dia.py 13.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
"""Sparse DIAgonal format"""

from __future__ import division, print_function, absolute_import

__docformat__ = "restructuredtext en"

__all__ = ['dia_matrix', 'isspmatrix_dia']

import numpy as np

from .base import isspmatrix, _formats, spmatrix
from .data import _data_matrix
from .sputils import (isshape, upcast_char, getdtype, get_index_dtype,
                      get_sum_dtype, validateaxis, check_shape, matrix)
from ._sparsetools import dia_matvec


class dia_matrix(_data_matrix):
    """Sparse matrix with DIAgonal storage

    This can be instantiated in several ways:
        dia_matrix(D)
            with a dense matrix

        dia_matrix(S)
            with another sparse matrix S (equivalent to S.todia())

        dia_matrix((M, N), [dtype])
            to construct an empty matrix with shape (M, N),
            dtype is optional, defaulting to dtype='d'.

        dia_matrix((data, offsets), shape=(M, N))
            where the ``data[k,:]`` stores the diagonal entries for
            diagonal ``offsets[k]`` (See example below)

    Attributes
    ----------
    dtype : dtype
        Data type of the matrix
    shape : 2-tuple
        Shape of the matrix
    ndim : int
        Number of dimensions (this is always 2)
    nnz
        Number of stored values, including explicit zeros
    data
        DIA format data array of the matrix
    offsets
        DIA format offset array of the matrix

    Notes
    -----

    Sparse matrices can be used in arithmetic operations: they support
    addition, subtraction, multiplication, division, and matrix power.

    Examples
    --------

    >>> import numpy as np
    >>> from scipy.sparse import dia_matrix
    >>> dia_matrix((3, 4), dtype=np.int8).toarray()
    array([[0, 0, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 0]], dtype=int8)

    >>> data = np.array([[1, 2, 3, 4]]).repeat(3, axis=0)
    >>> offsets = np.array([0, -1, 2])
    >>> dia_matrix((data, offsets), shape=(4, 4)).toarray()
    array([[1, 0, 3, 0],
           [1, 2, 0, 4],
           [0, 2, 3, 0],
           [0, 0, 3, 4]])

    """
    format = 'dia'

    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        _data_matrix.__init__(self)

        if isspmatrix_dia(arg1):
            if copy:
                arg1 = arg1.copy()
            self.data = arg1.data
            self.offsets = arg1.offsets
            self._shape = check_shape(arg1.shape)
        elif isspmatrix(arg1):
            if isspmatrix_dia(arg1) and copy:
                A = arg1.copy()
            else:
                A = arg1.todia()
            self.data = A.data
            self.offsets = A.offsets
            self._shape = check_shape(A.shape)
        elif isinstance(arg1, tuple):
            if isshape(arg1):
                # It's a tuple of matrix dimensions (M, N)
                # create empty matrix
                self._shape = check_shape(arg1)
                self.data = np.zeros((0,0), getdtype(dtype, default=float))
                idx_dtype = get_index_dtype(maxval=max(self.shape))
                self.offsets = np.zeros((0), dtype=idx_dtype)
            else:
                try:
                    # Try interpreting it as (data, offsets)
                    data, offsets = arg1
                except Exception:
                    raise ValueError('unrecognized form for dia_matrix constructor')
                else:
                    if shape is None:
                        raise ValueError('expected a shape argument')
                    self.data = np.atleast_2d(np.array(arg1[0], dtype=dtype, copy=copy))
                    self.offsets = np.atleast_1d(np.array(arg1[1],
                                                          dtype=get_index_dtype(maxval=max(shape)),
                                                          copy=copy))
                    self._shape = check_shape(shape)
        else:
            #must be dense, convert to COO first, then to DIA
            try:
                arg1 = np.asarray(arg1)
            except Exception:
                raise ValueError("unrecognized form for"
                        " %s_matrix constructor" % self.format)
            from .coo import coo_matrix
            A = coo_matrix(arg1, dtype=dtype, shape=shape).todia()
            self.data = A.data
            self.offsets = A.offsets
            self._shape = check_shape(A.shape)

        if dtype is not None:
            self.data = self.data.astype(dtype)

        #check format
        if self.offsets.ndim != 1:
            raise ValueError('offsets array must have rank 1')

        if self.data.ndim != 2:
            raise ValueError('data array must have rank 2')

        if self.data.shape[0] != len(self.offsets):
            raise ValueError('number of diagonals (%d) '
                    'does not match the number of offsets (%d)'
                    % (self.data.shape[0], len(self.offsets)))

        if len(np.unique(self.offsets)) != len(self.offsets):
            raise ValueError('offset array contains duplicate values')

    def __repr__(self):
        format = _formats[self.getformat()][1]
        return "<%dx%d sparse matrix of type '%s'\n" \
               "\twith %d stored elements (%d diagonals) in %s format>" % \
               (self.shape + (self.dtype.type, self.nnz, self.data.shape[0],
                              format))

    def _data_mask(self):
        """Returns a mask of the same shape as self.data, where
        mask[i,j] is True when data[i,j] corresponds to a stored element."""
        num_rows, num_cols = self.shape
        offset_inds = np.arange(self.data.shape[1])
        row = offset_inds - self.offsets[:,None]
        mask = (row >= 0)
        mask &= (row < num_rows)
        mask &= (offset_inds < num_cols)
        return mask

    def count_nonzero(self):
        mask = self._data_mask()
        return np.count_nonzero(self.data[mask])

    def getnnz(self, axis=None):
        if axis is not None:
            raise NotImplementedError("getnnz over an axis is not implemented "
                                      "for DIA format")
        M,N = self.shape
        nnz = 0
        for k in self.offsets:
            if k > 0:
                nnz += min(M,N-k)
            else:
                nnz += min(M+k,N)
        return int(nnz)

    getnnz.__doc__ = spmatrix.getnnz.__doc__
    count_nonzero.__doc__ = spmatrix.count_nonzero.__doc__

    def sum(self, axis=None, dtype=None, out=None):
        validateaxis(axis)

        if axis is not None and axis < 0:
            axis += 2

        res_dtype = get_sum_dtype(self.dtype)
        num_rows, num_cols = self.shape
        ret = None

        if axis == 0:
            mask = self._data_mask()
            x = (self.data * mask).sum(axis=0)
            if x.shape[0] == num_cols:
                res = x
            else:
                res = np.zeros(num_cols, dtype=x.dtype)
                res[:x.shape[0]] = x
            ret = matrix(res, dtype=res_dtype)

        else:
            row_sums = np.zeros(num_rows, dtype=res_dtype)
            one = np.ones(num_cols, dtype=res_dtype)
            dia_matvec(num_rows, num_cols, len(self.offsets),
                       self.data.shape[1], self.offsets, self.data, one, row_sums)

            row_sums = matrix(row_sums)

            if axis is None:
                return row_sums.sum(dtype=dtype, out=out)

            if axis is not None:
                row_sums = row_sums.T

            ret = matrix(row_sums.sum(axis=axis))

        if out is not None and out.shape != ret.shape:
            raise ValueError("dimensions do not match")

        return ret.sum(axis=(), dtype=dtype, out=out)

    sum.__doc__ = spmatrix.sum.__doc__

    def _mul_vector(self, other):
        x = other

        y = np.zeros(self.shape[0], dtype=upcast_char(self.dtype.char,
                                                       x.dtype.char))

        L = self.data.shape[1]

        M,N = self.shape

        dia_matvec(M,N, len(self.offsets), L, self.offsets, self.data, x.ravel(), y.ravel())

        return y

    def _mul_multimatrix(self, other):
        return np.hstack([self._mul_vector(col).reshape(-1,1) for col in other.T])

    def _setdiag(self, values, k=0):
        M, N = self.shape

        if values.ndim == 0:
            # broadcast
            values_n = np.inf
        else:
            values_n = len(values)

        if k < 0:
            n = min(M + k, N, values_n)
            min_index = 0
            max_index = n
        else:
            n = min(M, N - k, values_n)
            min_index = k
            max_index = k + n

        if values.ndim != 0:
            # allow also longer sequences
            values = values[:n]

        if k in self.offsets:
            self.data[self.offsets == k, min_index:max_index] = values
        else:
            self.offsets = np.append(self.offsets, self.offsets.dtype.type(k))
            m = max(max_index, self.data.shape[1])
            data = np.zeros((self.data.shape[0]+1, m), dtype=self.data.dtype)
            data[:-1,:self.data.shape[1]] = self.data
            data[-1, min_index:max_index] = values
            self.data = data

    def todia(self, copy=False):
        if copy:
            return self.copy()
        else:
            return self

    todia.__doc__ = spmatrix.todia.__doc__

    def transpose(self, axes=None, copy=False):
        if axes is not None:
            raise ValueError(("Sparse matrices do not support "
                              "an 'axes' parameter because swapping "
                              "dimensions is the only logical permutation."))

        num_rows, num_cols = self.shape
        max_dim = max(self.shape)

        # flip diagonal offsets
        offsets = -self.offsets

        # re-align the data matrix
        r = np.arange(len(offsets), dtype=np.intc)[:, None]
        c = np.arange(num_rows, dtype=np.intc) - (offsets % max_dim)[:, None]
        pad_amount = max(0, max_dim-self.data.shape[1])
        data = np.hstack((self.data, np.zeros((self.data.shape[0], pad_amount),
                                              dtype=self.data.dtype)))
        data = data[r, c]
        return dia_matrix((data, offsets), shape=(
            num_cols, num_rows), copy=copy)

    transpose.__doc__ = spmatrix.transpose.__doc__

    def diagonal(self, k=0):
        rows, cols = self.shape
        if k <= -rows or k >= cols:
            raise ValueError("k exceeds matrix dimensions")
        idx, = np.nonzero(self.offsets == k)
        first_col, last_col = max(0, k), min(rows + k, cols)
        if idx.size == 0:
            return np.zeros(last_col - first_col, dtype=self.data.dtype)
        return self.data[idx[0], first_col:last_col]

    diagonal.__doc__ = spmatrix.diagonal.__doc__

    def tocsc(self, copy=False):
        from .csc import csc_matrix
        if self.nnz == 0:
            return csc_matrix(self.shape, dtype=self.dtype)

        num_rows, num_cols = self.shape
        num_offsets, offset_len = self.data.shape
        offset_inds = np.arange(offset_len)

        row = offset_inds - self.offsets[:,None]
        mask = (row >= 0)
        mask &= (row < num_rows)
        mask &= (offset_inds < num_cols)
        mask &= (self.data != 0)

        idx_dtype = get_index_dtype(maxval=max(self.shape))
        indptr = np.zeros(num_cols + 1, dtype=idx_dtype)
        indptr[1:offset_len+1] = np.cumsum(mask.sum(axis=0))
        indptr[offset_len+1:] = indptr[offset_len]
        indices = row.T[mask.T].astype(idx_dtype, copy=False)
        data = self.data.T[mask.T]
        return csc_matrix((data, indices, indptr), shape=self.shape,
                          dtype=self.dtype)

    tocsc.__doc__ = spmatrix.tocsc.__doc__

    def tocoo(self, copy=False):
        num_rows, num_cols = self.shape
        num_offsets, offset_len = self.data.shape
        offset_inds = np.arange(offset_len)

        row = offset_inds - self.offsets[:,None]
        mask = (row >= 0)
        mask &= (row < num_rows)
        mask &= (offset_inds < num_cols)
        mask &= (self.data != 0)
        row = row[mask]
        col = np.tile(offset_inds, num_offsets)[mask.ravel()]
        data = self.data[mask]

        from .coo import coo_matrix
        A = coo_matrix((data,(row,col)), shape=self.shape, dtype=self.dtype)
        A.has_canonical_format = True
        return A

    tocoo.__doc__ = spmatrix.tocoo.__doc__

    # needed by _data_matrix
    def _with_data(self, data, copy=True):
        """Returns a matrix with the same sparsity structure as self,
        but with different data.  By default the structure arrays are copied.
        """
        if copy:
            return dia_matrix((data, self.offsets.copy()), shape=self.shape)
        else:
            return dia_matrix((data,self.offsets), shape=self.shape)

    def resize(self, *shape):
        shape = check_shape(shape)
        M, N = shape
        # we do not need to handle the case of expanding N
        self.data = self.data[:, :N]

        if (M > self.shape[0] and
                np.any(self.offsets + self.shape[0] < self.data.shape[1])):
            # explicitly clear values that were previously hidden
            mask = (self.offsets[:, None] + self.shape[0] <=
                    np.arange(self.data.shape[1]))
            self.data[mask] = 0

        self._shape = shape

    resize.__doc__ = spmatrix.resize.__doc__


def isspmatrix_dia(x):
    """Is x of dia_matrix type?

    Parameters
    ----------
    x
        object to check for being a dia matrix

    Returns
    -------
    bool
        True if x is a dia matrix, False otherwise

    Examples
    --------
    >>> from scipy.sparse import dia_matrix, isspmatrix_dia
    >>> isspmatrix_dia(dia_matrix([[5]]))
    True

    >>> from scipy.sparse import dia_matrix, csr_matrix, isspmatrix_dia
    >>> isspmatrix_dia(csr_matrix([[5]]))
    False
    """
    return isinstance(x, dia_matrix)