., -86., 1., 0.],
[ 1., 0., 0., 0.],
[ 0., 176., 0., -105.],
[ 0., 1., 0., 0.]])
>>> eigvals(fc)
array([7.+0.j, 5.+0.j, 3.+0.j, 1.+0.j])
"""
a = np.atleast_1d(a)
if a.ndim != 1:
raise ValueError("Input 'a' must be a 1D array.")
if a.size <= 2:
if a.size == 2:
return np.array([[-(a/a[0])[-1]]])
return np.array([], dtype=a.dtype)
if a[0] == 0.:
raise ValueError('Leading coefficient is zero.')
a = a/a[0]
n = a.size - 1
c = np.zeros((n, n), dtype=a.dtype)
# subdiagonals
c[range(3, n, 2), range(1, n-2, 2)] = 1.
c[range(2, n, 2), range(1, n-1, 2)] = -a[3::2]
# superdiagonals
c[range(0, n-2, 2), range(2, n, 2)] = 1.
c[range(0, n-1, 2), range(1, n, 2)] = -a[2::2]
c[[0, 1], 0] = [-a[1], 1]
return c