interface.py 25 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
"""Abstract linear algebra library.

This module defines a class hierarchy that implements a kind of "lazy"
matrix representation, called the ``LinearOperator``. It can be used to do
linear algebra with extremely large sparse or structured matrices, without
representing those explicitly in memory. Such matrices can be added,
multiplied, transposed, etc.

As a motivating example, suppose you want have a matrix where almost all of
the elements have the value one. The standard sparse matrix representation
skips the storage of zeros, but not ones. By contrast, a LinearOperator is
able to represent such matrices efficiently. First, we need a compact way to
represent an all-ones matrix::

    >>> import numpy as np
    >>> class Ones(LinearOperator):
    ...     def __init__(self, shape):
    ...         super(Ones, self).__init__(dtype=None, shape=shape)
    ...     def _matvec(self, x):
    ...         return np.repeat(x.sum(), self.shape[0])

Instances of this class emulate ``np.ones(shape)``, but using a constant
amount of storage, independent of ``shape``. The ``_matvec`` method specifies
how this linear operator multiplies with (operates on) a vector. We can now
add this operator to a sparse matrix that stores only offsets from one::

    >>> from scipy.sparse import csr_matrix
    >>> offsets = csr_matrix([[1, 0, 2], [0, -1, 0], [0, 0, 3]])
    >>> A = aslinearoperator(offsets) + Ones(offsets.shape)
    >>> A.dot([1, 2, 3])
    array([13,  4, 15])

The result is the same as that given by its dense, explicitly-stored
counterpart::

    >>> (np.ones(A.shape, A.dtype) + offsets.toarray()).dot([1, 2, 3])
    array([13,  4, 15])

Several algorithms in the ``scipy.sparse`` library are able to operate on
``LinearOperator`` instances.
"""

from __future__ import division, print_function, absolute_import

import warnings

import numpy as np

from scipy.sparse import isspmatrix
from scipy.sparse.sputils import isshape, isintlike, asmatrix, is_pydata_spmatrix

__all__ = ['LinearOperator', 'aslinearoperator']


class LinearOperator(object):
    """Common interface for performing matrix vector products

    Many iterative methods (e.g. cg, gmres) do not need to know the
    individual entries of a matrix to solve a linear system A*x=b.
    Such solvers only require the computation of matrix vector
    products, A*v where v is a dense vector.  This class serves as
    an abstract interface between iterative solvers and matrix-like
    objects.

    To construct a concrete LinearOperator, either pass appropriate
    callables to the constructor of this class, or subclass it.

    A subclass must implement either one of the methods ``_matvec``
    and ``_matmat``, and the attributes/properties ``shape`` (pair of
    integers) and ``dtype`` (may be None). It may call the ``__init__``
    on this class to have these attributes validated. Implementing
    ``_matvec`` automatically implements ``_matmat`` (using a naive
    algorithm) and vice-versa.

    Optionally, a subclass may implement ``_rmatvec`` or ``_adjoint``
    to implement the Hermitian adjoint (conjugate transpose). As with
    ``_matvec`` and ``_matmat``, implementing either ``_rmatvec`` or
    ``_adjoint`` implements the other automatically. Implementing
    ``_adjoint`` is preferable; ``_rmatvec`` is mostly there for
    backwards compatibility.

    Parameters
    ----------
    shape : tuple
        Matrix dimensions (M, N).
    matvec : callable f(v)
        Returns returns A * v.
    rmatvec : callable f(v)
        Returns A^H * v, where A^H is the conjugate transpose of A.
    matmat : callable f(V)
        Returns A * V, where V is a dense matrix with dimensions (N, K).
    dtype : dtype
        Data type of the matrix.
    rmatmat : callable f(V)
        Returns A^H * V, where V is a dense matrix with dimensions (M, K).

    Attributes
    ----------
    args : tuple
        For linear operators describing products etc. of other linear
        operators, the operands of the binary operation.

    See Also
    --------
    aslinearoperator : Construct LinearOperators

    Notes
    -----
    The user-defined matvec() function must properly handle the case
    where v has shape (N,) as well as the (N,1) case.  The shape of
    the return type is handled internally by LinearOperator.

    LinearOperator instances can also be multiplied, added with each
    other and exponentiated, all lazily: the result of these operations
    is always a new, composite LinearOperator, that defers linear
    operations to the original operators and combines the results.

    More details regarding how to subclass a LinearOperator and several
    examples of concrete LinearOperator instances can be found in the
    external project `PyLops <https://pylops.readthedocs.io>`_.


    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse.linalg import LinearOperator
    >>> def mv(v):
    ...     return np.array([2*v[0], 3*v[1]])
    ...
    >>> A = LinearOperator((2,2), matvec=mv)
    >>> A
    <2x2 _CustomLinearOperator with dtype=float64>
    >>> A.matvec(np.ones(2))
    array([ 2.,  3.])
    >>> A * np.ones(2)
    array([ 2.,  3.])

    """
    def __new__(cls, *args, **kwargs):
        if cls is LinearOperator:
            # Operate as _CustomLinearOperator factory.
            return super(LinearOperator, cls).__new__(_CustomLinearOperator)
        else:
            obj = super(LinearOperator, cls).__new__(cls)

            if (type(obj)._matvec == LinearOperator._matvec
                    and type(obj)._matmat == LinearOperator._matmat):
                warnings.warn("LinearOperator subclass should implement"
                              " at least one of _matvec and _matmat.",
                              category=RuntimeWarning, stacklevel=2)

            return obj

    def __init__(self, dtype, shape):
        """Initialize this LinearOperator.

        To be called by subclasses. ``dtype`` may be None; ``shape`` should
        be convertible to a length-2 tuple.
        """
        if dtype is not None:
            dtype = np.dtype(dtype)

        shape = tuple(shape)
        if not isshape(shape):
            raise ValueError("invalid shape %r (must be 2-d)" % (shape,))

        self.dtype = dtype
        self.shape = shape

    def _init_dtype(self):
        """Called from subclasses at the end of the __init__ routine.
        """
        if self.dtype is None:
            v = np.zeros(self.shape[-1])
            self.dtype = np.asarray(self.matvec(v)).dtype

    def _matmat(self, X):
        """Default matrix-matrix multiplication handler.

        Falls back on the user-defined _matvec method, so defining that will
        define matrix multiplication (though in a very suboptimal way).
        """

        return np.hstack([self.matvec(col.reshape(-1,1)) for col in X.T])

    def _matvec(self, x):
        """Default matrix-vector multiplication handler.

        If self is a linear operator of shape (M, N), then this method will
        be called on a shape (N,) or (N, 1) ndarray, and should return a
        shape (M,) or (M, 1) ndarray.

        This default implementation falls back on _matmat, so defining that
        will define matrix-vector multiplication as well.
        """
        return self.matmat(x.reshape(-1, 1))

    def matvec(self, x):
        """Matrix-vector multiplication.

        Performs the operation y=A*x where A is an MxN linear
        operator and x is a column vector or 1-d array.

        Parameters
        ----------
        x : {matrix, ndarray}
            An array with shape (N,) or (N,1).

        Returns
        -------
        y : {matrix, ndarray}
            A matrix or ndarray with shape (M,) or (M,1) depending
            on the type and shape of the x argument.

        Notes
        -----
        This matvec wraps the user-specified matvec routine or overridden
        _matvec method to ensure that y has the correct shape and type.

        """

        x = np.asanyarray(x)

        M,N = self.shape

        if x.shape != (N,) and x.shape != (N,1):
            raise ValueError('dimension mismatch')

        y = self._matvec(x)

        if isinstance(x, np.matrix):
            y = asmatrix(y)
        else:
            y = np.asarray(y)

        if x.ndim == 1:
            y = y.reshape(M)
        elif x.ndim == 2:
            y = y.reshape(M,1)
        else:
            raise ValueError('invalid shape returned by user-defined matvec()')

        return y

    def rmatvec(self, x):
        """Adjoint matrix-vector multiplication.

        Performs the operation y = A^H * x where A is an MxN linear
        operator and x is a column vector or 1-d array.

        Parameters
        ----------
        x : {matrix, ndarray}
            An array with shape (M,) or (M,1).

        Returns
        -------
        y : {matrix, ndarray}
            A matrix or ndarray with shape (N,) or (N,1) depending
            on the type and shape of the x argument.

        Notes
        -----
        This rmatvec wraps the user-specified rmatvec routine or overridden
        _rmatvec method to ensure that y has the correct shape and type.

        """

        x = np.asanyarray(x)

        M,N = self.shape

        if x.shape != (M,) and x.shape != (M,1):
            raise ValueError('dimension mismatch')

        y = self._rmatvec(x)

        if isinstance(x, np.matrix):
            y = asmatrix(y)
        else:
            y = np.asarray(y)

        if x.ndim == 1:
            y = y.reshape(N)
        elif x.ndim == 2:
            y = y.reshape(N,1)
        else:
            raise ValueError('invalid shape returned by user-defined rmatvec()')

        return y

    def _rmatvec(self, x):
        """Default implementation of _rmatvec; defers to adjoint."""
        if type(self)._adjoint == LinearOperator._adjoint:
            # _adjoint not overridden, prevent infinite recursion
            raise NotImplementedError
        else:
            return self.H.matvec(x)

    def matmat(self, X):
        """Matrix-matrix multiplication.

        Performs the operation y=A*X where A is an MxN linear
        operator and X dense N*K matrix or ndarray.

        Parameters
        ----------
        X : {matrix, ndarray}
            An array with shape (N,K).

        Returns
        -------
        Y : {matrix, ndarray}
            A matrix or ndarray with shape (M,K) depending on
            the type of the X argument.

        Notes
        -----
        This matmat wraps any user-specified matmat routine or overridden
        _matmat method to ensure that y has the correct type.

        """

        X = np.asanyarray(X)

        if X.ndim != 2:
            raise ValueError('expected 2-d ndarray or matrix, not %d-d'
                             % X.ndim)

        if X.shape[0] != self.shape[1]:
            raise ValueError('dimension mismatch: %r, %r'
                             % (self.shape, X.shape))

        Y = self._matmat(X)

        if isinstance(Y, np.matrix):
            Y = asmatrix(Y)

        return Y

    def rmatmat(self, X):
        """Adjoint matrix-matrix multiplication.

        Performs the operation y = A^H * x where A is an MxN linear
        operator and x is a column vector or 1-d array, or 2-d array.
        The default implementation defers to the adjoint.

        Parameters
        ----------
        X : {matrix, ndarray}
            A matrix or 2D array.

        Returns
        -------
        Y : {matrix, ndarray}
            A matrix or 2D array depending on the type of the input.

        Notes
        -----
        This rmatmat wraps the user-specified rmatmat routine.

        """

        X = np.asanyarray(X)

        if X.ndim != 2:
            raise ValueError('expected 2-d ndarray or matrix, not %d-d'
                             % X.ndim)

        if X.shape[0] != self.shape[0]:
            raise ValueError('dimension mismatch: %r, %r'
                             % (self.shape, X.shape))

        Y = self._rmatmat(X)
        if isinstance(Y, np.matrix):
            Y = asmatrix(Y)
        return Y

    def _rmatmat(self, X):
        """Default implementation of _rmatmat defers to rmatvec or adjoint."""
        if type(self)._adjoint == LinearOperator._adjoint:
            return np.hstack([self.rmatvec(col.reshape(-1, 1)) for col in X.T])
        else:
            return self.H.matmat(X)

    def __call__(self, x):
        return self*x

    def __mul__(self, x):
        return self.dot(x)

    def dot(self, x):
        """Matrix-matrix or matrix-vector multiplication.

        Parameters
        ----------
        x : array_like
            1-d or 2-d array, representing a vector or matrix.

        Returns
        -------
        Ax : array
            1-d or 2-d array (depending on the shape of x) that represents
            the result of applying this linear operator on x.

        """
        if isinstance(x, LinearOperator):
            return _ProductLinearOperator(self, x)
        elif np.isscalar(x):
            return _ScaledLinearOperator(self, x)
        else:
            x = np.asarray(x)

            if x.ndim == 1 or x.ndim == 2 and x.shape[1] == 1:
                return self.matvec(x)
            elif x.ndim == 2:
                return self.matmat(x)
            else:
                raise ValueError('expected 1-d or 2-d array or matrix, got %r'
                                 % x)

    def __matmul__(self, other):
        if np.isscalar(other):
            raise ValueError("Scalar operands are not allowed, "
                             "use '*' instead")
        return self.__mul__(other)

    def __rmatmul__(self, other):
        if np.isscalar(other):
            raise ValueError("Scalar operands are not allowed, "
                             "use '*' instead")
        return self.__rmul__(other)

    def __rmul__(self, x):
        if np.isscalar(x):
            return _ScaledLinearOperator(self, x)
        else:
            return NotImplemented

    def __pow__(self, p):
        if np.isscalar(p):
            return _PowerLinearOperator(self, p)
        else:
            return NotImplemented

    def __add__(self, x):
        if isinstance(x, LinearOperator):
            return _SumLinearOperator(self, x)
        else:
            return NotImplemented

    def __neg__(self):
        return _ScaledLinearOperator(self, -1)

    def __sub__(self, x):
        return self.__add__(-x)

    def __repr__(self):
        M,N = self.shape
        if self.dtype is None:
            dt = 'unspecified dtype'
        else:
            dt = 'dtype=' + str(self.dtype)

        return '<%dx%d %s with %s>' % (M, N, self.__class__.__name__, dt)

    def adjoint(self):
        """Hermitian adjoint.

        Returns the Hermitian adjoint of self, aka the Hermitian
        conjugate or Hermitian transpose. For a complex matrix, the
        Hermitian adjoint is equal to the conjugate transpose.

        Can be abbreviated self.H instead of self.adjoint().

        Returns
        -------
        A_H : LinearOperator
            Hermitian adjoint of self.
        """
        return self._adjoint()

    H = property(adjoint)

    def transpose(self):
        """Transpose this linear operator.

        Returns a LinearOperator that represents the transpose of this one.
        Can be abbreviated self.T instead of self.transpose().
        """
        return self._transpose()

    T = property(transpose)

    def _adjoint(self):
        """Default implementation of _adjoint; defers to rmatvec."""
        return _AdjointLinearOperator(self)

    def _transpose(self):
        """ Default implementation of _transpose; defers to rmatvec + conj"""
        return _TransposedLinearOperator(self)


class _CustomLinearOperator(LinearOperator):
    """Linear operator defined in terms of user-specified operations."""

    def __init__(self, shape, matvec, rmatvec=None, matmat=None,
                 dtype=None, rmatmat=None):
        super(_CustomLinearOperator, self).__init__(dtype, shape)

        self.args = ()

        self.__matvec_impl = matvec
        self.__rmatvec_impl = rmatvec
        self.__rmatmat_impl = rmatmat
        self.__matmat_impl = matmat

        self._init_dtype()

    def _matmat(self, X):
        if self.__matmat_impl is not None:
            return self.__matmat_impl(X)
        else:
            return super(_CustomLinearOperator, self)._matmat(X)

    def _matvec(self, x):
        return self.__matvec_impl(x)

    def _rmatvec(self, x):
        func = self.__rmatvec_impl
        if func is None:
            raise NotImplementedError("rmatvec is not defined")
        return self.__rmatvec_impl(x)

    def _rmatmat(self, X):
        if self.__rmatmat_impl is not None:
            return self.__rmatmat_impl(X)
        else:
            return super(_CustomLinearOperator, self)._rmatmat(X)

    def _adjoint(self):
        return _CustomLinearOperator(shape=(self.shape[1], self.shape[0]),
                                     matvec=self.__rmatvec_impl,
                                     rmatvec=self.__matvec_impl,
                                     matmat=self.__rmatmat_impl,
                                     rmatmat=self.__matmat_impl,
                                     dtype=self.dtype)


class _AdjointLinearOperator(LinearOperator):
    """Adjoint of arbitrary Linear Operator"""
    def __init__(self, A):
        shape = (A.shape[1], A.shape[0])
        super(_AdjointLinearOperator, self).__init__(dtype=A.dtype, shape=shape)
        self.A = A
        self.args = (A,)

    def _matvec(self, x):
        return self.A._rmatvec(x)

    def _rmatvec(self, x):
        return self.A._matvec(x)

    def _matmat(self, x):
        return self.A._rmatmat(x)

    def _rmatmat(self, x):
        return self.A._matmat(x)

class _TransposedLinearOperator(LinearOperator):
    """Transposition of arbitrary Linear Operator"""
    def __init__(self, A):
        shape = (A.shape[1], A.shape[0])
        super(_TransposedLinearOperator, self).__init__(dtype=A.dtype, shape=shape)
        self.A = A
        self.args = (A,)

    def _matvec(self, x):
        # NB. np.conj works also on sparse matrices
        return np.conj(self.A._rmatvec(np.conj(x)))

    def _rmatvec(self, x):
        return np.conj(self.A._matvec(np.conj(x)))

    def _matmat(self, x):
        # NB. np.conj works also on sparse matrices
        return np.conj(self.A._rmatmat(np.conj(x)))

    def _rmatmat(self, x):
        return np.conj(self.A._matmat(np.conj(x)))

def _get_dtype(operators, dtypes=None):
    if dtypes is None:
        dtypes = []
    for obj in operators:
        if obj is not None and hasattr(obj, 'dtype'):
            dtypes.append(obj.dtype)
    return np.find_common_type(dtypes, [])


class _SumLinearOperator(LinearOperator):
    def __init__(self, A, B):
        if not isinstance(A, LinearOperator) or \
                not isinstance(B, LinearOperator):
            raise ValueError('both operands have to be a LinearOperator')
        if A.shape != B.shape:
            raise ValueError('cannot add %r and %r: shape mismatch'
                             % (A, B))
        self.args = (A, B)
        super(_SumLinearOperator, self).__init__(_get_dtype([A, B]), A.shape)

    def _matvec(self, x):
        return self.args[0].matvec(x) + self.args[1].matvec(x)

    def _rmatvec(self, x):
        return self.args[0].rmatvec(x) + self.args[1].rmatvec(x)

    def _rmatmat(self, x):
        return self.args[0].rmatmat(x) + self.args[1].rmatmat(x)

    def _matmat(self, x):
        return self.args[0].matmat(x) + self.args[1].matmat(x)

    def _adjoint(self):
        A, B = self.args
        return A.H + B.H


class _ProductLinearOperator(LinearOperator):
    def __init__(self, A, B):
        if not isinstance(A, LinearOperator) or \
                not isinstance(B, LinearOperator):
            raise ValueError('both operands have to be a LinearOperator')
        if A.shape[1] != B.shape[0]:
            raise ValueError('cannot multiply %r and %r: shape mismatch'
                             % (A, B))
        super(_ProductLinearOperator, self).__init__(_get_dtype([A, B]),
                                                     (A.shape[0], B.shape[1]))
        self.args = (A, B)

    def _matvec(self, x):
        return self.args[0].matvec(self.args[1].matvec(x))

    def _rmatvec(self, x):
        return self.args[1].rmatvec(self.args[0].rmatvec(x))

    def _rmatmat(self, x):
        return self.args[1].rmatmat(self.args[0].rmatmat(x))

    def _matmat(self, x):
        return self.args[0].matmat(self.args[1].matmat(x))

    def _adjoint(self):
        A, B = self.args
        return B.H * A.H


class _ScaledLinearOperator(LinearOperator):
    def __init__(self, A, alpha):
        if not isinstance(A, LinearOperator):
            raise ValueError('LinearOperator expected as A')
        if not np.isscalar(alpha):
            raise ValueError('scalar expected as alpha')
        dtype = _get_dtype([A], [type(alpha)])
        super(_ScaledLinearOperator, self).__init__(dtype, A.shape)
        self.args = (A, alpha)

    def _matvec(self, x):
        return self.args[1] * self.args[0].matvec(x)

    def _rmatvec(self, x):
        return np.conj(self.args[1]) * self.args[0].rmatvec(x)

    def _rmatmat(self, x):
        return np.conj(self.args[1]) * self.args[0].rmatmat(x)

    def _matmat(self, x):
        return self.args[1] * self.args[0].matmat(x)

    def _adjoint(self):
        A, alpha = self.args
        return A.H * np.conj(alpha)


class _PowerLinearOperator(LinearOperator):
    def __init__(self, A, p):
        if not isinstance(A, LinearOperator):
            raise ValueError('LinearOperator expected as A')
        if A.shape[0] != A.shape[1]:
            raise ValueError('square LinearOperator expected, got %r' % A)
        if not isintlike(p) or p < 0:
            raise ValueError('non-negative integer expected as p')

        super(_PowerLinearOperator, self).__init__(_get_dtype([A]), A.shape)
        self.args = (A, p)

    def _power(self, fun, x):
        res = np.array(x, copy=True)
        for i in range(self.args[1]):
            res = fun(res)
        return res

    def _matvec(self, x):
        return self._power(self.args[0].matvec, x)

    def _rmatvec(self, x):
        return self._power(self.args[0].rmatvec, x)

    def _rmatmat(self, x):
        return self._power(self.args[0].rmatmat, x)

    def _matmat(self, x):
        return self._power(self.args[0].matmat, x)

    def _adjoint(self):
        A, p = self.args
        return A.H ** p


class MatrixLinearOperator(LinearOperator):
    def __init__(self, A):
        super(MatrixLinearOperator, self).__init__(A.dtype, A.shape)
        self.A = A
        self.__adj = None
        self.args = (A,)

    def _matmat(self, X):
        return self.A.dot(X)

    def _adjoint(self):
        if self.__adj is None:
            self.__adj = _AdjointMatrixOperator(self)
        return self.__adj

class _AdjointMatrixOperator(MatrixLinearOperator):
    def __init__(self, adjoint):
        self.A = adjoint.A.T.conj()
        self.__adjoint = adjoint
        self.args = (adjoint,)
        self.shape = adjoint.shape[1], adjoint.shape[0]

    @property
    def dtype(self):
        return self.__adjoint.dtype

    def _adjoint(self):
        return self.__adjoint


class IdentityOperator(LinearOperator):
    def __init__(self, shape, dtype=None):
        super(IdentityOperator, self).__init__(dtype, shape)

    def _matvec(self, x):
        return x

    def _rmatvec(self, x):
        return x

    def _rmatmat(self, x):
        return x

    def _matmat(self, x):
        return x

    def _adjoint(self):
        return self


def aslinearoperator(A):
    """Return A as a LinearOperator.

    'A' may be any of the following types:
     - ndarray
     - matrix
     - sparse matrix (e.g. csr_matrix, lil_matrix, etc.)
     - LinearOperator
     - An object with .shape and .matvec attributes

    See the LinearOperator documentation for additional information.

    Notes
    -----
    If 'A' has no .dtype attribute, the data type is determined by calling
    :func:`LinearOperator.matvec()` - set the .dtype attribute to prevent this
    call upon the linear operator creation.

    Examples
    --------
    >>> from scipy.sparse.linalg import aslinearoperator
    >>> M = np.array([[1,2,3],[4,5,6]], dtype=np.int32)
    >>> aslinearoperator(M)
    <2x3 MatrixLinearOperator with dtype=int32>
    """
    if isinstance(A, LinearOperator):
        return A

    elif isinstance(A, np.ndarray) or isinstance(A, np.matrix):
        if A.ndim > 2:
            raise ValueError('array must have ndim <= 2')
        A = np.atleast_2d(np.asarray(A))
        return MatrixLinearOperator(A)

    elif isspmatrix(A) or is_pydata_spmatrix(A):
        return MatrixLinearOperator(A)

    else:
        if hasattr(A, 'shape') and hasattr(A, 'matvec'):
            rmatvec = None
            rmatmat = None
            dtype = None

            if hasattr(A, 'rmatvec'):
                rmatvec = A.rmatvec
            if hasattr(A, 'rmatmat'):
                rmatmat = A.rmatmat
            if hasattr(A, 'dtype'):
                dtype = A.dtype
            return LinearOperator(A.shape, A.matvec, rmatvec=rmatvec,
                                  rmatmat=rmatmat, dtype=dtype)

        else:
            raise TypeError('type not understood')