csc.py
7.77 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""Compressed Sparse Column matrix format"""
from __future__ import division, print_function, absolute_import
__docformat__ = "restructuredtext en"
__all__ = ['csc_matrix', 'isspmatrix_csc']
import numpy as np
from .base import spmatrix
from ._sparsetools import csc_tocsr, expandptr
from .sputils import upcast, get_index_dtype
from .compressed import _cs_matrix
class csc_matrix(_cs_matrix):
"""
Compressed Sparse Column matrix
This can be instantiated in several ways:
csc_matrix(D)
with a dense matrix or rank-2 ndarray D
csc_matrix(S)
with another sparse matrix S (equivalent to S.tocsc())
csc_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N)
dtype is optional, defaulting to dtype='d'.
csc_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
where ``data``, ``row_ind`` and ``col_ind`` satisfy the
relationship ``a[row_ind[k], col_ind[k]] = data[k]``.
csc_matrix((data, indices, indptr), [shape=(M, N)])
is the standard CSC representation where the row indices for
column i are stored in ``indices[indptr[i]:indptr[i+1]]``
and their corresponding values are stored in
``data[indptr[i]:indptr[i+1]]``. If the shape parameter is
not supplied, the matrix dimensions are inferred from
the index arrays.
Attributes
----------
dtype : dtype
Data type of the matrix
shape : 2-tuple
Shape of the matrix
ndim : int
Number of dimensions (this is always 2)
nnz
Number of stored values, including explicit zeros
data
Data array of the matrix
indices
CSC format index array
indptr
CSC format index pointer array
has_sorted_indices
Whether indices are sorted
Notes
-----
Sparse matrices can be used in arithmetic operations: they support
addition, subtraction, multiplication, division, and matrix power.
Advantages of the CSC format
- efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
- efficient column slicing
- fast matrix vector products (CSR, BSR may be faster)
Disadvantages of the CSC format
- slow row slicing operations (consider CSR)
- changes to the sparsity structure are expensive (consider LIL or DOK)
Examples
--------
>>> import numpy as np
>>> from scipy.sparse import csc_matrix
>>> csc_matrix((3, 4), dtype=np.int8).toarray()
array([[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 2, 2, 0, 1, 2])
>>> col = np.array([0, 0, 1, 2, 2, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 4],
[0, 0, 5],
[2, 3, 6]])
>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csc_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 4],
[0, 0, 5],
[2, 3, 6]])
"""
format = 'csc'
def transpose(self, axes=None, copy=False):
if axes is not None:
raise ValueError(("Sparse matrices do not support "
"an 'axes' parameter because swapping "
"dimensions is the only logical permutation."))
M, N = self.shape
from .csr import csr_matrix
return csr_matrix((self.data, self.indices,
self.indptr), (N, M), copy=copy)
transpose.__doc__ = spmatrix.transpose.__doc__
def __iter__(self):
for r in self.tocsr():
yield r
def tocsc(self, copy=False):
if copy:
return self.copy()
else:
return self
tocsc.__doc__ = spmatrix.tocsc.__doc__
def tocsr(self, copy=False):
M,N = self.shape
idx_dtype = get_index_dtype((self.indptr, self.indices),
maxval=max(self.nnz, N))
indptr = np.empty(M + 1, dtype=idx_dtype)
indices = np.empty(self.nnz, dtype=idx_dtype)
data = np.empty(self.nnz, dtype=upcast(self.dtype))
csc_tocsr(M, N,
self.indptr.astype(idx_dtype),
self.indices.astype(idx_dtype),
self.data,
indptr,
indices,
data)
from .csr import csr_matrix
A = csr_matrix((data, indices, indptr), shape=self.shape, copy=False)
A.has_sorted_indices = True
return A
tocsr.__doc__ = spmatrix.tocsr.__doc__
def nonzero(self):
# CSC can't use _cs_matrix's .nonzero method because it
# returns the indices sorted for self transposed.
# Get row and col indices, from _cs_matrix.tocoo
major_dim, minor_dim = self._swap(self.shape)
minor_indices = self.indices
major_indices = np.empty(len(minor_indices), dtype=self.indices.dtype)
expandptr(major_dim, self.indptr, major_indices)
row, col = self._swap((major_indices, minor_indices))
# Remove explicit zeros
nz_mask = self.data != 0
row = row[nz_mask]
col = col[nz_mask]
# Sort them to be in C-style order
ind = np.argsort(row, kind='mergesort')
row = row[ind]
col = col[ind]
return row, col
nonzero.__doc__ = _cs_matrix.nonzero.__doc__
def getrow(self, i):
"""Returns a copy of row i of the matrix, as a (1 x n)
CSR matrix (row vector).
"""
M, N = self.shape
i = int(i)
if i < 0:
i += M
if i < 0 or i >= M:
raise IndexError('index (%d) out of range' % i)
return self._get_submatrix(minor=i).tocsr()
def getcol(self, i):
"""Returns a copy of column i of the matrix, as a (m x 1)
CSC matrix (column vector).
"""
M, N = self.shape
i = int(i)
if i < 0:
i += N
if i < 0 or i >= N:
raise IndexError('index (%d) out of range' % i)
return self._get_submatrix(major=i, copy=True)
def _get_intXarray(self, row, col):
return self._major_index_fancy(col)._get_submatrix(minor=row)
def _get_intXslice(self, row, col):
if col.step in (1, None):
return self._get_submatrix(major=col, minor=row, copy=True)
return self._major_slice(col)._get_submatrix(minor=row)
def _get_sliceXint(self, row, col):
if row.step in (1, None):
return self._get_submatrix(major=col, minor=row, copy=True)
return self._get_submatrix(major=col)._minor_slice(row)
def _get_sliceXarray(self, row, col):
return self._major_index_fancy(col)._minor_slice(row)
def _get_arrayXint(self, row, col):
return self._get_submatrix(major=col)._minor_index_fancy(row)
def _get_arrayXslice(self, row, col):
return self._major_slice(col)._minor_index_fancy(row)
# these functions are used by the parent class (_cs_matrix)
# to remove redudancy between csc_matrix and csr_matrix
def _swap(self, x):
"""swap the members of x if this is a column-oriented matrix
"""
return x[1], x[0]
def isspmatrix_csc(x):
"""Is x of csc_matrix type?
Parameters
----------
x
object to check for being a csc matrix
Returns
-------
bool
True if x is a csc matrix, False otherwise
Examples
--------
>>> from scipy.sparse import csc_matrix, isspmatrix_csc
>>> isspmatrix_csc(csc_matrix([[5]]))
True
>>> from scipy.sparse import csc_matrix, csr_matrix, isspmatrix_csc
>>> isspmatrix_csc(csr_matrix([[5]]))
False
"""
return isinstance(x, csc_matrix)