stats.py
252 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
# Copyright 2002 Gary Strangman. All rights reserved
# Copyright 2002-2016 The SciPy Developers
#
# The original code from Gary Strangman was heavily adapted for
# use in SciPy by Travis Oliphant. The original code came with the
# following disclaimer:
#
# This software is provided "as-is". There are no expressed or implied
# warranties of any kind, including, but not limited to, the warranties
# of merchantability and fitness for a given application. In no event
# shall Gary Strangman be liable for any direct, indirect, incidental,
# special, exemplary or consequential damages (including, but not limited
# to, loss of use, data or profits, or business interruption) however
# caused and on any theory of liability, whether in contract, strict
# liability or tort (including negligence or otherwise) arising in any way
# out of the use of this software, even if advised of the possibility of
# such damage.
"""
A collection of basic statistical functions for Python. The function
names appear below.
Some scalar functions defined here are also available in the scipy.special
package where they work on arbitrary sized arrays.
Disclaimers: The function list is obviously incomplete and, worse, the
functions are not optimized. All functions have been tested (some more
so than others), but they are far from bulletproof. Thus, as with any
free software, no warranty or guarantee is expressed or implied. :-) A
few extra functions that don't appear in the list below can be found by
interested treasure-hunters. These functions don't necessarily have
both list and array versions but were deemed useful.
Central Tendency
----------------
.. autosummary::
:toctree: generated/
gmean
hmean
mode
Moments
-------
.. autosummary::
:toctree: generated/
moment
variation
skew
kurtosis
normaltest
Altered Versions
----------------
.. autosummary::
:toctree: generated/
tmean
tvar
tstd
tsem
describe
Frequency Stats
---------------
.. autosummary::
:toctree: generated/
itemfreq
scoreatpercentile
percentileofscore
cumfreq
relfreq
Variability
-----------
.. autosummary::
:toctree: generated/
obrientransform
sem
zmap
zscore
gstd
iqr
median_absolute_deviation
Trimming Functions
------------------
.. autosummary::
:toctree: generated/
trimboth
trim1
Correlation Functions
---------------------
.. autosummary::
:toctree: generated/
pearsonr
fisher_exact
spearmanr
pointbiserialr
kendalltau
weightedtau
linregress
theilslopes
multiscale_graphcorr
Inferential Stats
-----------------
.. autosummary::
:toctree: generated/
ttest_1samp
ttest_ind
ttest_ind_from_stats
ttest_rel
chisquare
power_divergence
ks_2samp
epps_singleton_2samp
mannwhitneyu
ranksums
wilcoxon
kruskal
friedmanchisquare
brunnermunzel
combine_pvalues
Statistical Distances
---------------------
.. autosummary::
:toctree: generated/
wasserstein_distance
energy_distance
ANOVA Functions
---------------
.. autosummary::
:toctree: generated/
f_oneway
Support Functions
-----------------
.. autosummary::
:toctree: generated/
rankdata
rvs_ratio_uniforms
References
----------
.. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
"""
from __future__ import division, print_function, absolute_import
import warnings
import sys
import math
if sys.version_info >= (3, 5):
from math import gcd
else:
from fractions import gcd
from collections import namedtuple
import numpy as np
from numpy import array, asarray, ma
from scipy._lib.six import callable, string_types
from scipy.spatial.distance import cdist
from scipy.ndimage import measurements
from scipy._lib._version import NumpyVersion
from scipy._lib._util import _lazywhere, check_random_state, MapWrapper
import scipy.special as special
from scipy import linalg
from . import distributions
from . import mstats_basic
from ._stats_mstats_common import (_find_repeats, linregress, theilslopes,
siegelslopes)
from ._stats import (_kendall_dis, _toint64, _weightedrankedtau,
_local_correlations)
from ._rvs_sampling import rvs_ratio_uniforms
from ._hypotests import epps_singleton_2samp
__all__ = ['find_repeats', 'gmean', 'hmean', 'mode', 'tmean', 'tvar',
'tmin', 'tmax', 'tstd', 'tsem', 'moment', 'variation',
'skew', 'kurtosis', 'describe', 'skewtest', 'kurtosistest',
'normaltest', 'jarque_bera', 'itemfreq',
'scoreatpercentile', 'percentileofscore',
'cumfreq', 'relfreq', 'obrientransform',
'sem', 'zmap', 'zscore', 'iqr', 'gstd', 'median_absolute_deviation',
'sigmaclip', 'trimboth', 'trim1', 'trim_mean', 'f_oneway',
'PearsonRConstantInputWarning', 'PearsonRNearConstantInputWarning',
'pearsonr', 'fisher_exact', 'spearmanr', 'pointbiserialr',
'kendalltau', 'weightedtau',
'multiscale_graphcorr',
'linregress', 'siegelslopes', 'theilslopes', 'ttest_1samp',
'ttest_ind', 'ttest_ind_from_stats', 'ttest_rel', 'kstest',
'chisquare', 'power_divergence', 'ks_2samp', 'mannwhitneyu',
'tiecorrect', 'ranksums', 'kruskal', 'friedmanchisquare',
'rankdata', 'rvs_ratio_uniforms',
'combine_pvalues', 'wasserstein_distance', 'energy_distance',
'brunnermunzel', 'epps_singleton_2samp']
def _chk_asarray(a, axis):
if axis is None:
a = np.ravel(a)
outaxis = 0
else:
a = np.asarray(a)
outaxis = axis
if a.ndim == 0:
a = np.atleast_1d(a)
return a, outaxis
def _chk2_asarray(a, b, axis):
if axis is None:
a = np.ravel(a)
b = np.ravel(b)
outaxis = 0
else:
a = np.asarray(a)
b = np.asarray(b)
outaxis = axis
if a.ndim == 0:
a = np.atleast_1d(a)
if b.ndim == 0:
b = np.atleast_1d(b)
return a, b, outaxis
def _contains_nan(a, nan_policy='propagate'):
policies = ['propagate', 'raise', 'omit']
if nan_policy not in policies:
raise ValueError("nan_policy must be one of {%s}" %
', '.join("'%s'" % s for s in policies))
try:
# Calling np.sum to avoid creating a huge array into memory
# e.g. np.isnan(a).any()
with np.errstate(invalid='ignore'):
contains_nan = np.isnan(np.sum(a))
except TypeError:
# This can happen when attempting to sum things which are not
# numbers (e.g. as in the function `mode`). Try an alternative method:
try:
contains_nan = np.nan in set(a.ravel())
except TypeError:
# Don't know what to do. Fall back to omitting nan values and
# issue a warning.
contains_nan = False
nan_policy = 'omit'
warnings.warn("The input array could not be properly checked for nan "
"values. nan values will be ignored.", RuntimeWarning)
if contains_nan and nan_policy == 'raise':
raise ValueError("The input contains nan values")
return (contains_nan, nan_policy)
def gmean(a, axis=0, dtype=None):
"""
Compute the geometric mean along the specified axis.
Return the geometric average of the array elements.
That is: n-th root of (x1 * x2 * ... * xn)
Parameters
----------
a : array_like
Input array or object that can be converted to an array.
axis : int or None, optional
Axis along which the geometric mean is computed. Default is 0.
If None, compute over the whole array `a`.
dtype : dtype, optional
Type of the returned array and of the accumulator in which the
elements are summed. If dtype is not specified, it defaults to the
dtype of a, unless a has an integer dtype with a precision less than
that of the default platform integer. In that case, the default
platform integer is used.
Returns
-------
gmean : ndarray
See `dtype` parameter above.
See Also
--------
numpy.mean : Arithmetic average
numpy.average : Weighted average
hmean : Harmonic mean
Notes
-----
The geometric average is computed over a single dimension of the input
array, axis=0 by default, or all values in the array if axis=None.
float64 intermediate and return values are used for integer inputs.
Use masked arrays to ignore any non-finite values in the input or that
arise in the calculations such as Not a Number and infinity because masked
arrays automatically mask any non-finite values.
Examples
--------
>>> from scipy.stats import gmean
>>> gmean([1, 4])
2.0
>>> gmean([1, 2, 3, 4, 5, 6, 7])
3.3800151591412964
"""
if not isinstance(a, np.ndarray):
# if not an ndarray object attempt to convert it
log_a = np.log(np.array(a, dtype=dtype))
elif dtype:
# Must change the default dtype allowing array type
if isinstance(a, np.ma.MaskedArray):
log_a = np.log(np.ma.asarray(a, dtype=dtype))
else:
log_a = np.log(np.asarray(a, dtype=dtype))
else:
log_a = np.log(a)
return np.exp(log_a.mean(axis=axis))
def hmean(a, axis=0, dtype=None):
"""
Calculate the harmonic mean along the specified axis.
That is: n / (1/x1 + 1/x2 + ... + 1/xn)
Parameters
----------
a : array_like
Input array, masked array or object that can be converted to an array.
axis : int or None, optional
Axis along which the harmonic mean is computed. Default is 0.
If None, compute over the whole array `a`.
dtype : dtype, optional
Type of the returned array and of the accumulator in which the
elements are summed. If `dtype` is not specified, it defaults to the
dtype of `a`, unless `a` has an integer `dtype` with a precision less
than that of the default platform integer. In that case, the default
platform integer is used.
Returns
-------
hmean : ndarray
See `dtype` parameter above.
See Also
--------
numpy.mean : Arithmetic average
numpy.average : Weighted average
gmean : Geometric mean
Notes
-----
The harmonic mean is computed over a single dimension of the input
array, axis=0 by default, or all values in the array if axis=None.
float64 intermediate and return values are used for integer inputs.
Use masked arrays to ignore any non-finite values in the input or that
arise in the calculations such as Not a Number and infinity.
Examples
--------
>>> from scipy.stats import hmean
>>> hmean([1, 4])
1.6000000000000001
>>> hmean([1, 2, 3, 4, 5, 6, 7])
2.6997245179063363
"""
if not isinstance(a, np.ndarray):
a = np.array(a, dtype=dtype)
if np.all(a >= 0):
# Harmonic mean only defined if greater than or equal to to zero.
if isinstance(a, np.ma.MaskedArray):
size = a.count(axis)
else:
if axis is None:
a = a.ravel()
size = a.shape[0]
else:
size = a.shape[axis]
with np.errstate(divide='ignore'):
return size / np.sum(1.0 / a, axis=axis, dtype=dtype)
else:
raise ValueError("Harmonic mean only defined if all elements greater "
"than or equal to zero")
ModeResult = namedtuple('ModeResult', ('mode', 'count'))
def mode(a, axis=0, nan_policy='propagate'):
"""
Return an array of the modal (most common) value in the passed array.
If there is more than one such value, only the smallest is returned.
The bin-count for the modal bins is also returned.
Parameters
----------
a : array_like
n-dimensional array of which to find mode(s).
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over
the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
mode : ndarray
Array of modal values.
count : ndarray
Array of counts for each mode.
Examples
--------
>>> a = np.array([[6, 8, 3, 0],
... [3, 2, 1, 7],
... [8, 1, 8, 4],
... [5, 3, 0, 5],
... [4, 7, 5, 9]])
>>> from scipy import stats
>>> stats.mode(a)
(array([[3, 1, 0, 0]]), array([[1, 1, 1, 1]]))
To get mode of whole array, specify ``axis=None``:
>>> stats.mode(a, axis=None)
(array([3]), array([3]))
"""
a, axis = _chk_asarray(a, axis)
if a.size == 0:
return ModeResult(np.array([]), np.array([]))
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.mode(a, axis)
if a.dtype == object and np.nan in set(a.ravel()):
# Fall back to a slower method since np.unique does not work with NaN
scores = set(np.ravel(a)) # get ALL unique values
testshape = list(a.shape)
testshape[axis] = 1
oldmostfreq = np.zeros(testshape, dtype=a.dtype)
oldcounts = np.zeros(testshape, dtype=int)
for score in scores:
template = (a == score)
counts = np.expand_dims(np.sum(template, axis), axis)
mostfrequent = np.where(counts > oldcounts, score, oldmostfreq)
oldcounts = np.maximum(counts, oldcounts)
oldmostfreq = mostfrequent
return ModeResult(mostfrequent, oldcounts)
def _mode1D(a):
vals, cnts = np.unique(a, return_counts=True)
return vals[cnts.argmax()], cnts.max()
# np.apply_along_axis will convert the _mode1D tuples to a numpy array, casting types in the process
# This recreates the results without that issue
# View of a, rotated so the requested axis is last
in_dims = list(range(a.ndim))
a_view = np.transpose(a, in_dims[:axis] + in_dims[axis+1:] + [axis])
inds = np.ndindex(a_view.shape[:-1])
modes = np.empty(a_view.shape[:-1], dtype=a.dtype)
counts = np.zeros(a_view.shape[:-1], dtype=np.int)
for ind in inds:
modes[ind], counts[ind] = _mode1D(a_view[ind])
newshape = list(a.shape)
newshape[axis] = 1
return ModeResult(modes.reshape(newshape), counts.reshape(newshape))
def _mask_to_limits(a, limits, inclusive):
"""Mask an array for values outside of given limits.
This is primarily a utility function.
Parameters
----------
a : array
limits : (float or None, float or None)
A tuple consisting of the (lower limit, upper limit). Values in the
input array less than the lower limit or greater than the upper limit
will be masked out. None implies no limit.
inclusive : (bool, bool)
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to lower or upper are allowed.
Returns
-------
A MaskedArray.
Raises
------
A ValueError if there are no values within the given limits.
"""
lower_limit, upper_limit = limits
lower_include, upper_include = inclusive
am = ma.MaskedArray(a)
if lower_limit is not None:
if lower_include:
am = ma.masked_less(am, lower_limit)
else:
am = ma.masked_less_equal(am, lower_limit)
if upper_limit is not None:
if upper_include:
am = ma.masked_greater(am, upper_limit)
else:
am = ma.masked_greater_equal(am, upper_limit)
if am.count() == 0:
raise ValueError("No array values within given limits")
return am
def tmean(a, limits=None, inclusive=(True, True), axis=None):
"""
Compute the trimmed mean.
This function finds the arithmetic mean of given values, ignoring values
outside the given `limits`.
Parameters
----------
a : array_like
Array of values.
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None (default), then all
values are used. Either of the limit values in the tuple can also be
None representing a half-open interval.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
axis : int or None, optional
Axis along which to compute test. Default is None.
Returns
-------
tmean : float
Trimmed mean.
See Also
--------
trim_mean : Returns mean after trimming a proportion from both tails.
Examples
--------
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tmean(x)
9.5
>>> stats.tmean(x, (3,17))
10.0
"""
a = asarray(a)
if limits is None:
return np.mean(a, None)
am = _mask_to_limits(a.ravel(), limits, inclusive)
return am.mean(axis=axis)
def tvar(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
"""
Compute the trimmed variance.
This function computes the sample variance of an array of values,
while ignoring values which are outside of given `limits`.
Parameters
----------
a : array_like
Array of values.
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None, then all values are
used. Either of the limit values in the tuple can also be None
representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
ddof : int, optional
Delta degrees of freedom. Default is 1.
Returns
-------
tvar : float
Trimmed variance.
Notes
-----
`tvar` computes the unbiased sample variance, i.e. it uses a correction
factor ``n / (n - 1)``.
Examples
--------
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tvar(x)
35.0
>>> stats.tvar(x, (3,17))
20.0
"""
a = asarray(a)
a = a.astype(float)
if limits is None:
return a.var(ddof=ddof, axis=axis)
am = _mask_to_limits(a, limits, inclusive)
amnan = am.filled(fill_value=np.nan)
return np.nanvar(amnan, ddof=ddof, axis=axis)
def tmin(a, lowerlimit=None, axis=0, inclusive=True, nan_policy='propagate'):
"""
Compute the trimmed minimum.
This function finds the miminum value of an array `a` along the
specified axis, but only considering values greater than a specified
lower limit.
Parameters
----------
a : array_like
Array of values.
lowerlimit : None or float, optional
Values in the input array less than the given limit will be ignored.
When lowerlimit is None, then all values are used. The default value
is None.
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
inclusive : {True, False}, optional
This flag determines whether values exactly equal to the lower limit
are included. The default value is True.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
tmin : float, int or ndarray
Trimmed minimum.
Examples
--------
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tmin(x)
0
>>> stats.tmin(x, 13)
13
>>> stats.tmin(x, 13, inclusive=False)
14
"""
a, axis = _chk_asarray(a, axis)
am = _mask_to_limits(a, (lowerlimit, None), (inclusive, False))
contains_nan, nan_policy = _contains_nan(am, nan_policy)
if contains_nan and nan_policy == 'omit':
am = ma.masked_invalid(am)
res = ma.minimum.reduce(am, axis).data
if res.ndim == 0:
return res[()]
return res
def tmax(a, upperlimit=None, axis=0, inclusive=True, nan_policy='propagate'):
"""
Compute the trimmed maximum.
This function computes the maximum value of an array along a given axis,
while ignoring values larger than a specified upper limit.
Parameters
----------
a : array_like
Array of values.
upperlimit : None or float, optional
Values in the input array greater than the given limit will be ignored.
When upperlimit is None, then all values are used. The default value
is None.
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
inclusive : {True, False}, optional
This flag determines whether values exactly equal to the upper limit
are included. The default value is True.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
tmax : float, int or ndarray
Trimmed maximum.
Examples
--------
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tmax(x)
19
>>> stats.tmax(x, 13)
13
>>> stats.tmax(x, 13, inclusive=False)
12
"""
a, axis = _chk_asarray(a, axis)
am = _mask_to_limits(a, (None, upperlimit), (False, inclusive))
contains_nan, nan_policy = _contains_nan(am, nan_policy)
if contains_nan and nan_policy == 'omit':
am = ma.masked_invalid(am)
res = ma.maximum.reduce(am, axis).data
if res.ndim == 0:
return res[()]
return res
def tstd(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
"""
Compute the trimmed sample standard deviation.
This function finds the sample standard deviation of given values,
ignoring values outside the given `limits`.
Parameters
----------
a : array_like
Array of values.
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None, then all values are
used. Either of the limit values in the tuple can also be None
representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
ddof : int, optional
Delta degrees of freedom. Default is 1.
Returns
-------
tstd : float
Trimmed sample standard deviation.
Notes
-----
`tstd` computes the unbiased sample standard deviation, i.e. it uses a
correction factor ``n / (n - 1)``.
Examples
--------
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tstd(x)
5.9160797830996161
>>> stats.tstd(x, (3,17))
4.4721359549995796
"""
return np.sqrt(tvar(a, limits, inclusive, axis, ddof))
def tsem(a, limits=None, inclusive=(True, True), axis=0, ddof=1):
"""
Compute the trimmed standard error of the mean.
This function finds the standard error of the mean for given
values, ignoring values outside the given `limits`.
Parameters
----------
a : array_like
Array of values.
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None, then all values are
used. Either of the limit values in the tuple can also be None
representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over the
whole array `a`.
ddof : int, optional
Delta degrees of freedom. Default is 1.
Returns
-------
tsem : float
Trimmed standard error of the mean.
Notes
-----
`tsem` uses unbiased sample standard deviation, i.e. it uses a
correction factor ``n / (n - 1)``.
Examples
--------
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.tsem(x)
1.3228756555322954
>>> stats.tsem(x, (3,17))
1.1547005383792515
"""
a = np.asarray(a).ravel()
if limits is None:
return a.std(ddof=ddof) / np.sqrt(a.size)
am = _mask_to_limits(a, limits, inclusive)
sd = np.sqrt(np.ma.var(am, ddof=ddof, axis=axis))
return sd / np.sqrt(am.count())
#####################################
# MOMENTS #
#####################################
def moment(a, moment=1, axis=0, nan_policy='propagate'):
r"""
Calculate the nth moment about the mean for a sample.
A moment is a specific quantitative measure of the shape of a set of
points. It is often used to calculate coefficients of skewness and kurtosis
due to its close relationship with them.
Parameters
----------
a : array_like
Input array.
moment : int or array_like of ints, optional
Order of central moment that is returned. Default is 1.
axis : int or None, optional
Axis along which the central moment is computed. Default is 0.
If None, compute over the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
n-th central moment : ndarray or float
The appropriate moment along the given axis or over all values if axis
is None. The denominator for the moment calculation is the number of
observations, no degrees of freedom correction is done.
See Also
--------
kurtosis, skew, describe
Notes
-----
The k-th central moment of a data sample is:
.. math::
m_k = \frac{1}{n} \sum_{i = 1}^n (x_i - \bar{x})^k
Where n is the number of samples and x-bar is the mean. This function uses
exponentiation by squares [1]_ for efficiency.
References
----------
.. [1] https://eli.thegreenplace.net/2009/03/21/efficient-integer-exponentiation-algorithms
Examples
--------
>>> from scipy.stats import moment
>>> moment([1, 2, 3, 4, 5], moment=1)
0.0
>>> moment([1, 2, 3, 4, 5], moment=2)
2.0
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.moment(a, moment, axis)
if a.size == 0:
# empty array, return nan(s) with shape matching `moment`
if np.isscalar(moment):
return np.nan
else:
return np.full(np.asarray(moment).shape, np.nan, dtype=np.float64)
# for array_like moment input, return a value for each.
if not np.isscalar(moment):
mmnt = [_moment(a, i, axis) for i in moment]
return np.array(mmnt)
else:
return _moment(a, moment, axis)
def _moment(a, moment, axis):
if np.abs(moment - np.round(moment)) > 0:
raise ValueError("All moment parameters must be integers")
if moment == 0:
# When moment equals 0, the result is 1, by definition.
shape = list(a.shape)
del shape[axis]
if shape:
# return an actual array of the appropriate shape
return np.ones(shape, dtype=float)
else:
# the input was 1D, so return a scalar instead of a rank-0 array
return 1.0
elif moment == 1:
# By definition the first moment about the mean is 0.
shape = list(a.shape)
del shape[axis]
if shape:
# return an actual array of the appropriate shape
return np.zeros(shape, dtype=float)
else:
# the input was 1D, so return a scalar instead of a rank-0 array
return np.float64(0.0)
else:
# Exponentiation by squares: form exponent sequence
n_list = [moment]
current_n = moment
while current_n > 2:
if current_n % 2:
current_n = (current_n - 1) / 2
else:
current_n /= 2
n_list.append(current_n)
# Starting point for exponentiation by squares
a_zero_mean = a - np.expand_dims(np.mean(a, axis), axis)
if n_list[-1] == 1:
s = a_zero_mean.copy()
else:
s = a_zero_mean**2
# Perform multiplications
for n in n_list[-2::-1]:
s = s**2
if n % 2:
s *= a_zero_mean
return np.mean(s, axis)
def variation(a, axis=0, nan_policy='propagate'):
"""
Compute the coefficient of variation.
The coefficient of variation is the ratio of the biased standard
deviation to the mean.
Parameters
----------
a : array_like
Input array.
axis : int or None, optional
Axis along which to calculate the coefficient of variation. Default
is 0. If None, compute over the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
variation : ndarray
The calculated variation along the requested axis.
References
----------
.. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
Examples
--------
>>> from scipy.stats import variation
>>> variation([1, 2, 3, 4, 5])
0.47140452079103173
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.variation(a, axis)
return a.std(axis) / a.mean(axis)
def skew(a, axis=0, bias=True, nan_policy='propagate'):
r"""
Compute the sample skewness of a data set.
For normally distributed data, the skewness should be about zero. For
unimodal continuous distributions, a skewness value greater than zero means
that there is more weight in the right tail of the distribution. The
function `skewtest` can be used to determine if the skewness value
is close enough to zero, statistically speaking.
Parameters
----------
a : ndarray
Input array.
axis : int or None, optional
Axis along which skewness is calculated. Default is 0.
If None, compute over the whole array `a`.
bias : bool, optional
If False, then the calculations are corrected for statistical bias.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
skewness : ndarray
The skewness of values along an axis, returning 0 where all values are
equal.
Notes
-----
The sample skewness is computed as the Fisher-Pearson coefficient
of skewness, i.e.
.. math::
g_1=\frac{m_3}{m_2^{3/2}}
where
.. math::
m_i=\frac{1}{N}\sum_{n=1}^N(x[n]-\bar{x})^i
is the biased sample :math:`i\texttt{th}` central moment, and :math:`\bar{x}` is
the sample mean. If ``bias`` is False, the calculations are
corrected for bias and the value computed is the adjusted
Fisher-Pearson standardized moment coefficient, i.e.
.. math::
G_1=\frac{k_3}{k_2^{3/2}}=
\frac{\sqrt{N(N-1)}}{N-2}\frac{m_3}{m_2^{3/2}}.
References
----------
.. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
Section 2.2.24.1
Examples
--------
>>> from scipy.stats import skew
>>> skew([1, 2, 3, 4, 5])
0.0
>>> skew([2, 8, 0, 4, 1, 9, 9, 0])
0.2650554122698573
"""
a, axis = _chk_asarray(a, axis)
n = a.shape[axis]
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.skew(a, axis, bias)
m2 = moment(a, 2, axis)
m3 = moment(a, 3, axis)
zero = (m2 == 0)
vals = _lazywhere(~zero, (m2, m3),
lambda m2, m3: m3 / m2**1.5,
0.)
if not bias:
can_correct = (n > 2) & (m2 > 0)
if can_correct.any():
m2 = np.extract(can_correct, m2)
m3 = np.extract(can_correct, m3)
nval = np.sqrt((n - 1.0) * n) / (n - 2.0) * m3 / m2**1.5
np.place(vals, can_correct, nval)
if vals.ndim == 0:
return vals.item()
return vals
def kurtosis(a, axis=0, fisher=True, bias=True, nan_policy='propagate'):
"""
Compute the kurtosis (Fisher or Pearson) of a dataset.
Kurtosis is the fourth central moment divided by the square of the
variance. If Fisher's definition is used, then 3.0 is subtracted from
the result to give 0.0 for a normal distribution.
If bias is False then the kurtosis is calculated using k statistics to
eliminate bias coming from biased moment estimators
Use `kurtosistest` to see if result is close enough to normal.
Parameters
----------
a : array
Data for which the kurtosis is calculated.
axis : int or None, optional
Axis along which the kurtosis is calculated. Default is 0.
If None, compute over the whole array `a`.
fisher : bool, optional
If True, Fisher's definition is used (normal ==> 0.0). If False,
Pearson's definition is used (normal ==> 3.0).
bias : bool, optional
If False, then the calculations are corrected for statistical bias.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan. 'propagate' returns nan,
'raise' throws an error, 'omit' performs the calculations ignoring nan
values. Default is 'propagate'.
Returns
-------
kurtosis : array
The kurtosis of values along an axis. If all values are equal,
return -3 for Fisher's definition and 0 for Pearson's definition.
References
----------
.. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
Examples
--------
In Fisher's definiton, the kurtosis of the normal distribution is zero.
In the following example, the kurtosis is close to zero, because it was
calculated from the dataset, not from the continuous distribution.
>>> from scipy.stats import norm, kurtosis
>>> data = norm.rvs(size=1000, random_state=3)
>>> kurtosis(data)
-0.06928694200380558
The distribution with a higher kurtosis has a heavier tail.
The zero valued kurtosis of the normal distribution in Fisher's definition
can serve as a reference point.
>>> import matplotlib.pyplot as plt
>>> import scipy.stats as stats
>>> from scipy.stats import kurtosis
>>> x = np.linspace(-5, 5, 100)
>>> ax = plt.subplot()
>>> distnames = ['laplace', 'norm', 'uniform']
>>> for distname in distnames:
... if distname == 'uniform':
... dist = getattr(stats, distname)(loc=-2, scale=4)
... else:
... dist = getattr(stats, distname)
... data = dist.rvs(size=1000)
... kur = kurtosis(data, fisher=True)
... y = dist.pdf(x)
... ax.plot(x, y, label="{}, {}".format(distname, round(kur, 3)))
... ax.legend()
The Laplace distribution has a heavier tail than the normal distribution.
The uniform distribution (which has negative kurtosis) has the thinnest
tail.
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.kurtosis(a, axis, fisher, bias)
n = a.shape[axis]
m2 = moment(a, 2, axis)
m4 = moment(a, 4, axis)
zero = (m2 == 0)
olderr = np.seterr(all='ignore')
try:
vals = np.where(zero, 0, m4 / m2**2.0)
finally:
np.seterr(**olderr)
if not bias:
can_correct = (n > 3) & (m2 > 0)
if can_correct.any():
m2 = np.extract(can_correct, m2)
m4 = np.extract(can_correct, m4)
nval = 1.0/(n-2)/(n-3) * ((n**2-1.0)*m4/m2**2.0 - 3*(n-1)**2.0)
np.place(vals, can_correct, nval + 3.0)
if vals.ndim == 0:
vals = vals.item() # array scalar
return vals - 3 if fisher else vals
DescribeResult = namedtuple('DescribeResult',
('nobs', 'minmax', 'mean', 'variance', 'skewness',
'kurtosis'))
def describe(a, axis=0, ddof=1, bias=True, nan_policy='propagate'):
"""
Compute several descriptive statistics of the passed array.
Parameters
----------
a : array_like
Input data.
axis : int or None, optional
Axis along which statistics are calculated. Default is 0.
If None, compute over the whole array `a`.
ddof : int, optional
Delta degrees of freedom (only for variance). Default is 1.
bias : bool, optional
If False, then the skewness and kurtosis calculations are corrected for
statistical bias.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
nobs : int or ndarray of ints
Number of observations (length of data along `axis`).
When 'omit' is chosen as nan_policy, each column is counted separately.
minmax: tuple of ndarrays or floats
Minimum and maximum value of data array.
mean : ndarray or float
Arithmetic mean of data along axis.
variance : ndarray or float
Unbiased variance of the data along axis, denominator is number of
observations minus one.
skewness : ndarray or float
Skewness, based on moment calculations with denominator equal to
the number of observations, i.e. no degrees of freedom correction.
kurtosis : ndarray or float
Kurtosis (Fisher). The kurtosis is normalized so that it is
zero for the normal distribution. No degrees of freedom are used.
See Also
--------
skew, kurtosis
Examples
--------
>>> from scipy import stats
>>> a = np.arange(10)
>>> stats.describe(a)
DescribeResult(nobs=10, minmax=(0, 9), mean=4.5, variance=9.166666666666666,
skewness=0.0, kurtosis=-1.2242424242424244)
>>> b = [[1, 2], [3, 4]]
>>> stats.describe(b)
DescribeResult(nobs=2, minmax=(array([1, 2]), array([3, 4])),
mean=array([2., 3.]), variance=array([2., 2.]),
skewness=array([0., 0.]), kurtosis=array([-2., -2.]))
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.describe(a, axis, ddof, bias)
if a.size == 0:
raise ValueError("The input must not be empty.")
n = a.shape[axis]
mm = (np.min(a, axis=axis), np.max(a, axis=axis))
m = np.mean(a, axis=axis)
v = np.var(a, axis=axis, ddof=ddof)
sk = skew(a, axis, bias=bias)
kurt = kurtosis(a, axis, bias=bias)
return DescribeResult(n, mm, m, v, sk, kurt)
#####################################
# NORMALITY TESTS #
#####################################
SkewtestResult = namedtuple('SkewtestResult', ('statistic', 'pvalue'))
def skewtest(a, axis=0, nan_policy='propagate'):
"""
Test whether the skew is different from the normal distribution.
This function tests the null hypothesis that the skewness of
the population that the sample was drawn from is the same
as that of a corresponding normal distribution.
Parameters
----------
a : array
The data to be tested.
axis : int or None, optional
Axis along which statistics are calculated. Default is 0.
If None, compute over the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float
The computed z-score for this test.
pvalue : float
Two-sided p-value for the hypothesis test.
Notes
-----
The sample size must be at least 8.
References
----------
.. [1] R. B. D'Agostino, A. J. Belanger and R. B. D'Agostino Jr.,
"A suggestion for using powerful and informative tests of
normality", American Statistician 44, pp. 316-321, 1990.
Examples
--------
>>> from scipy.stats import skewtest
>>> skewtest([1, 2, 3, 4, 5, 6, 7, 8])
SkewtestResult(statistic=1.0108048609177787, pvalue=0.3121098361421897)
>>> skewtest([2, 8, 0, 4, 1, 9, 9, 0])
SkewtestResult(statistic=0.44626385374196975, pvalue=0.6554066631275459)
>>> skewtest([1, 2, 3, 4, 5, 6, 7, 8000])
SkewtestResult(statistic=3.571773510360407, pvalue=0.0003545719905823133)
>>> skewtest([100, 100, 100, 100, 100, 100, 100, 101])
SkewtestResult(statistic=3.5717766638478072, pvalue=0.000354567720281634)
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.skewtest(a, axis)
if axis is None:
a = np.ravel(a)
axis = 0
b2 = skew(a, axis)
n = a.shape[axis]
if n < 8:
raise ValueError(
"skewtest is not valid with less than 8 samples; %i samples"
" were given." % int(n))
y = b2 * math.sqrt(((n + 1) * (n + 3)) / (6.0 * (n - 2)))
beta2 = (3.0 * (n**2 + 27*n - 70) * (n+1) * (n+3) /
((n-2.0) * (n+5) * (n+7) * (n+9)))
W2 = -1 + math.sqrt(2 * (beta2 - 1))
delta = 1 / math.sqrt(0.5 * math.log(W2))
alpha = math.sqrt(2.0 / (W2 - 1))
y = np.where(y == 0, 1, y)
Z = delta * np.log(y / alpha + np.sqrt((y / alpha)**2 + 1))
return SkewtestResult(Z, 2 * distributions.norm.sf(np.abs(Z)))
KurtosistestResult = namedtuple('KurtosistestResult', ('statistic', 'pvalue'))
def kurtosistest(a, axis=0, nan_policy='propagate'):
"""
Test whether a dataset has normal kurtosis.
This function tests the null hypothesis that the kurtosis
of the population from which the sample was drawn is that
of the normal distribution: ``kurtosis = 3(n-1)/(n+1)``.
Parameters
----------
a : array
Array of the sample data.
axis : int or None, optional
Axis along which to compute test. Default is 0. If None,
compute over the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float
The computed z-score for this test.
pvalue : float
The two-sided p-value for the hypothesis test.
Notes
-----
Valid only for n>20. This function uses the method described in [1]_.
References
----------
.. [1] see e.g. F. J. Anscombe, W. J. Glynn, "Distribution of the kurtosis
statistic b2 for normal samples", Biometrika, vol. 70, pp. 227-234, 1983.
Examples
--------
>>> from scipy.stats import kurtosistest
>>> kurtosistest(list(range(20)))
KurtosistestResult(statistic=-1.7058104152122062, pvalue=0.08804338332528348)
>>> np.random.seed(28041990)
>>> s = np.random.normal(0, 1, 1000)
>>> kurtosistest(s)
KurtosistestResult(statistic=1.2317590987707365, pvalue=0.21803908613450895)
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.kurtosistest(a, axis)
n = a.shape[axis]
if n < 5:
raise ValueError(
"kurtosistest requires at least 5 observations; %i observations"
" were given." % int(n))
if n < 20:
warnings.warn("kurtosistest only valid for n>=20 ... continuing "
"anyway, n=%i" % int(n))
b2 = kurtosis(a, axis, fisher=False)
E = 3.0*(n-1) / (n+1)
varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1.)*(n+3)*(n+5)) # [1]_ Eq. 1
x = (b2-E) / np.sqrt(varb2) # [1]_ Eq. 4
# [1]_ Eq. 2:
sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5)) /
(n*(n-2)*(n-3)))
# [1]_ Eq. 3:
A = 6.0 + 8.0/sqrtbeta1 * (2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
term1 = 1 - 2/(9.0*A)
denom = 1 + x*np.sqrt(2/(A-4.0))
term2 = np.sign(denom) * np.where(denom == 0.0, np.nan,
np.power((1-2.0/A)/np.abs(denom), 1/3.0))
if np.any(denom == 0):
msg = "Test statistic not defined in some cases due to division by " \
"zero. Return nan in that case..."
warnings.warn(msg, RuntimeWarning)
Z = (term1 - term2) / np.sqrt(2/(9.0*A)) # [1]_ Eq. 5
if Z.ndim == 0:
Z = Z[()]
# zprob uses upper tail, so Z needs to be positive
return KurtosistestResult(Z, 2 * distributions.norm.sf(np.abs(Z)))
NormaltestResult = namedtuple('NormaltestResult', ('statistic', 'pvalue'))
def normaltest(a, axis=0, nan_policy='propagate'):
"""
Test whether a sample differs from a normal distribution.
This function tests the null hypothesis that a sample comes
from a normal distribution. It is based on D'Agostino and
Pearson's [1]_, [2]_ test that combines skew and kurtosis to
produce an omnibus test of normality.
Parameters
----------
a : array_like
The array containing the sample to be tested.
axis : int or None, optional
Axis along which to compute test. Default is 0. If None,
compute over the whole array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float or array
``s^2 + k^2``, where ``s`` is the z-score returned by `skewtest` and
``k`` is the z-score returned by `kurtosistest`.
pvalue : float or array
A 2-sided chi squared probability for the hypothesis test.
References
----------
.. [1] D'Agostino, R. B. (1971), "An omnibus test of normality for
moderate and large sample size", Biometrika, 58, 341-348
.. [2] D'Agostino, R. and Pearson, E. S. (1973), "Tests for departure from
normality", Biometrika, 60, 613-622
Examples
--------
>>> from scipy import stats
>>> pts = 1000
>>> np.random.seed(28041990)
>>> a = np.random.normal(0, 1, size=pts)
>>> b = np.random.normal(2, 1, size=pts)
>>> x = np.concatenate((a, b))
>>> k2, p = stats.normaltest(x)
>>> alpha = 1e-3
>>> print("p = {:g}".format(p))
p = 3.27207e-11
>>> if p < alpha: # null hypothesis: x comes from a normal distribution
... print("The null hypothesis can be rejected")
... else:
... print("The null hypothesis cannot be rejected")
The null hypothesis can be rejected
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.normaltest(a, axis)
s, _ = skewtest(a, axis)
k, _ = kurtosistest(a, axis)
k2 = s*s + k*k
return NormaltestResult(k2, distributions.chi2.sf(k2, 2))
def jarque_bera(x):
"""
Perform the Jarque-Bera goodness of fit test on sample data.
The Jarque-Bera test tests whether the sample data has the skewness and
kurtosis matching a normal distribution.
Note that this test only works for a large enough number of data samples
(>2000) as the test statistic asymptotically has a Chi-squared distribution
with 2 degrees of freedom.
Parameters
----------
x : array_like
Observations of a random variable.
Returns
-------
jb_value : float
The test statistic.
p : float
The p-value for the hypothesis test.
References
----------
.. [1] Jarque, C. and Bera, A. (1980) "Efficient tests for normality,
homoscedasticity and serial independence of regression residuals",
6 Econometric Letters 255-259.
Examples
--------
>>> from scipy import stats
>>> np.random.seed(987654321)
>>> x = np.random.normal(0, 1, 100000)
>>> y = np.random.rayleigh(1, 100000)
>>> stats.jarque_bera(x)
(4.7165707989581342, 0.09458225503041906)
>>> stats.jarque_bera(y)
(6713.7098548143422, 0.0)
"""
x = np.asarray(x)
n = x.size
if n == 0:
raise ValueError('At least one observation is required.')
mu = x.mean()
diffx = x - mu
skewness = (1 / n * np.sum(diffx**3)) / (1 / n * np.sum(diffx**2))**(3 / 2.)
kurtosis = (1 / n * np.sum(diffx**4)) / (1 / n * np.sum(diffx**2))**2
jb_value = n / 6 * (skewness**2 + (kurtosis - 3)**2 / 4)
p = 1 - distributions.chi2.cdf(jb_value, 2)
return jb_value, p
#####################################
# FREQUENCY FUNCTIONS #
#####################################
@np.deprecate(message="`itemfreq` is deprecated and will be removed in a "
"future version. Use instead `np.unique(..., return_counts=True)`")
def itemfreq(a):
"""
Return a 2-D array of item frequencies.
Parameters
----------
a : (N,) array_like
Input array.
Returns
-------
itemfreq : (K, 2) ndarray
A 2-D frequency table. Column 1 contains sorted, unique values from
`a`, column 2 contains their respective counts.
Examples
--------
>>> from scipy import stats
>>> a = np.array([1, 1, 5, 0, 1, 2, 2, 0, 1, 4])
>>> stats.itemfreq(a)
array([[ 0., 2.],
[ 1., 4.],
[ 2., 2.],
[ 4., 1.],
[ 5., 1.]])
>>> np.bincount(a)
array([2, 4, 2, 0, 1, 1])
>>> stats.itemfreq(a/10.)
array([[ 0. , 2. ],
[ 0.1, 4. ],
[ 0.2, 2. ],
[ 0.4, 1. ],
[ 0.5, 1. ]])
"""
items, inv = np.unique(a, return_inverse=True)
freq = np.bincount(inv)
return np.array([items, freq]).T
def scoreatpercentile(a, per, limit=(), interpolation_method='fraction',
axis=None):
"""
Calculate the score at a given percentile of the input sequence.
For example, the score at `per=50` is the median. If the desired quantile
lies between two data points, we interpolate between them, according to
the value of `interpolation`. If the parameter `limit` is provided, it
should be a tuple (lower, upper) of two values.
Parameters
----------
a : array_like
A 1-D array of values from which to extract score.
per : array_like
Percentile(s) at which to extract score. Values should be in range
[0,100].
limit : tuple, optional
Tuple of two scalars, the lower and upper limits within which to
compute the percentile. Values of `a` outside
this (closed) interval will be ignored.
interpolation_method : {'fraction', 'lower', 'higher'}, optional
Specifies the interpolation method to use,
when the desired quantile lies between two data points `i` and `j`
The following options are available (default is 'fraction'):
* 'fraction': ``i + (j - i) * fraction`` where ``fraction`` is the
fractional part of the index surrounded by ``i`` and ``j``
* 'lower': ``i``
* 'higher': ``j``
axis : int, optional
Axis along which the percentiles are computed. Default is None. If
None, compute over the whole array `a`.
Returns
-------
score : float or ndarray
Score at percentile(s).
See Also
--------
percentileofscore, numpy.percentile
Notes
-----
This function will become obsolete in the future.
For NumPy 1.9 and higher, `numpy.percentile` provides all the functionality
that `scoreatpercentile` provides. And it's significantly faster.
Therefore it's recommended to use `numpy.percentile` for users that have
numpy >= 1.9.
Examples
--------
>>> from scipy import stats
>>> a = np.arange(100)
>>> stats.scoreatpercentile(a, 50)
49.5
"""
# adapted from NumPy's percentile function. When we require numpy >= 1.8,
# the implementation of this function can be replaced by np.percentile.
a = np.asarray(a)
if a.size == 0:
# empty array, return nan(s) with shape matching `per`
if np.isscalar(per):
return np.nan
else:
return np.full(np.asarray(per).shape, np.nan, dtype=np.float64)
if limit:
a = a[(limit[0] <= a) & (a <= limit[1])]
sorted_ = np.sort(a, axis=axis)
if axis is None:
axis = 0
return _compute_qth_percentile(sorted_, per, interpolation_method, axis)
# handle sequence of per's without calling sort multiple times
def _compute_qth_percentile(sorted_, per, interpolation_method, axis):
if not np.isscalar(per):
score = [_compute_qth_percentile(sorted_, i,
interpolation_method, axis)
for i in per]
return np.array(score)
if not (0 <= per <= 100):
raise ValueError("percentile must be in the range [0, 100]")
indexer = [slice(None)] * sorted_.ndim
idx = per / 100. * (sorted_.shape[axis] - 1)
if int(idx) != idx:
# round fractional indices according to interpolation method
if interpolation_method == 'lower':
idx = int(np.floor(idx))
elif interpolation_method == 'higher':
idx = int(np.ceil(idx))
elif interpolation_method == 'fraction':
pass # keep idx as fraction and interpolate
else:
raise ValueError("interpolation_method can only be 'fraction', "
"'lower' or 'higher'")
i = int(idx)
if i == idx:
indexer[axis] = slice(i, i + 1)
weights = array(1)
sumval = 1.0
else:
indexer[axis] = slice(i, i + 2)
j = i + 1
weights = array([(j - idx), (idx - i)], float)
wshape = [1] * sorted_.ndim
wshape[axis] = 2
weights.shape = wshape
sumval = weights.sum()
# Use np.add.reduce (== np.sum but a little faster) to coerce data type
return np.add.reduce(sorted_[tuple(indexer)] * weights, axis=axis) / sumval
def percentileofscore(a, score, kind='rank'):
"""
Compute the percentile rank of a score relative to a list of scores.
A `percentileofscore` of, for example, 80% means that 80% of the
scores in `a` are below the given score. In the case of gaps or
ties, the exact definition depends on the optional keyword, `kind`.
Parameters
----------
a : array_like
Array of scores to which `score` is compared.
score : int or float
Score that is compared to the elements in `a`.
kind : {'rank', 'weak', 'strict', 'mean'}, optional
Specifies the interpretation of the resulting score.
The following options are available (default is 'rank'):
* 'rank': Average percentage ranking of score. In case of multiple
matches, average the percentage rankings of all matching scores.
* 'weak': This kind corresponds to the definition of a cumulative
distribution function. A percentileofscore of 80% means that 80%
of values are less than or equal to the provided score.
* 'strict': Similar to "weak", except that only values that are
strictly less than the given score are counted.
* 'mean': The average of the "weak" and "strict" scores, often used
in testing. See https://en.wikipedia.org/wiki/Percentile_rank
Returns
-------
pcos : float
Percentile-position of score (0-100) relative to `a`.
See Also
--------
numpy.percentile
Examples
--------
Three-quarters of the given values lie below a given score:
>>> from scipy import stats
>>> stats.percentileofscore([1, 2, 3, 4], 3)
75.0
With multiple matches, note how the scores of the two matches, 0.6
and 0.8 respectively, are averaged:
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3)
70.0
Only 2/5 values are strictly less than 3:
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='strict')
40.0
But 4/5 values are less than or equal to 3:
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='weak')
80.0
The average between the weak and the strict scores is:
>>> stats.percentileofscore([1, 2, 3, 3, 4], 3, kind='mean')
60.0
"""
if np.isnan(score):
return np.nan
a = np.asarray(a)
n = len(a)
if n == 0:
return 100.0
if kind == 'rank':
left = np.count_nonzero(a < score)
right = np.count_nonzero(a <= score)
pct = (right + left + (1 if right > left else 0)) * 50.0/n
return pct
elif kind == 'strict':
return np.count_nonzero(a < score) / n * 100
elif kind == 'weak':
return np.count_nonzero(a <= score) / n * 100
elif kind == 'mean':
pct = (np.count_nonzero(a < score) + np.count_nonzero(a <= score)) / n * 50
return pct
else:
raise ValueError("kind can only be 'rank', 'strict', 'weak' or 'mean'")
HistogramResult = namedtuple('HistogramResult',
('count', 'lowerlimit', 'binsize', 'extrapoints'))
def _histogram(a, numbins=10, defaultlimits=None, weights=None, printextras=False):
"""
Create a histogram.
Separate the range into several bins and return the number of instances
in each bin.
Parameters
----------
a : array_like
Array of scores which will be put into bins.
numbins : int, optional
The number of bins to use for the histogram. Default is 10.
defaultlimits : tuple (lower, upper), optional
The lower and upper values for the range of the histogram.
If no value is given, a range slightly larger than the range of the
values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
weights : array_like, optional
The weights for each value in `a`. Default is None, which gives each
value a weight of 1.0
printextras : bool, optional
If True, if there are extra points (i.e. the points that fall outside
the bin limits) a warning is raised saying how many of those points
there are. Default is False.
Returns
-------
count : ndarray
Number of points (or sum of weights) in each bin.
lowerlimit : float
Lowest value of histogram, the lower limit of the first bin.
binsize : float
The size of the bins (all bins have the same size).
extrapoints : int
The number of points outside the range of the histogram.
See Also
--------
numpy.histogram
Notes
-----
This histogram is based on numpy's histogram but has a larger range by
default if default limits is not set.
"""
a = np.ravel(a)
if defaultlimits is None:
if a.size == 0:
# handle empty arrays. Undetermined range, so use 0-1.
defaultlimits = (0, 1)
else:
# no range given, so use values in `a`
data_min = a.min()
data_max = a.max()
# Have bins extend past min and max values slightly
s = (data_max - data_min) / (2. * (numbins - 1.))
defaultlimits = (data_min - s, data_max + s)
# use numpy's histogram method to compute bins
hist, bin_edges = np.histogram(a, bins=numbins, range=defaultlimits,
weights=weights)
# hist are not always floats, convert to keep with old output
hist = np.array(hist, dtype=float)
# fixed width for bins is assumed, as numpy's histogram gives
# fixed width bins for int values for 'bins'
binsize = bin_edges[1] - bin_edges[0]
# calculate number of extra points
extrapoints = len([v for v in a
if defaultlimits[0] > v or v > defaultlimits[1]])
if extrapoints > 0 and printextras:
warnings.warn("Points outside given histogram range = %s"
% extrapoints)
return HistogramResult(hist, defaultlimits[0], binsize, extrapoints)
CumfreqResult = namedtuple('CumfreqResult',
('cumcount', 'lowerlimit', 'binsize',
'extrapoints'))
def cumfreq(a, numbins=10, defaultreallimits=None, weights=None):
"""
Return a cumulative frequency histogram, using the histogram function.
A cumulative histogram is a mapping that counts the cumulative number of
observations in all of the bins up to the specified bin.
Parameters
----------
a : array_like
Input array.
numbins : int, optional
The number of bins to use for the histogram. Default is 10.
defaultreallimits : tuple (lower, upper), optional
The lower and upper values for the range of the histogram.
If no value is given, a range slightly larger than the range of the
values in `a` is used. Specifically ``(a.min() - s, a.max() + s)``,
where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
weights : array_like, optional
The weights for each value in `a`. Default is None, which gives each
value a weight of 1.0
Returns
-------
cumcount : ndarray
Binned values of cumulative frequency.
lowerlimit : float
Lower real limit
binsize : float
Width of each bin.
extrapoints : int
Extra points.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from scipy import stats
>>> x = [1, 4, 2, 1, 3, 1]
>>> res = stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5))
>>> res.cumcount
array([ 1., 2., 3., 3.])
>>> res.extrapoints
3
Create a normal distribution with 1000 random values
>>> rng = np.random.RandomState(seed=12345)
>>> samples = stats.norm.rvs(size=1000, random_state=rng)
Calculate cumulative frequencies
>>> res = stats.cumfreq(samples, numbins=25)
Calculate space of values for x
>>> x = res.lowerlimit + np.linspace(0, res.binsize*res.cumcount.size,
... res.cumcount.size)
Plot histogram and cumulative histogram
>>> fig = plt.figure(figsize=(10, 4))
>>> ax1 = fig.add_subplot(1, 2, 1)
>>> ax2 = fig.add_subplot(1, 2, 2)
>>> ax1.hist(samples, bins=25)
>>> ax1.set_title('Histogram')
>>> ax2.bar(x, res.cumcount, width=res.binsize)
>>> ax2.set_title('Cumulative histogram')
>>> ax2.set_xlim([x.min(), x.max()])
>>> plt.show()
"""
h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights)
cumhist = np.cumsum(h * 1, axis=0)
return CumfreqResult(cumhist, l, b, e)
RelfreqResult = namedtuple('RelfreqResult',
('frequency', 'lowerlimit', 'binsize',
'extrapoints'))
def relfreq(a, numbins=10, defaultreallimits=None, weights=None):
"""
Return a relative frequency histogram, using the histogram function.
A relative frequency histogram is a mapping of the number of
observations in each of the bins relative to the total of observations.
Parameters
----------
a : array_like
Input array.
numbins : int, optional
The number of bins to use for the histogram. Default is 10.
defaultreallimits : tuple (lower, upper), optional
The lower and upper values for the range of the histogram.
If no value is given, a range slightly larger than the range of the
values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
weights : array_like, optional
The weights for each value in `a`. Default is None, which gives each
value a weight of 1.0
Returns
-------
frequency : ndarray
Binned values of relative frequency.
lowerlimit : float
Lower real limit.
binsize : float
Width of each bin.
extrapoints : int
Extra points.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from scipy import stats
>>> a = np.array([2, 4, 1, 2, 3, 2])
>>> res = stats.relfreq(a, numbins=4)
>>> res.frequency
array([ 0.16666667, 0.5 , 0.16666667, 0.16666667])
>>> np.sum(res.frequency) # relative frequencies should add up to 1
1.0
Create a normal distribution with 1000 random values
>>> rng = np.random.RandomState(seed=12345)
>>> samples = stats.norm.rvs(size=1000, random_state=rng)
Calculate relative frequencies
>>> res = stats.relfreq(samples, numbins=25)
Calculate space of values for x
>>> x = res.lowerlimit + np.linspace(0, res.binsize*res.frequency.size,
... res.frequency.size)
Plot relative frequency histogram
>>> fig = plt.figure(figsize=(5, 4))
>>> ax = fig.add_subplot(1, 1, 1)
>>> ax.bar(x, res.frequency, width=res.binsize)
>>> ax.set_title('Relative frequency histogram')
>>> ax.set_xlim([x.min(), x.max()])
>>> plt.show()
"""
a = np.asanyarray(a)
h, l, b, e = _histogram(a, numbins, defaultreallimits, weights=weights)
h = h / a.shape[0]
return RelfreqResult(h, l, b, e)
#####################################
# VARIABILITY FUNCTIONS #
#####################################
def obrientransform(*args):
"""
Compute the O'Brien transform on input data (any number of arrays).
Used to test for homogeneity of variance prior to running one-way stats.
Each array in ``*args`` is one level of a factor.
If `f_oneway` is run on the transformed data and found significant,
the variances are unequal. From Maxwell and Delaney [1]_, p.112.
Parameters
----------
args : tuple of array_like
Any number of arrays.
Returns
-------
obrientransform : ndarray
Transformed data for use in an ANOVA. The first dimension
of the result corresponds to the sequence of transformed
arrays. If the arrays given are all 1-D of the same length,
the return value is a 2-D array; otherwise it is a 1-D array
of type object, with each element being an ndarray.
References
----------
.. [1] S. E. Maxwell and H. D. Delaney, "Designing Experiments and
Analyzing Data: A Model Comparison Perspective", Wadsworth, 1990.
Examples
--------
We'll test the following data sets for differences in their variance.
>>> x = [10, 11, 13, 9, 7, 12, 12, 9, 10]
>>> y = [13, 21, 5, 10, 8, 14, 10, 12, 7, 15]
Apply the O'Brien transform to the data.
>>> from scipy.stats import obrientransform
>>> tx, ty = obrientransform(x, y)
Use `scipy.stats.f_oneway` to apply a one-way ANOVA test to the
transformed data.
>>> from scipy.stats import f_oneway
>>> F, p = f_oneway(tx, ty)
>>> p
0.1314139477040335
If we require that ``p < 0.05`` for significance, we cannot conclude
that the variances are different.
"""
TINY = np.sqrt(np.finfo(float).eps)
# `arrays` will hold the transformed arguments.
arrays = []
for arg in args:
a = np.asarray(arg)
n = len(a)
mu = np.mean(a)
sq = (a - mu)**2
sumsq = sq.sum()
# The O'Brien transform.
t = ((n - 1.5) * n * sq - 0.5 * sumsq) / ((n - 1) * (n - 2))
# Check that the mean of the transformed data is equal to the
# original variance.
var = sumsq / (n - 1)
if abs(var - np.mean(t)) > TINY:
raise ValueError('Lack of convergence in obrientransform.')
arrays.append(t)
return np.array(arrays)
def sem(a, axis=0, ddof=1, nan_policy='propagate'):
"""
Compute standard error of the mean.
Calculate the standard error of the mean (or standard error of
measurement) of the values in the input array.
Parameters
----------
a : array_like
An array containing the values for which the standard error is
returned.
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over
the whole array `a`.
ddof : int, optional
Delta degrees-of-freedom. How many degrees of freedom to adjust
for bias in limited samples relative to the population estimate
of variance. Defaults to 1.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
s : ndarray or float
The standard error of the mean in the sample(s), along the input axis.
Notes
-----
The default value for `ddof` is different to the default (0) used by other
ddof containing routines, such as np.std and np.nanstd.
Examples
--------
Find standard error along the first axis:
>>> from scipy import stats
>>> a = np.arange(20).reshape(5,4)
>>> stats.sem(a)
array([ 2.8284, 2.8284, 2.8284, 2.8284])
Find standard error across the whole array, using n degrees of freedom:
>>> stats.sem(a, axis=None, ddof=0)
1.2893796958227628
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.sem(a, axis, ddof)
n = a.shape[axis]
s = np.std(a, axis=axis, ddof=ddof) / np.sqrt(n)
return s
def zscore(a, axis=0, ddof=0, nan_policy='propagate'):
"""
Compute the z score.
Compute the z score of each value in the sample, relative to the
sample mean and standard deviation.
Parameters
----------
a : array_like
An array like object containing the sample data.
axis : int or None, optional
Axis along which to operate. Default is 0. If None, compute over
the whole array `a`.
ddof : int, optional
Degrees of freedom correction in the calculation of the
standard deviation. Default is 0.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan. 'propagate' returns nan,
'raise' throws an error, 'omit' performs the calculations ignoring nan
values. Default is 'propagate'.
Returns
-------
zscore : array_like
The z-scores, standardized by mean and standard deviation of
input array `a`.
Notes
-----
This function preserves ndarray subclasses, and works also with
matrices and masked arrays (it uses `asanyarray` instead of
`asarray` for parameters).
Examples
--------
>>> a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091,
... 0.1954, 0.6307, 0.6599, 0.1065, 0.0508])
>>> from scipy import stats
>>> stats.zscore(a)
array([ 1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786,
0.6748, -1.1488, -1.3324])
Computing along a specified axis, using n-1 degrees of freedom
(``ddof=1``) to calculate the standard deviation:
>>> b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608],
... [ 0.7149, 0.0775, 0.6072, 0.9656],
... [ 0.6341, 0.1403, 0.9759, 0.4064],
... [ 0.5918, 0.6948, 0.904 , 0.3721],
... [ 0.0921, 0.2481, 0.1188, 0.1366]])
>>> stats.zscore(b, axis=1, ddof=1)
array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358],
[ 0.33048416, -1.37380874, 0.04251374, 1.00081084],
[ 0.26796377, -1.12598418, 1.23283094, -0.37481053],
[-0.22095197, 0.24468594, 1.19042819, -1.21416216],
[-0.82780366, 1.4457416 , -0.43867764, -0.1792603 ]])
"""
a = np.asanyarray(a)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
mns = np.nanmean(a=a, axis=axis, keepdims=True)
sstd = np.nanstd(a=a, axis=axis, ddof=ddof, keepdims=True)
else:
mns = a.mean(axis=axis, keepdims=True)
sstd = a.std(axis=axis, ddof=ddof, keepdims=True)
return (a - mns) / sstd
def zmap(scores, compare, axis=0, ddof=0):
"""
Calculate the relative z-scores.
Return an array of z-scores, i.e., scores that are standardized to
zero mean and unit variance, where mean and variance are calculated
from the comparison array.
Parameters
----------
scores : array_like
The input for which z-scores are calculated.
compare : array_like
The input from which the mean and standard deviation of the
normalization are taken; assumed to have the same dimension as
`scores`.
axis : int or None, optional
Axis over which mean and variance of `compare` are calculated.
Default is 0. If None, compute over the whole array `scores`.
ddof : int, optional
Degrees of freedom correction in the calculation of the
standard deviation. Default is 0.
Returns
-------
zscore : array_like
Z-scores, in the same shape as `scores`.
Notes
-----
This function preserves ndarray subclasses, and works also with
matrices and masked arrays (it uses `asanyarray` instead of
`asarray` for parameters).
Examples
--------
>>> from scipy.stats import zmap
>>> a = [0.5, 2.0, 2.5, 3]
>>> b = [0, 1, 2, 3, 4]
>>> zmap(a, b)
array([-1.06066017, 0. , 0.35355339, 0.70710678])
"""
scores, compare = map(np.asanyarray, [scores, compare])
mns = compare.mean(axis=axis, keepdims=True)
sstd = compare.std(axis=axis, ddof=ddof, keepdims=True)
return (scores - mns) / sstd
def gstd(a, axis=0, ddof=1):
"""
Calculate the geometric standard deviation of an array.
The geometric standard deviation describes the spread of a set of numbers
where the geometric mean is preferred. It is a multiplicative factor, and
so a dimensionless quantity.
It is defined as the exponent of the standard deviation of ``log(a)``.
Mathematically the population geometric standard deviation can be
evaluated as::
gstd = exp(std(log(a)))
.. versionadded:: 1.3.0
Parameters
----------
a : array_like
An array like object containing the sample data.
axis : int, tuple or None, optional
Axis along which to operate. Default is 0. If None, compute over
the whole array `a`.
ddof : int, optional
Degree of freedom correction in the calculation of the
geometric standard deviation. Default is 1.
Returns
-------
ndarray or float
An array of the geometric standard deviation. If `axis` is None or `a`
is a 1d array a float is returned.
Notes
-----
As the calculation requires the use of logarithms the geometric standard
deviation only supports strictly positive values. Any non-positive or
infinite values will raise a `ValueError`.
The geometric standard deviation is sometimes confused with the exponent of
the standard deviation, ``exp(std(a))``. Instead the geometric standard
deviation is ``exp(std(log(a)))``.
The default value for `ddof` is different to the default value (0) used
by other ddof containing functions, such as ``np.std`` and ``np.nanstd``.
Examples
--------
Find the geometric standard deviation of a log-normally distributed sample.
Note that the standard deviation of the distribution is one, on a
log scale this evaluates to approximately ``exp(1)``.
>>> from scipy.stats import gstd
>>> np.random.seed(123)
>>> sample = np.random.lognormal(mean=0, sigma=1, size=1000)
>>> gstd(sample)
2.7217860664589946
Compute the geometric standard deviation of a multidimensional array and
of a given axis.
>>> a = np.arange(1, 25).reshape(2, 3, 4)
>>> gstd(a, axis=None)
2.2944076136018947
>>> gstd(a, axis=2)
array([[1.82424757, 1.22436866, 1.13183117],
[1.09348306, 1.07244798, 1.05914985]])
>>> gstd(a, axis=(1,2))
array([2.12939215, 1.22120169])
The geometric standard deviation further handles masked arrays.
>>> a = np.arange(1, 25).reshape(2, 3, 4)
>>> ma = np.ma.masked_where(a > 16, a)
>>> ma
masked_array(
data=[[[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]],
[[13, 14, 15, 16],
[--, --, --, --],
[--, --, --, --]]],
mask=[[[False, False, False, False],
[False, False, False, False],
[False, False, False, False]],
[[False, False, False, False],
[ True, True, True, True],
[ True, True, True, True]]],
fill_value=999999)
>>> gstd(ma, axis=2)
masked_array(
data=[[1.8242475707663655, 1.2243686572447428, 1.1318311657788478],
[1.0934830582350938, --, --]],
mask=[[False, False, False],
[False, True, True]],
fill_value=999999)
"""
a = np.asanyarray(a)
log = ma.log if isinstance(a, ma.MaskedArray) else np.log
try:
with warnings.catch_warnings():
warnings.simplefilter("error", RuntimeWarning)
return np.exp(np.std(log(a), axis=axis, ddof=ddof))
except RuntimeWarning as w:
if np.isinf(a).any():
raise ValueError(
'Infinite value encountered. The geometric standard deviation '
'is defined for strictly positive values only.')
a_nan = np.isnan(a)
a_nan_any = a_nan.any()
# exclude NaN's from negativity check, but
# avoid expensive masking for arrays with no NaN
if ((a_nan_any and np.less_equal(np.nanmin(a), 0)) or
(not a_nan_any and np.less_equal(a, 0).any())):
raise ValueError(
'Non positive value encountered. The geometric standard '
'deviation is defined for strictly positive values only.')
elif 'Degrees of freedom <= 0 for slice' == str(w):
raise ValueError(w)
else:
# Remaining warnings don't need to be exceptions.
return np.exp(np.std(log(a, where=~a_nan), axis=axis, ddof=ddof))
except TypeError:
raise ValueError(
'Invalid array input. The inputs could not be '
'safely coerced to any supported types')
# Private dictionary initialized only once at module level
# See https://en.wikipedia.org/wiki/Robust_measures_of_scale
_scale_conversions = {'raw': 1.0,
'normal': special.erfinv(0.5) * 2.0 * math.sqrt(2.0)}
def iqr(x, axis=None, rng=(25, 75), scale='raw', nan_policy='propagate',
interpolation='linear', keepdims=False):
r"""
Compute the interquartile range of the data along the specified axis.
The interquartile range (IQR) is the difference between the 75th and
25th percentile of the data. It is a measure of the dispersion
similar to standard deviation or variance, but is much more robust
against outliers [2]_.
The ``rng`` parameter allows this function to compute other
percentile ranges than the actual IQR. For example, setting
``rng=(0, 100)`` is equivalent to `numpy.ptp`.
The IQR of an empty array is `np.nan`.
.. versionadded:: 0.18.0
Parameters
----------
x : array_like
Input array or object that can be converted to an array.
axis : int or sequence of int, optional
Axis along which the range is computed. The default is to
compute the IQR for the entire array.
rng : Two-element sequence containing floats in range of [0,100] optional
Percentiles over which to compute the range. Each must be
between 0 and 100, inclusive. The default is the true IQR:
`(25, 75)`. The order of the elements is not important.
scale : scalar or str, optional
The numerical value of scale will be divided out of the final
result. The following string values are recognized:
'raw' : No scaling, just return the raw IQR.
'normal' : Scale by :math:`2 \sqrt{2} erf^{-1}(\frac{1}{2}) \approx 1.349`.
The default is 'raw'. Array-like scale is also allowed, as long
as it broadcasts correctly to the output such that
``out / scale`` is a valid operation. The output dimensions
depend on the input array, `x`, the `axis` argument, and the
`keepdims` flag.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}, optional
Specifies the interpolation method to use when the percentile
boundaries lie between two data points `i` and `j`.
The following options are available (default is 'linear'):
* 'linear': `i + (j - i) * fraction`, where `fraction` is the
fractional part of the index surrounded by `i` and `j`.
* 'lower': `i`.
* 'higher': `j`.
* 'nearest': `i` or `j` whichever is nearest.
* 'midpoint': `(i + j) / 2`.
keepdims : bool, optional
If this is set to `True`, the reduced axes are left in the
result as dimensions with size one. With this option, the result
will broadcast correctly against the original array `x`.
Returns
-------
iqr : scalar or ndarray
If ``axis=None``, a scalar is returned. If the input contains
integers or floats of smaller precision than ``np.float64``, then the
output data-type is ``np.float64``. Otherwise, the output data-type is
the same as that of the input.
See Also
--------
numpy.std, numpy.var
Notes
-----
This function is heavily dependent on the version of `numpy` that is
installed. Versions greater than 1.11.0b3 are highly recommended, as they
include a number of enhancements and fixes to `numpy.percentile` and
`numpy.nanpercentile` that affect the operation of this function. The
following modifications apply:
Below 1.10.0 : `nan_policy` is poorly defined.
The default behavior of `numpy.percentile` is used for 'propagate'. This
is a hybrid of 'omit' and 'propagate' that mostly yields a skewed
version of 'omit' since NaNs are sorted to the end of the data. A
warning is raised if there are NaNs in the data.
Below 1.9.0: `numpy.nanpercentile` does not exist.
This means that `numpy.percentile` is used regardless of `nan_policy`
and a warning is issued. See previous item for a description of the
behavior.
Below 1.9.0: `keepdims` and `interpolation` are not supported.
The keywords get ignored with a warning if supplied with non-default
values. However, multiple axes are still supported.
References
----------
.. [1] "Interquartile range" https://en.wikipedia.org/wiki/Interquartile_range
.. [2] "Robust measures of scale" https://en.wikipedia.org/wiki/Robust_measures_of_scale
.. [3] "Quantile" https://en.wikipedia.org/wiki/Quantile
Examples
--------
>>> from scipy.stats import iqr
>>> x = np.array([[10, 7, 4], [3, 2, 1]])
>>> x
array([[10, 7, 4],
[ 3, 2, 1]])
>>> iqr(x)
4.0
>>> iqr(x, axis=0)
array([ 3.5, 2.5, 1.5])
>>> iqr(x, axis=1)
array([ 3., 1.])
>>> iqr(x, axis=1, keepdims=True)
array([[ 3.],
[ 1.]])
"""
x = asarray(x)
# This check prevents percentile from raising an error later. Also, it is
# consistent with `np.var` and `np.std`.
if not x.size:
return np.nan
# An error may be raised here, so fail-fast, before doing lengthy
# computations, even though `scale` is not used until later
if isinstance(scale, string_types):
scale_key = scale.lower()
if scale_key not in _scale_conversions:
raise ValueError("{0} not a valid scale for `iqr`".format(scale))
scale = _scale_conversions[scale_key]
# Select the percentile function to use based on nans and policy
contains_nan, nan_policy = _contains_nan(x, nan_policy)
if contains_nan and nan_policy == 'omit':
percentile_func = _iqr_nanpercentile
else:
percentile_func = _iqr_percentile
if len(rng) != 2:
raise TypeError("quantile range must be two element sequence")
if np.isnan(rng).any():
raise ValueError("range must not contain NaNs")
rng = sorted(rng)
pct = percentile_func(x, rng, axis=axis, interpolation=interpolation,
keepdims=keepdims, contains_nan=contains_nan)
out = np.subtract(pct[1], pct[0])
if scale != 1.0:
out /= scale
return out
def median_absolute_deviation(x, axis=0, center=np.median, scale=1.4826,
nan_policy='propagate'):
"""
Compute the median absolute deviation of the data along the given axis.
The median absolute deviation (MAD, [1]_) computes the median over the
absolute deviations from the median. It is a measure of dispersion
similar to the standard deviation but more robust to outliers [2]_.
The MAD of an empty array is ``np.nan``.
.. versionadded:: 1.3.0
Parameters
----------
x : array_like
Input array or object that can be converted to an array.
axis : int or None, optional
Axis along which the range is computed. Default is 0. If None, compute
the MAD over the entire array.
center : callable, optional
A function that will return the central value. The default is to use
np.median. Any user defined function used will need to have the function
signature ``func(arr, axis)``.
scale : int, optional
The scaling factor applied to the MAD. The default scale (1.4826)
ensures consistency with the standard deviation for normally distributed
data.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
mad : scalar or ndarray
If ``axis=None``, a scalar is returned. If the input contains
integers or floats of smaller precision than ``np.float64``, then the
output data-type is ``np.float64``. Otherwise, the output data-type is
the same as that of the input.
See Also
--------
numpy.std, numpy.var, numpy.median, scipy.stats.iqr, scipy.stats.tmean,
scipy.stats.tstd, scipy.stats.tvar
Notes
-----
The `center` argument only affects the calculation of the central value
around which the MAD is calculated. That is, passing in ``center=np.mean``
will calculate the MAD around the mean - it will not calculate the *mean*
absolute deviation.
References
----------
.. [1] "Median absolute deviation" https://en.wikipedia.org/wiki/Median_absolute_deviation
.. [2] "Robust measures of scale" https://en.wikipedia.org/wiki/Robust_measures_of_scale
Examples
--------
When comparing the behavior of `median_absolute_deviation` with ``np.std``,
the latter is affected when we change a single value of an array to have an
outlier value while the MAD hardly changes:
>>> from scipy import stats
>>> x = stats.norm.rvs(size=100, scale=1, random_state=123456)
>>> x.std()
0.9973906394005013
>>> stats.median_absolute_deviation(x)
1.2280762773108278
>>> x[0] = 345.6
>>> x.std()
34.42304872314415
>>> stats.median_absolute_deviation(x)
1.2340335571164334
Axis handling example:
>>> x = np.array([[10, 7, 4], [3, 2, 1]])
>>> x
array([[10, 7, 4],
[ 3, 2, 1]])
>>> stats.median_absolute_deviation(x)
array([5.1891, 3.7065, 2.2239])
>>> stats.median_absolute_deviation(x, axis=None)
2.9652
"""
x = asarray(x)
# Consistent with `np.var` and `np.std`.
if not x.size:
return np.nan
contains_nan, nan_policy = _contains_nan(x, nan_policy)
if contains_nan and nan_policy == 'propagate':
return np.nan
if contains_nan and nan_policy == 'omit':
# Way faster than carrying the masks around
arr = ma.masked_invalid(x).compressed()
else:
arr = x
if axis is None:
med = center(arr)
mad = np.median(np.abs(arr - med))
else:
med = np.apply_over_axes(center, arr, axis)
mad = np.median(np.abs(arr - med), axis=axis)
return scale * mad
def _iqr_percentile(x, q, axis=None, interpolation='linear', keepdims=False, contains_nan=False):
"""
Private wrapper that works around older versions of `numpy`.
While this function is pretty much necessary for the moment, it
should be removed as soon as the minimum supported numpy version
allows.
"""
if contains_nan and NumpyVersion(np.__version__) < '1.10.0a':
# I see no way to avoid the version check to ensure that the corrected
# NaN behavior has been implemented except to call `percentile` on a
# small array.
msg = "Keyword nan_policy='propagate' not correctly supported for " \
"numpy versions < 1.10.x. The default behavior of " \
"`numpy.percentile` will be used."
warnings.warn(msg, RuntimeWarning)
try:
# For older versions of numpy, there are two things that can cause a
# problem here: missing keywords and non-scalar axis. The former can be
# partially handled with a warning, the latter can be handled fully by
# hacking in an implementation similar to numpy's function for
# providing multi-axis functionality
# (`numpy.lib.function_base._ureduce` for the curious).
result = np.percentile(x, q, axis=axis, keepdims=keepdims,
interpolation=interpolation)
except TypeError:
if interpolation != 'linear' or keepdims:
# At time or writing, this means np.__version__ < 1.9.0
warnings.warn("Keywords interpolation and keepdims not supported "
"for your version of numpy", RuntimeWarning)
try:
# Special processing if axis is an iterable
original_size = len(axis)
except TypeError:
# Axis is a scalar at this point
pass
else:
axis = np.unique(np.asarray(axis) % x.ndim)
if original_size > axis.size:
# mimic numpy if axes are duplicated
raise ValueError("duplicate value in axis")
if axis.size == x.ndim:
# axis includes all axes: revert to None
axis = None
elif axis.size == 1:
# no rolling necessary
axis = axis[0]
else:
# roll multiple axes to the end and flatten that part out
for ax in axis[::-1]:
x = np.rollaxis(x, ax, x.ndim)
x = x.reshape(x.shape[:-axis.size] +
(np.prod(x.shape[-axis.size:]),))
axis = -1
result = np.percentile(x, q, axis=axis)
return result
def _iqr_nanpercentile(x, q, axis=None, interpolation='linear', keepdims=False,
contains_nan=False):
"""
Private wrapper that works around the following:
1. A bug in `np.nanpercentile` that was around until numpy version
1.11.0.
2. A bug in `np.percentile` NaN handling that was fixed in numpy
version 1.10.0.
3. The non-existence of `np.nanpercentile` before numpy version
1.9.0.
While this function is pretty much necessary for the moment, it
should be removed as soon as the minimum supported numpy version
allows.
"""
if hasattr(np, 'nanpercentile'):
# At time or writing, this means np.__version__ < 1.9.0
result = np.nanpercentile(x, q, axis=axis,
interpolation=interpolation,
keepdims=keepdims)
# If non-scalar result and nanpercentile does not do proper axis roll.
# I see no way of avoiding the version test since dimensions may just
# happen to match in the data.
if result.ndim > 1 and NumpyVersion(np.__version__) < '1.11.0a':
axis = np.asarray(axis)
if axis.size == 1:
# If only one axis specified, reduction happens along that dimension
if axis.ndim == 0:
axis = axis[None]
result = np.rollaxis(result, axis[0])
else:
# If multiple axes, reduced dimeision is last
result = np.rollaxis(result, -1)
else:
msg = "Keyword nan_policy='omit' not correctly supported for numpy " \
"versions < 1.9.x. The default behavior of numpy.percentile " \
"will be used."
warnings.warn(msg, RuntimeWarning)
result = _iqr_percentile(x, q, axis=axis)
return result
#####################################
# TRIMMING FUNCTIONS #
#####################################
SigmaclipResult = namedtuple('SigmaclipResult', ('clipped', 'lower', 'upper'))
def sigmaclip(a, low=4., high=4.):
"""
Perform iterative sigma-clipping of array elements.
Starting from the full sample, all elements outside the critical range are
removed, i.e. all elements of the input array `c` that satisfy either of
the following conditions::
c < mean(c) - std(c)*low
c > mean(c) + std(c)*high
The iteration continues with the updated sample until no
elements are outside the (updated) range.
Parameters
----------
a : array_like
Data array, will be raveled if not 1-D.
low : float, optional
Lower bound factor of sigma clipping. Default is 4.
high : float, optional
Upper bound factor of sigma clipping. Default is 4.
Returns
-------
clipped : ndarray
Input array with clipped elements removed.
lower : float
Lower threshold value use for clipping.
upper : float
Upper threshold value use for clipping.
Examples
--------
>>> from scipy.stats import sigmaclip
>>> a = np.concatenate((np.linspace(9.5, 10.5, 31),
... np.linspace(0, 20, 5)))
>>> fact = 1.5
>>> c, low, upp = sigmaclip(a, fact, fact)
>>> c
array([ 9.96666667, 10. , 10.03333333, 10. ])
>>> c.var(), c.std()
(0.00055555555555555165, 0.023570226039551501)
>>> low, c.mean() - fact*c.std(), c.min()
(9.9646446609406727, 9.9646446609406727, 9.9666666666666668)
>>> upp, c.mean() + fact*c.std(), c.max()
(10.035355339059327, 10.035355339059327, 10.033333333333333)
>>> a = np.concatenate((np.linspace(9.5, 10.5, 11),
... np.linspace(-100, -50, 3)))
>>> c, low, upp = sigmaclip(a, 1.8, 1.8)
>>> (c == np.linspace(9.5, 10.5, 11)).all()
True
"""
c = np.asarray(a).ravel()
delta = 1
while delta:
c_std = c.std()
c_mean = c.mean()
size = c.size
critlower = c_mean - c_std * low
critupper = c_mean + c_std * high
c = c[(c >= critlower) & (c <= critupper)]
delta = size - c.size
return SigmaclipResult(c, critlower, critupper)
def trimboth(a, proportiontocut, axis=0):
"""
Slice off a proportion of items from both ends of an array.
Slice off the passed proportion of items from both ends of the passed
array (i.e., with `proportiontocut` = 0.1, slices leftmost 10% **and**
rightmost 10% of scores). The trimmed values are the lowest and
highest ones.
Slice off less if proportion results in a non-integer slice index (i.e.
conservatively slices off `proportiontocut`).
Parameters
----------
a : array_like
Data to trim.
proportiontocut : float
Proportion (in range 0-1) of total data set to trim of each end.
axis : int or None, optional
Axis along which to trim data. Default is 0. If None, compute over
the whole array `a`.
Returns
-------
out : ndarray
Trimmed version of array `a`. The order of the trimmed content
is undefined.
See Also
--------
trim_mean
Examples
--------
>>> from scipy import stats
>>> a = np.arange(20)
>>> b = stats.trimboth(a, 0.1)
>>> b.shape
(16,)
"""
a = np.asarray(a)
if a.size == 0:
return a
if axis is None:
a = a.ravel()
axis = 0
nobs = a.shape[axis]
lowercut = int(proportiontocut * nobs)
uppercut = nobs - lowercut
if (lowercut >= uppercut):
raise ValueError("Proportion too big.")
atmp = np.partition(a, (lowercut, uppercut - 1), axis)
sl = [slice(None)] * atmp.ndim
sl[axis] = slice(lowercut, uppercut)
return atmp[tuple(sl)]
def trim1(a, proportiontocut, tail='right', axis=0):
"""
Slice off a proportion from ONE end of the passed array distribution.
If `proportiontocut` = 0.1, slices off 'leftmost' or 'rightmost'
10% of scores. The lowest or highest values are trimmed (depending on
the tail).
Slice off less if proportion results in a non-integer slice index
(i.e. conservatively slices off `proportiontocut` ).
Parameters
----------
a : array_like
Input array.
proportiontocut : float
Fraction to cut off of 'left' or 'right' of distribution.
tail : {'left', 'right'}, optional
Defaults to 'right'.
axis : int or None, optional
Axis along which to trim data. Default is 0. If None, compute over
the whole array `a`.
Returns
-------
trim1 : ndarray
Trimmed version of array `a`. The order of the trimmed content is
undefined.
"""
a = np.asarray(a)
if axis is None:
a = a.ravel()
axis = 0
nobs = a.shape[axis]
# avoid possible corner case
if proportiontocut >= 1:
return []
if tail.lower() == 'right':
lowercut = 0
uppercut = nobs - int(proportiontocut * nobs)
elif tail.lower() == 'left':
lowercut = int(proportiontocut * nobs)
uppercut = nobs
atmp = np.partition(a, (lowercut, uppercut - 1), axis)
return atmp[lowercut:uppercut]
def trim_mean(a, proportiontocut, axis=0):
"""
Return mean of array after trimming distribution from both tails.
If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of
scores. The input is sorted before slicing. Slices off less if proportion
results in a non-integer slice index (i.e., conservatively slices off
`proportiontocut` ).
Parameters
----------
a : array_like
Input array.
proportiontocut : float
Fraction to cut off of both tails of the distribution.
axis : int or None, optional
Axis along which the trimmed means are computed. Default is 0.
If None, compute over the whole array `a`.
Returns
-------
trim_mean : ndarray
Mean of trimmed array.
See Also
--------
trimboth
tmean : Compute the trimmed mean ignoring values outside given `limits`.
Examples
--------
>>> from scipy import stats
>>> x = np.arange(20)
>>> stats.trim_mean(x, 0.1)
9.5
>>> x2 = x.reshape(5, 4)
>>> x2
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19]])
>>> stats.trim_mean(x2, 0.25)
array([ 8., 9., 10., 11.])
>>> stats.trim_mean(x2, 0.25, axis=1)
array([ 1.5, 5.5, 9.5, 13.5, 17.5])
"""
a = np.asarray(a)
if a.size == 0:
return np.nan
if axis is None:
a = a.ravel()
axis = 0
nobs = a.shape[axis]
lowercut = int(proportiontocut * nobs)
uppercut = nobs - lowercut
if (lowercut > uppercut):
raise ValueError("Proportion too big.")
atmp = np.partition(a, (lowercut, uppercut - 1), axis)
sl = [slice(None)] * atmp.ndim
sl[axis] = slice(lowercut, uppercut)
return np.mean(atmp[tuple(sl)], axis=axis)
F_onewayResult = namedtuple('F_onewayResult', ('statistic', 'pvalue'))
def f_oneway(*args):
"""
Perform one-way ANOVA.
The one-way ANOVA tests the null hypothesis that two or more groups have
the same population mean. The test is applied to samples from two or
more groups, possibly with differing sizes.
Parameters
----------
sample1, sample2, ... : array_like
The sample measurements for each group.
Returns
-------
statistic : float
The computed F-value of the test.
pvalue : float
The associated p-value from the F-distribution.
Notes
-----
The ANOVA test has important assumptions that must be satisfied in order
for the associated p-value to be valid.
1. The samples are independent.
2. Each sample is from a normally distributed population.
3. The population standard deviations of the groups are all equal. This
property is known as homoscedasticity.
If these assumptions are not true for a given set of data, it may still be
possible to use the Kruskal-Wallis H-test (`scipy.stats.kruskal`) although
with some loss of power.
The algorithm is from Heiman[2], pp.394-7.
References
----------
.. [1] R. Lowry, "Concepts and Applications of Inferential Statistics",
Chapter 14, 2014, http://vassarstats.net/textbook/
.. [2] G.W. Heiman, "Understanding research methods and statistics: An
integrated introduction for psychology", Houghton, Mifflin and
Company, 2001.
.. [3] G.H. McDonald, "Handbook of Biological Statistics", One-way ANOVA.
http://www.biostathandbook.com/onewayanova.html
Examples
--------
>>> import scipy.stats as stats
[3]_ Here are some data on a shell measurement (the length of the anterior
adductor muscle scar, standardized by dividing by length) in the mussel
Mytilus trossulus from five locations: Tillamook, Oregon; Newport, Oregon;
Petersburg, Alaska; Magadan, Russia; and Tvarminne, Finland, taken from a
much larger data set used in McDonald et al. (1991).
>>> tillamook = [0.0571, 0.0813, 0.0831, 0.0976, 0.0817, 0.0859, 0.0735,
... 0.0659, 0.0923, 0.0836]
>>> newport = [0.0873, 0.0662, 0.0672, 0.0819, 0.0749, 0.0649, 0.0835,
... 0.0725]
>>> petersburg = [0.0974, 0.1352, 0.0817, 0.1016, 0.0968, 0.1064, 0.105]
>>> magadan = [0.1033, 0.0915, 0.0781, 0.0685, 0.0677, 0.0697, 0.0764,
... 0.0689]
>>> tvarminne = [0.0703, 0.1026, 0.0956, 0.0973, 0.1039, 0.1045]
>>> stats.f_oneway(tillamook, newport, petersburg, magadan, tvarminne)
(7.1210194716424473, 0.00028122423145345439)
"""
args = [np.asarray(arg, dtype=float) for arg in args]
# ANOVA on N groups, each in its own array
num_groups = len(args)
alldata = np.concatenate(args)
bign = len(alldata)
# Determine the mean of the data, and subtract that from all inputs to a
# variance (via sum_of_sq / sq_of_sum) calculation. Variance is invariance
# to a shift in location, and centering all data around zero vastly
# improves numerical stability.
offset = alldata.mean()
alldata -= offset
sstot = _sum_of_squares(alldata) - (_square_of_sums(alldata) / bign)
ssbn = 0
for a in args:
ssbn += _square_of_sums(a - offset) / len(a)
# Naming: variables ending in bn/b are for "between treatments", wn/w are
# for "within treatments"
ssbn -= _square_of_sums(alldata) / bign
sswn = sstot - ssbn
dfbn = num_groups - 1
dfwn = bign - num_groups
msb = ssbn / dfbn
msw = sswn / dfwn
f = msb / msw
prob = special.fdtrc(dfbn, dfwn, f) # equivalent to stats.f.sf
return F_onewayResult(f, prob)
class PearsonRConstantInputWarning(RuntimeWarning):
"""Warning generated by `pearsonr` when an input is constant."""
def __init__(self, msg=None):
if msg is None:
msg = ("An input array is constant; the correlation coefficent "
"is not defined.")
self.args = (msg,)
class PearsonRNearConstantInputWarning(RuntimeWarning):
"""Warning generated by `pearsonr` when an input is nearly constant."""
def __init__(self, msg=None):
if msg is None:
msg = ("An input array is nearly constant; the computed "
"correlation coefficent may be inaccurate.")
self.args = (msg,)
def pearsonr(x, y):
r"""
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient [1]_ measures the linear relationship
between two datasets. The calculation of the p-value relies on the
assumption that each dataset is normally distributed. (See Kowalski [3]_
for a discussion of the effects of non-normality of the input on the
distribution of the correlation coefficient.) Like other correlation
coefficients, this one varies between -1 and +1 with 0 implying no
correlation. Correlations of -1 or +1 imply an exact linear relationship.
Positive correlations imply that as x increases, so does y. Negative
correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Pearson correlation at least as extreme
as the one computed from these datasets.
Parameters
----------
x : (N,) array_like
Input array.
y : (N,) array_like
Input array.
Returns
-------
r : float
Pearson's correlation coefficient.
p-value : float
Two-tailed p-value.
Warns
-----
PearsonRConstantInputWarning
Raised if an input is a constant array. The correlation coefficient
is not defined in this case, so ``np.nan`` is returned.
PearsonRNearConstantInputWarning
Raised if an input is "nearly" constant. The array ``x`` is considered
nearly constant if ``norm(x - mean(x)) < 1e-13 * abs(mean(x))``.
Numerical errors in the calculation ``x - mean(x)`` in this case might
result in an inaccurate calculation of r.
See Also
--------
spearmanr : Spearman rank-order correlation coefficient.
kendalltau : Kendall's tau, a correlation measure for ordinal data.
Notes
-----
The correlation coefficient is calculated as follows:
.. math::
r = \frac{\sum (x - m_x) (y - m_y)}
{\sqrt{\sum (x - m_x)^2 \sum (y - m_y)^2}}
where :math:`m_x` is the mean of the vector :math:`x` and :math:`m_y` is
the mean of the vector :math:`y`.
Under the assumption that x and y are drawn from independent normal
distributions (so the population correlation coefficient is 0), the
probability density function of the sample correlation coefficient r
is ([1]_, [2]_)::
(1 - r**2)**(n/2 - 2)
f(r) = ---------------------
B(1/2, n/2 - 1)
where n is the number of samples, and B is the beta function. This
is sometimes referred to as the exact distribution of r. This is
the distribution that is used in `pearsonr` to compute the p-value.
The distribution is a beta distribution on the interval [-1, 1],
with equal shape parameters a = b = n/2 - 1. In terms of SciPy's
implementation of the beta distribution, the distribution of r is::
dist = scipy.stats.beta(n/2 - 1, n/2 - 1, loc=-1, scale=2)
The p-value returned by `pearsonr` is a two-sided p-value. For a
given sample with correlation coefficient r, the p-value is
the probability that abs(r') of a random sample x' and y' drawn from
the population with zero correlation would be greater than or equal
to abs(r). In terms of the object ``dist`` shown above, the p-value
for a given r and length n can be computed as::
p = 2*dist.cdf(-abs(r))
When n is 2, the above continuous distribution is not well-defined.
One can interpret the limit of the beta distribution as the shape
parameters a and b approach a = b = 0 as a discrete distribution with
equal probability masses at r = 1 and r = -1. More directly, one
can observe that, given the data x = [x1, x2] and y = [y1, y2], and
assuming x1 != x2 and y1 != y2, the only possible values for r are 1
and -1. Because abs(r') for any sample x' and y' with length 2 will
be 1, the two-sided p-value for a sample of length 2 is always 1.
References
----------
.. [1] "Pearson correlation coefficient", Wikipedia,
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
.. [2] Student, "Probable error of a correlation coefficient",
Biometrika, Volume 6, Issue 2-3, 1 September 1908, pp. 302-310.
.. [3] C. J. Kowalski, "On the Effects of Non-Normality on the Distribution
of the Sample Product-Moment Correlation Coefficient"
Journal of the Royal Statistical Society. Series C (Applied
Statistics), Vol. 21, No. 1 (1972), pp. 1-12.
Examples
--------
>>> from scipy import stats
>>> a = np.array([0, 0, 0, 1, 1, 1, 1])
>>> b = np.arange(7)
>>> stats.pearsonr(a, b)
(0.8660254037844386, 0.011724811003954649)
>>> stats.pearsonr([1, 2, 3, 4, 5], [10, 9, 2.5, 6, 4])
(-0.7426106572325057, 0.1505558088534455)
"""
n = len(x)
if n != len(y):
raise ValueError('x and y must have the same length.')
if n < 2:
raise ValueError('x and y must have length at least 2.')
x = np.asarray(x)
y = np.asarray(y)
# If an input is constant, the correlation coefficient is not defined.
if (x == x[0]).all() or (y == y[0]).all():
warnings.warn(PearsonRConstantInputWarning())
return np.nan, np.nan
# dtype is the data type for the calculations. This expression ensures
# that the data type is at least 64 bit floating point. It might have
# more precision if the input is, for example, np.longdouble.
dtype = type(1.0 + x[0] + y[0])
if n == 2:
return dtype(np.sign(x[1] - x[0])*np.sign(y[1] - y[0])), 1.0
xmean = x.mean(dtype=dtype)
ymean = y.mean(dtype=dtype)
# By using `astype(dtype)`, we ensure that the intermediate calculations
# use at least 64 bit floating point.
xm = x.astype(dtype) - xmean
ym = y.astype(dtype) - ymean
# Unlike np.linalg.norm or the expression sqrt((xm*xm).sum()),
# scipy.linalg.norm(xm) does not overflow if xm is, for example,
# [-5e210, 5e210, 3e200, -3e200]
normxm = linalg.norm(xm)
normym = linalg.norm(ym)
threshold = 1e-13
if normxm < threshold*abs(xmean) or normym < threshold*abs(ymean):
# If all the values in x (likewise y) are very close to the mean,
# the loss of precision that occurs in the subtraction xm = x - xmean
# might result in large errors in r.
warnings.warn(PearsonRNearConstantInputWarning())
r = np.dot(xm/normxm, ym/normym)
# Presumably, if abs(r) > 1, then it is only some small artifact of
# floating point arithmetic.
r = max(min(r, 1.0), -1.0)
# As explained in the docstring, the p-value can be computed as
# p = 2*dist.cdf(-abs(r))
# where dist is the beta distribution on [-1, 1] with shape parameters
# a = b = n/2 - 1. `special.btdtr` is the CDF for the beta distribution
# on [0, 1]. To use it, we make the transformation x = (r + 1)/2; the
# shape parameters do not change. Then -abs(r) used in `cdf(-abs(r))`
# becomes x = (-abs(r) + 1)/2 = 0.5*(1 - abs(r)). (r is cast to float64
# to avoid a TypeError raised by btdtr when r is higher precision.)
ab = n/2 - 1
prob = 2*special.btdtr(ab, ab, 0.5*(1 - abs(np.float64(r))))
return r, prob
def fisher_exact(table, alternative='two-sided'):
"""
Perform a Fisher exact test on a 2x2 contingency table.
Parameters
----------
table : array_like of ints
A 2x2 contingency table. Elements should be non-negative integers.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided'
* 'less': one-sided
* 'greater': one-sided
Returns
-------
oddsratio : float
This is prior odds ratio and not a posterior estimate.
p_value : float
P-value, the probability of obtaining a distribution at least as
extreme as the one that was actually observed, assuming that the
null hypothesis is true.
See Also
--------
chi2_contingency : Chi-square test of independence of variables in a
contingency table.
Notes
-----
The calculated odds ratio is different from the one R uses. This scipy
implementation returns the (more common) "unconditional Maximum
Likelihood Estimate", while R uses the "conditional Maximum Likelihood
Estimate".
For tables with large numbers, the (inexact) chi-square test implemented
in the function `chi2_contingency` can also be used.
Examples
--------
Say we spend a few days counting whales and sharks in the Atlantic and
Indian oceans. In the Atlantic ocean we find 8 whales and 1 shark, in the
Indian ocean 2 whales and 5 sharks. Then our contingency table is::
Atlantic Indian
whales 8 2
sharks 1 5
We use this table to find the p-value:
>>> import scipy.stats as stats
>>> oddsratio, pvalue = stats.fisher_exact([[8, 2], [1, 5]])
>>> pvalue
0.0349...
The probability that we would observe this or an even more imbalanced ratio
by chance is about 3.5%. A commonly used significance level is 5%--if we
adopt that, we can therefore conclude that our observed imbalance is
statistically significant; whales prefer the Atlantic while sharks prefer
the Indian ocean.
"""
hypergeom = distributions.hypergeom
c = np.asarray(table, dtype=np.int64) # int32 is not enough for the algorithm
if not c.shape == (2, 2):
raise ValueError("The input `table` must be of shape (2, 2).")
if np.any(c < 0):
raise ValueError("All values in `table` must be nonnegative.")
if 0 in c.sum(axis=0) or 0 in c.sum(axis=1):
# If both values in a row or column are zero, the p-value is 1 and
# the odds ratio is NaN.
return np.nan, 1.0
if c[1, 0] > 0 and c[0, 1] > 0:
oddsratio = c[0, 0] * c[1, 1] / (c[1, 0] * c[0, 1])
else:
oddsratio = np.inf
n1 = c[0, 0] + c[0, 1]
n2 = c[1, 0] + c[1, 1]
n = c[0, 0] + c[1, 0]
def binary_search(n, n1, n2, side):
"""Binary search for where to begin halves in two-sided test."""
if side == "upper":
minval = mode
maxval = n
else:
minval = 0
maxval = mode
guess = -1
while maxval - minval > 1:
if maxval == minval + 1 and guess == minval:
guess = maxval
else:
guess = (maxval + minval) // 2
pguess = hypergeom.pmf(guess, n1 + n2, n1, n)
if side == "upper":
ng = guess - 1
else:
ng = guess + 1
if pguess <= pexact < hypergeom.pmf(ng, n1 + n2, n1, n):
break
elif pguess < pexact:
maxval = guess
else:
minval = guess
if guess == -1:
guess = minval
if side == "upper":
while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon:
guess -= 1
while hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon:
guess += 1
else:
while hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon:
guess += 1
while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon:
guess -= 1
return guess
if alternative == 'less':
pvalue = hypergeom.cdf(c[0, 0], n1 + n2, n1, n)
elif alternative == 'greater':
# Same formula as the 'less' case, but with the second column.
pvalue = hypergeom.cdf(c[0, 1], n1 + n2, n1, c[0, 1] + c[1, 1])
elif alternative == 'two-sided':
mode = int((n + 1) * (n1 + 1) / (n1 + n2 + 2))
pexact = hypergeom.pmf(c[0, 0], n1 + n2, n1, n)
pmode = hypergeom.pmf(mode, n1 + n2, n1, n)
epsilon = 1 - 1e-4
if np.abs(pexact - pmode) / np.maximum(pexact, pmode) <= 1 - epsilon:
return oddsratio, 1.
elif c[0, 0] < mode:
plower = hypergeom.cdf(c[0, 0], n1 + n2, n1, n)
if hypergeom.pmf(n, n1 + n2, n1, n) > pexact / epsilon:
return oddsratio, plower
guess = binary_search(n, n1, n2, "upper")
pvalue = plower + hypergeom.sf(guess - 1, n1 + n2, n1, n)
else:
pupper = hypergeom.sf(c[0, 0] - 1, n1 + n2, n1, n)
if hypergeom.pmf(0, n1 + n2, n1, n) > pexact / epsilon:
return oddsratio, pupper
guess = binary_search(n, n1, n2, "lower")
pvalue = pupper + hypergeom.cdf(guess, n1 + n2, n1, n)
else:
msg = "`alternative` should be one of {'two-sided', 'less', 'greater'}"
raise ValueError(msg)
pvalue = min(pvalue, 1.0)
return oddsratio, pvalue
SpearmanrResult = namedtuple('SpearmanrResult', ('correlation', 'pvalue'))
def spearmanr(a, b=None, axis=0, nan_policy='propagate'):
"""
Calculate a Spearman correlation coefficient with associated p-value.
The Spearman rank-order correlation coefficient is a nonparametric measure
of the monotonicity of the relationship between two datasets. Unlike the
Pearson correlation, the Spearman correlation does not assume that both
datasets are normally distributed. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Correlations of -1 or +1 imply an exact monotonic relationship. Positive
correlations imply that as x increases, so does y. Negative correlations
imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
Parameters
----------
a, b : 1D or 2D array_like, b is optional
One or two 1-D or 2-D arrays containing multiple variables and
observations. When these are 1-D, each represents a vector of
observations of a single variable. For the behavior in the 2-D case,
see under ``axis``, below.
Both arrays need to have the same length in the ``axis`` dimension.
axis : int or None, optional
If axis=0 (default), then each column represents a variable, with
observations in the rows. If axis=1, the relationship is transposed:
each row represents a variable, while the columns contain observations.
If axis=None, then both arrays will be raveled.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
correlation : float or ndarray (2-D square)
Spearman correlation matrix or correlation coefficient (if only 2
variables are given as parameters. Correlation matrix is square with
length equal to total number of variables (columns or rows) in ``a``
and ``b`` combined.
pvalue : float
The two-sided p-value for a hypothesis test whose null hypothesis is
that two sets of data are uncorrelated, has same dimension as rho.
References
----------
.. [1] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
Section 14.7
Examples
--------
>>> from scipy import stats
>>> stats.spearmanr([1,2,3,4,5], [5,6,7,8,7])
(0.82078268166812329, 0.088587005313543798)
>>> np.random.seed(1234321)
>>> x2n = np.random.randn(100, 2)
>>> y2n = np.random.randn(100, 2)
>>> stats.spearmanr(x2n)
(0.059969996999699973, 0.55338590803773591)
>>> stats.spearmanr(x2n[:,0], x2n[:,1])
(0.059969996999699973, 0.55338590803773591)
>>> rho, pval = stats.spearmanr(x2n, y2n)
>>> rho
array([[ 1. , 0.05997 , 0.18569457, 0.06258626],
[ 0.05997 , 1. , 0.110003 , 0.02534653],
[ 0.18569457, 0.110003 , 1. , 0.03488749],
[ 0.06258626, 0.02534653, 0.03488749, 1. ]])
>>> pval
array([[ 0. , 0.55338591, 0.06435364, 0.53617935],
[ 0.55338591, 0. , 0.27592895, 0.80234077],
[ 0.06435364, 0.27592895, 0. , 0.73039992],
[ 0.53617935, 0.80234077, 0.73039992, 0. ]])
>>> rho, pval = stats.spearmanr(x2n.T, y2n.T, axis=1)
>>> rho
array([[ 1. , 0.05997 , 0.18569457, 0.06258626],
[ 0.05997 , 1. , 0.110003 , 0.02534653],
[ 0.18569457, 0.110003 , 1. , 0.03488749],
[ 0.06258626, 0.02534653, 0.03488749, 1. ]])
>>> stats.spearmanr(x2n, y2n, axis=None)
(0.10816770419260482, 0.1273562188027364)
>>> stats.spearmanr(x2n.ravel(), y2n.ravel())
(0.10816770419260482, 0.1273562188027364)
>>> xint = np.random.randint(10, size=(100, 2))
>>> stats.spearmanr(xint)
(0.052760927029710199, 0.60213045837062351)
"""
a, axisout = _chk_asarray(a, axis)
if a.ndim > 2:
raise ValueError("spearmanr only handles 1-D or 2-D arrays")
if b is None:
if a.ndim < 2:
raise ValueError("`spearmanr` needs at least 2 variables to compare")
else:
# Concatenate a and b, so that we now only have to handle the case
# of a 2-D `a`.
b, _ = _chk_asarray(b, axis)
if axisout == 0:
a = np.column_stack((a, b))
else:
a = np.row_stack((a, b))
n_vars = a.shape[1 - axisout]
n_obs = a.shape[axisout]
if n_obs <= 1:
# Handle empty arrays or single observations.
return SpearmanrResult(np.nan, np.nan)
a_contains_nan, nan_policy = _contains_nan(a, nan_policy)
variable_has_nan = np.zeros(n_vars, dtype=bool)
if a_contains_nan:
if nan_policy == 'omit':
return mstats_basic.spearmanr(a, axis=axis, nan_policy=nan_policy)
elif nan_policy == 'propagate':
if a.ndim == 1 or n_vars <= 2:
return SpearmanrResult(np.nan, np.nan)
else:
# Keep track of variables with NaNs, set the outputs to NaN
# only for those variables
variable_has_nan = np.isnan(a).sum(axis=axisout)
a_ranked = np.apply_along_axis(rankdata, axisout, a)
rs = np.corrcoef(a_ranked, rowvar=axisout)
dof = n_obs - 2 # degrees of freedom
# rs can have elements equal to 1, so avoid zero division warnings
olderr = np.seterr(divide='ignore')
try:
# clip the small negative values possibly caused by rounding
# errors before taking the square root
t = rs * np.sqrt((dof/((rs+1.0)*(1.0-rs))).clip(0))
finally:
np.seterr(**olderr)
prob = 2 * distributions.t.sf(np.abs(t), dof)
# For backwards compatibility, return scalars when comparing 2 columns
if rs.shape == (2, 2):
return SpearmanrResult(rs[1, 0], prob[1, 0])
else:
rs[variable_has_nan, :] = np.nan
rs[:, variable_has_nan] = np.nan
return SpearmanrResult(rs, prob)
PointbiserialrResult = namedtuple('PointbiserialrResult',
('correlation', 'pvalue'))
def pointbiserialr(x, y):
r"""
Calculate a point biserial correlation coefficient and its p-value.
The point biserial correlation is used to measure the relationship
between a binary variable, x, and a continuous variable, y. Like other
correlation coefficients, this one varies between -1 and +1 with 0
implying no correlation. Correlations of -1 or +1 imply a determinative
relationship.
This function uses a shortcut formula but produces the same result as
`pearsonr`.
Parameters
----------
x : array_like of bools
Input array.
y : array_like
Input array.
Returns
-------
correlation : float
R value.
pvalue : float
Two-sided p-value.
Notes
-----
`pointbiserialr` uses a t-test with ``n-1`` degrees of freedom.
It is equivalent to `pearsonr.`
The value of the point-biserial correlation can be calculated from:
.. math::
r_{pb} = \frac{\overline{Y_{1}} -
\overline{Y_{0}}}{s_{y}}\sqrt{\frac{N_{1} N_{2}}{N (N - 1))}}
Where :math:`Y_{0}` and :math:`Y_{1}` are means of the metric
observations coded 0 and 1 respectively; :math:`N_{0}` and :math:`N_{1}`
are number of observations coded 0 and 1 respectively; :math:`N` is the
total number of observations and :math:`s_{y}` is the standard
deviation of all the metric observations.
A value of :math:`r_{pb}` that is significantly different from zero is
completely equivalent to a significant difference in means between the two
groups. Thus, an independent groups t Test with :math:`N-2` degrees of
freedom may be used to test whether :math:`r_{pb}` is nonzero. The
relation between the t-statistic for comparing two independent groups and
:math:`r_{pb}` is given by:
.. math::
t = \sqrt{N - 2}\frac{r_{pb}}{\sqrt{1 - r^{2}_{pb}}}
References
----------
.. [1] J. Lev, "The Point Biserial Coefficient of Correlation", Ann. Math.
Statist., Vol. 20, no.1, pp. 125-126, 1949.
.. [2] R.F. Tate, "Correlation Between a Discrete and a Continuous
Variable. Point-Biserial Correlation.", Ann. Math. Statist., Vol. 25,
np. 3, pp. 603-607, 1954.
.. [3] D. Kornbrot "Point Biserial Correlation", In Wiley StatsRef:
Statistics Reference Online (eds N. Balakrishnan, et al.), 2014.
https://doi.org/10.1002/9781118445112.stat06227
Examples
--------
>>> from scipy import stats
>>> a = np.array([0, 0, 0, 1, 1, 1, 1])
>>> b = np.arange(7)
>>> stats.pointbiserialr(a, b)
(0.8660254037844386, 0.011724811003954652)
>>> stats.pearsonr(a, b)
(0.86602540378443871, 0.011724811003954626)
>>> np.corrcoef(a, b)
array([[ 1. , 0.8660254],
[ 0.8660254, 1. ]])
"""
rpb, prob = pearsonr(x, y)
return PointbiserialrResult(rpb, prob)
KendalltauResult = namedtuple('KendalltauResult', ('correlation', 'pvalue'))
def kendalltau(x, y, initial_lexsort=None, nan_policy='propagate', method='auto'):
"""
Calculate Kendall's tau, a correlation measure for ordinal data.
Kendall's tau is a measure of the correspondence between two rankings.
Values close to 1 indicate strong agreement, values close to -1 indicate
strong disagreement. This is the 1945 "tau-b" version of Kendall's
tau [2]_, which can account for ties and which reduces to the 1938 "tau-a"
version [1]_ in absence of ties.
Parameters
----------
x, y : array_like
Arrays of rankings, of the same shape. If arrays are not 1-D, they will
be flattened to 1-D.
initial_lexsort : bool, optional
Unused (deprecated).
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
method : {'auto', 'asymptotic', 'exact'}, optional
Defines which method is used to calculate the p-value [5]_.
The following options are available (default is 'auto'):
* 'auto': selects the appropriate method based on a trade-off between
speed and accuracy
* 'asymptotic': uses a normal approximation valid for large samples
* 'exact': computes the exact p-value, but can only be used if no ties
are present
Returns
-------
correlation : float
The tau statistic.
pvalue : float
The two-sided p-value for a hypothesis test whose null hypothesis is
an absence of association, tau = 0.
See Also
--------
spearmanr : Calculates a Spearman rank-order correlation coefficient.
theilslopes : Computes the Theil-Sen estimator for a set of points (x, y).
weightedtau : Computes a weighted version of Kendall's tau.
Notes
-----
The definition of Kendall's tau that is used is [2]_::
tau = (P - Q) / sqrt((P + Q + T) * (P + Q + U))
where P is the number of concordant pairs, Q the number of discordant
pairs, T the number of ties only in `x`, and U the number of ties only in
`y`. If a tie occurs for the same pair in both `x` and `y`, it is not
added to either T or U.
References
----------
.. [1] Maurice G. Kendall, "A New Measure of Rank Correlation", Biometrika
Vol. 30, No. 1/2, pp. 81-93, 1938.
.. [2] Maurice G. Kendall, "The treatment of ties in ranking problems",
Biometrika Vol. 33, No. 3, pp. 239-251. 1945.
.. [3] Gottfried E. Noether, "Elements of Nonparametric Statistics", John
Wiley & Sons, 1967.
.. [4] Peter M. Fenwick, "A new data structure for cumulative frequency
tables", Software: Practice and Experience, Vol. 24, No. 3,
pp. 327-336, 1994.
.. [5] Maurice G. Kendall, "Rank Correlation Methods" (4th Edition),
Charles Griffin & Co., 1970.
Examples
--------
>>> from scipy import stats
>>> x1 = [12, 2, 1, 12, 2]
>>> x2 = [1, 4, 7, 1, 0]
>>> tau, p_value = stats.kendalltau(x1, x2)
>>> tau
-0.47140452079103173
>>> p_value
0.2827454599327748
"""
x = np.asarray(x).ravel()
y = np.asarray(y).ravel()
if x.size != y.size:
raise ValueError("All inputs to `kendalltau` must be of the same size, "
"found x-size %s and y-size %s" % (x.size, y.size))
elif not x.size or not y.size:
return KendalltauResult(np.nan, np.nan) # Return NaN if arrays are empty
# check both x and y
cnx, npx = _contains_nan(x, nan_policy)
cny, npy = _contains_nan(y, nan_policy)
contains_nan = cnx or cny
if npx == 'omit' or npy == 'omit':
nan_policy = 'omit'
if contains_nan and nan_policy == 'propagate':
return KendalltauResult(np.nan, np.nan)
elif contains_nan and nan_policy == 'omit':
x = ma.masked_invalid(x)
y = ma.masked_invalid(y)
return mstats_basic.kendalltau(x, y, method=method)
if initial_lexsort is not None: # deprecate to drop!
warnings.warn('"initial_lexsort" is gone!')
def count_rank_tie(ranks):
cnt = np.bincount(ranks).astype('int64', copy=False)
cnt = cnt[cnt > 1]
return ((cnt * (cnt - 1) // 2).sum(),
(cnt * (cnt - 1.) * (cnt - 2)).sum(),
(cnt * (cnt - 1.) * (2*cnt + 5)).sum())
size = x.size
perm = np.argsort(y) # sort on y and convert y to dense ranks
x, y = x[perm], y[perm]
y = np.r_[True, y[1:] != y[:-1]].cumsum(dtype=np.intp)
# stable sort on x and convert x to dense ranks
perm = np.argsort(x, kind='mergesort')
x, y = x[perm], y[perm]
x = np.r_[True, x[1:] != x[:-1]].cumsum(dtype=np.intp)
dis = _kendall_dis(x, y) # discordant pairs
obs = np.r_[True, (x[1:] != x[:-1]) | (y[1:] != y[:-1]), True]
cnt = np.diff(np.nonzero(obs)[0]).astype('int64', copy=False)
ntie = (cnt * (cnt - 1) // 2).sum() # joint ties
xtie, x0, x1 = count_rank_tie(x) # ties in x, stats
ytie, y0, y1 = count_rank_tie(y) # ties in y, stats
tot = (size * (size - 1)) // 2
if xtie == tot or ytie == tot:
return KendalltauResult(np.nan, np.nan)
# Note that tot = con + dis + (xtie - ntie) + (ytie - ntie) + ntie
# = con + dis + xtie + ytie - ntie
con_minus_dis = tot - xtie - ytie + ntie - 2 * dis
tau = con_minus_dis / np.sqrt(tot - xtie) / np.sqrt(tot - ytie)
# Limit range to fix computational errors
tau = min(1., max(-1., tau))
if method == 'exact' and (xtie != 0 or ytie != 0):
raise ValueError("Ties found, exact method cannot be used.")
if method == 'auto':
if (xtie == 0 and ytie == 0) and (size <= 33 or min(dis, tot-dis) <= 1):
method = 'exact'
else:
method = 'asymptotic'
if xtie == 0 and ytie == 0 and method == 'exact':
# Exact p-value, see Maurice G. Kendall, "Rank Correlation Methods" (4th Edition), Charles Griffin & Co., 1970.
c = min(dis, tot-dis)
if size <= 0:
raise ValueError
elif c < 0 or 2*c > size*(size-1):
raise ValueError
elif size == 1:
pvalue = 1.0
elif size == 2:
pvalue = 1.0
elif c == 0:
pvalue = 2.0/math.factorial(size) if size < 171 else 0.0
elif c == 1:
pvalue = 2.0/math.factorial(size-1) if (size-1) < 171 else 0.0
else:
new = [0.0]*(c+1)
new[0] = 1.0
new[1] = 1.0
for j in range(3,size+1):
old = new[:]
for k in range(1,min(j,c+1)):
new[k] += new[k-1]
for k in range(j,c+1):
new[k] += new[k-1] - old[k-j]
pvalue = 2.0*sum(new)/math.factorial(size) if size < 171 else 0.0
elif method == 'asymptotic':
# con_minus_dis is approx normally distributed with this variance [3]_
var = (size * (size - 1) * (2.*size + 5) - x1 - y1) / 18. + (
2. * xtie * ytie) / (size * (size - 1)) + x0 * y0 / (9. *
size * (size - 1) * (size - 2))
pvalue = special.erfc(np.abs(con_minus_dis) / np.sqrt(var) / np.sqrt(2))
else:
raise ValueError("Unknown method "+str(method)+" specified, please use auto, exact or asymptotic.")
return KendalltauResult(tau, pvalue)
WeightedTauResult = namedtuple('WeightedTauResult', ('correlation', 'pvalue'))
def weightedtau(x, y, rank=True, weigher=None, additive=True):
r"""
Compute a weighted version of Kendall's :math:`\tau`.
The weighted :math:`\tau` is a weighted version of Kendall's
:math:`\tau` in which exchanges of high weight are more influential than
exchanges of low weight. The default parameters compute the additive
hyperbolic version of the index, :math:`\tau_\mathrm h`, which has
been shown to provide the best balance between important and
unimportant elements [1]_.
The weighting is defined by means of a rank array, which assigns a
nonnegative rank to each element, and a weigher function, which
assigns a weight based from the rank to each element. The weight of an
exchange is then the sum or the product of the weights of the ranks of
the exchanged elements. The default parameters compute
:math:`\tau_\mathrm h`: an exchange between elements with rank
:math:`r` and :math:`s` (starting from zero) has weight
:math:`1/(r+1) + 1/(s+1)`.
Specifying a rank array is meaningful only if you have in mind an
external criterion of importance. If, as it usually happens, you do
not have in mind a specific rank, the weighted :math:`\tau` is
defined by averaging the values obtained using the decreasing
lexicographical rank by (`x`, `y`) and by (`y`, `x`). This is the
behavior with default parameters.
Note that if you are computing the weighted :math:`\tau` on arrays of
ranks, rather than of scores (i.e., a larger value implies a lower
rank) you must negate the ranks, so that elements of higher rank are
associated with a larger value.
Parameters
----------
x, y : array_like
Arrays of scores, of the same shape. If arrays are not 1-D, they will
be flattened to 1-D.
rank : array_like of ints or bool, optional
A nonnegative rank assigned to each element. If it is None, the
decreasing lexicographical rank by (`x`, `y`) will be used: elements of
higher rank will be those with larger `x`-values, using `y`-values to
break ties (in particular, swapping `x` and `y` will give a different
result). If it is False, the element indices will be used
directly as ranks. The default is True, in which case this
function returns the average of the values obtained using the
decreasing lexicographical rank by (`x`, `y`) and by (`y`, `x`).
weigher : callable, optional
The weigher function. Must map nonnegative integers (zero
representing the most important element) to a nonnegative weight.
The default, None, provides hyperbolic weighing, that is,
rank :math:`r` is mapped to weight :math:`1/(r+1)`.
additive : bool, optional
If True, the weight of an exchange is computed by adding the
weights of the ranks of the exchanged elements; otherwise, the weights
are multiplied. The default is True.
Returns
-------
correlation : float
The weighted :math:`\tau` correlation index.
pvalue : float
Presently ``np.nan``, as the null statistics is unknown (even in the
additive hyperbolic case).
See Also
--------
kendalltau : Calculates Kendall's tau.
spearmanr : Calculates a Spearman rank-order correlation coefficient.
theilslopes : Computes the Theil-Sen estimator for a set of points (x, y).
Notes
-----
This function uses an :math:`O(n \log n)`, mergesort-based algorithm
[1]_ that is a weighted extension of Knight's algorithm for Kendall's
:math:`\tau` [2]_. It can compute Shieh's weighted :math:`\tau` [3]_
between rankings without ties (i.e., permutations) by setting
`additive` and `rank` to False, as the definition given in [1]_ is a
generalization of Shieh's.
NaNs are considered the smallest possible score.
.. versionadded:: 0.19.0
References
----------
.. [1] Sebastiano Vigna, "A weighted correlation index for rankings with
ties", Proceedings of the 24th international conference on World
Wide Web, pp. 1166-1176, ACM, 2015.
.. [2] W.R. Knight, "A Computer Method for Calculating Kendall's Tau with
Ungrouped Data", Journal of the American Statistical Association,
Vol. 61, No. 314, Part 1, pp. 436-439, 1966.
.. [3] Grace S. Shieh. "A weighted Kendall's tau statistic", Statistics &
Probability Letters, Vol. 39, No. 1, pp. 17-24, 1998.
Examples
--------
>>> from scipy import stats
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, 0]
>>> tau, p_value = stats.weightedtau(x, y)
>>> tau
-0.56694968153682723
>>> p_value
nan
>>> tau, p_value = stats.weightedtau(x, y, additive=False)
>>> tau
-0.62205716951801038
NaNs are considered the smallest possible score:
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, np.nan]
>>> tau, _ = stats.weightedtau(x, y)
>>> tau
-0.56694968153682723
This is exactly Kendall's tau:
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, 0]
>>> tau, _ = stats.weightedtau(x, y, weigher=lambda x: 1)
>>> tau
-0.47140452079103173
>>> x = [12, 2, 1, 12, 2]
>>> y = [1, 4, 7, 1, 0]
>>> stats.weightedtau(x, y, rank=None)
WeightedTauResult(correlation=-0.4157652301037516, pvalue=nan)
>>> stats.weightedtau(y, x, rank=None)
WeightedTauResult(correlation=-0.7181341329699028, pvalue=nan)
"""
x = np.asarray(x).ravel()
y = np.asarray(y).ravel()
if x.size != y.size:
raise ValueError("All inputs to `weightedtau` must be of the same size, "
"found x-size %s and y-size %s" % (x.size, y.size))
if not x.size:
return WeightedTauResult(np.nan, np.nan) # Return NaN if arrays are empty
# If there are NaNs we apply _toint64()
if np.isnan(np.sum(x)):
x = _toint64(x)
if np.isnan(np.sum(x)):
y = _toint64(y)
# Reduce to ranks unsupported types
if x.dtype != y.dtype:
if x.dtype != np.int64:
x = _toint64(x)
if y.dtype != np.int64:
y = _toint64(y)
else:
if x.dtype not in (np.int32, np.int64, np.float32, np.float64):
x = _toint64(x)
y = _toint64(y)
if rank is True:
return WeightedTauResult((
_weightedrankedtau(x, y, None, weigher, additive) +
_weightedrankedtau(y, x, None, weigher, additive)
) / 2, np.nan)
if rank is False:
rank = np.arange(x.size, dtype=np.intp)
elif rank is not None:
rank = np.asarray(rank).ravel()
if rank.size != x.size:
raise ValueError("All inputs to `weightedtau` must be of the same size, "
"found x-size %s and rank-size %s" % (x.size, rank.size))
return WeightedTauResult(_weightedrankedtau(x, y, rank, weigher, additive), np.nan)
# FROM MGCPY: https://github.com/neurodata/mgcpy
class _ParallelP(object):
"""
Helper function to calculate parallel p-value.
"""
def __init__(self, x, y, compute_distance, random_states):
self.x = x
self.y = y
self.compute_distance = compute_distance
self.random_states = random_states
def __call__(self, index):
permx = self.random_states[index].permutation(self.x)
permy = self.random_states[index].permutation(self.y)
# calculate permuted stats, store in null distribution
perm_stat = _mgc_stat(permx, permy, self.compute_distance)[0]
return perm_stat
def _perm_test(x, y, stat, compute_distance, reps=1000, workers=-1,
random_state=None):
r"""
Helper function that calculates the p-value. See below for uses.
Parameters
----------
x, y : ndarray
`x` and `y` have shapes `(n, p)` and `(n, q)`.
stat : float
The sample test statistic.
compute_distance : callable
A function that computes the distance or similarity among the samples
within each data matrix. Set to `None` if `x` and `y` are already
distance.
reps : int, optional
The number of replications used to estimate the null when using the
permutation test. The default is 1000 replications.
workers : int or map-like callable, optional
If `workers` is an int the population is subdivided into `workers`
sections and evaluated in parallel (uses
`multiprocessing.Pool <multiprocessing>`). Supply `-1` to use all cores
available to the Process. Alternatively supply a map-like callable,
such as `multiprocessing.Pool.map` for evaluating the population in
parallel. This evaluation is carried out as `workers(func, iterable)`.
Requires that `func` be pickleable.
random_state : int or np.random.RandomState instance, optional
If already a RandomState instance, use it.
If seed is an int, return a new RandomState instance seeded with seed.
If None, use np.random.RandomState. Default is None.
Returns
-------
pvalue : float
The sample test p-value.
null_dist : list
The approximated null distribution.
"""
# generate seeds for each rep (change to new parallel random number
# capabilities in numpy >= 1.17+)
random_state = check_random_state(random_state)
random_states = [np.random.RandomState(random_state.randint(1 << 32,
size=4, dtype=np.uint32)) for _ in range(reps)]
# parallelizes with specified workers over number of reps and set seeds
mapwrapper = MapWrapper(workers)
parallelp = _ParallelP(x=x, y=y, compute_distance=compute_distance,
random_states=random_states)
null_dist = np.array(list(mapwrapper(parallelp, range(reps))))
# calculate p-value and significant permutation map through list
pvalue = (null_dist >= stat).sum() / reps
# correct for a p-value of 0. This is because, with bootstrapping
# permutations, a p-value of 0 is incorrect
if pvalue == 0:
pvalue = 1 / reps
return pvalue, null_dist
def _euclidean_dist(x):
return cdist(x, x)
MGCResult = namedtuple('MGCResult', ('stat', 'pvalue', 'mgc_dict'))
def multiscale_graphcorr(x, y, compute_distance=_euclidean_dist, reps=1000,
workers=1, is_twosamp=False, random_state=None):
r"""
Computes the Multiscale Graph Correlation (MGC) test statistic.
Specifically, for each point, MGC finds the :math:`k`-nearest neighbors for
one property (e.g. cloud density), and the :math:`l`-nearest neighbors for
the other property (e.g. grass wetness) [1]_. This pair :math:`(k, l)` is
called the "scale". A priori, however, it is not know which scales will be
most informative. So, MGC computes all distance pairs, and then efficiently
computes the distance correlations for all scales. The local correlations
illustrate which scales are relatively informative about the relationship.
The key, therefore, to successfully discover and decipher relationships
between disparate data modalities is to adaptively determine which scales
are the most informative, and the geometric implication for the most
informative scales. Doing so not only provides an estimate of whether the
modalities are related, but also provides insight into how the
determination was made. This is especially important in high-dimensional
data, where simple visualizations do not reveal relationships to the
unaided human eye. Characterizations of this implementation in particular
have been derived from and benchmarked within in [2]_.
Parameters
----------
x, y : ndarray
If ``x`` and ``y`` have shapes ``(n, p)`` and ``(n, q)`` where `n` is
the number of samples and `p` and `q` are the number of dimensions,
then the MGC independence test will be run. Alternatively, ``x`` and
``y`` can have shapes ``(n, n)`` if they are distance or similarity
matrices, and ``compute_distance`` must be sent to ``None``. If ``x``
and ``y`` have shapes ``(n, p)`` and ``(m, p)``, an unpaired
two-sample MGC test will be run.
compute_distance : callable, optional
A function that computes the distance or similarity among the samples
within each data matrix. Set to ``None`` if ``x`` and ``y`` are
already distance matrices. The default uses the euclidean norm metric.
If you are calling a custom function, either create the distance
matrix before-hand or create a function of the form
``compute_distance(x)`` where `x` is the data matrix for which
pairwise distances are calculated.
reps : int, optional
The number of replications used to estimate the null when using the
permutation test. The default is ``1000``.
workers : int or map-like callable, optional
If ``workers`` is an int the population is subdivided into ``workers``
sections and evaluated in parallel (uses ``multiprocessing.Pool
<multiprocessing>``). Supply ``-1`` to use all cores available to the
Process. Alternatively supply a map-like callable, such as
``multiprocessing.Pool.map`` for evaluating the p-value in parallel.
This evaluation is carried out as ``workers(func, iterable)``.
Requires that `func` be pickleable. The default is ``1``.
is_twosamp : bool, optional
If `True`, a two sample test will be run. If ``x`` and ``y`` have
shapes ``(n, p)`` and ``(m, p)``, this optional will be overriden and
set to ``True``. Set to ``True`` if ``x`` and ``y`` both have shapes
``(n, p)`` and a two sample test is desired. The default is ``False``.
random_state : int or np.random.RandomState instance, optional
If already a RandomState instance, use it.
If seed is an int, return a new RandomState instance seeded with seed.
If None, use np.random.RandomState. Default is None.
Returns
-------
stat : float
The sample MGC test statistic within `[-1, 1]`.
pvalue : float
The p-value obtained via permutation.
mgc_dict : dict
Contains additional useful additional returns containing the following
keys:
- mgc_map : ndarray
A 2D representation of the latent geometry of the relationship.
of the relationship.
- opt_scale : (int, int)
The estimated optimal scale as a `(x, y)` pair.
- null_dist : list
The null distribution derived from the permuted matrices
See Also
--------
pearsonr : Pearson correlation coefficient and p-value for testing
non-correlation.
kendalltau : Calculates Kendall's tau.
spearmanr : Calculates a Spearman rank-order correlation coefficient.
Notes
-----
A description of the process of MGC and applications on neuroscience data
can be found in [1]_. It is performed using the following steps:
#. Two distance matrices :math:`D^X` and :math:`D^Y` are computed and
modified to be mean zero columnwise. This results in two
:math:`n \times n` distance matrices :math:`A` and :math:`B` (the
centering and unbiased modification) [3]_.
#. For all values :math:`k` and :math:`l` from :math:`1, ..., n`,
* The :math:`k`-nearest neighbor and :math:`l`-nearest neighbor graphs
are calculated for each property. Here, :math:`G_k (i, j)` indicates
the :math:`k`-smallest values of the :math:`i`-th row of :math:`A`
and :math:`H_l (i, j)` indicates the :math:`l` smallested values of
the :math:`i`-th row of :math:`B`
* Let :math:`\circ` denotes the entry-wise matrix product, then local
correlations are summed and normalized using the following statistic:
.. math::
c^{kl} = \frac{\sum_{ij} A G_k B H_l}
{\sqrt{\sum_{ij} A^2 G_k \times \sum_{ij} B^2 H_l}}
#. The MGC test statistic is the smoothed optimal local correlation of
:math:`\{ c^{kl} \}`. Denote the smoothing operation as :math:`R(\cdot)`
(which essentially set all isolated large correlations) as 0 and
connected large correlations the same as before, see [3]_.) MGC is,
.. math::
MGC_n (x, y) = \max_{(k, l)} R \left(c^{kl} \left( x_n, y_n \right)
\right)
The test statistic returns a value between :math:`(-1, 1)` since it is
normalized.
The p-value returned is calculated using a permutation test. This process
is completed by first randomly permuting :math:`y` to estimate the null
distribution and then calculating the probability of observing a test
statistic, under the null, at least as extreme as the observed test
statistic.
MGC requires at least 5 samples to run with reliable results. It can also
handle high-dimensional data sets.
In addition, by manipulating the input data matrices, the two-sample
testing problem can be reduced to the independence testing problem [4]_.
Given sample data :math:`U` and :math:`V` of sizes :math:`p \times n`
:math:`p \times m`, data matrix :math:`X` and :math:`Y` can be created as
follows:
.. math::
X = [U | V] \in \mathcal{R}^{p \times (n + m)}
Y = [0_{1 \times n} | 1_{1 \times m}] \in \mathcal{R}^{(n + m)}
Then, the MGC statistic can be calculated as normal. This methodology can
be extended to similar tests such as distance correlation [4]_.
.. versionadded:: 1.4.0
References
----------
.. [1] Vogelstein, J. T., Bridgeford, E. W., Wang, Q., Priebe, C. E.,
Maggioni, M., & Shen, C. (2019). Discovering and deciphering
relationships across disparate data modalities. ELife.
.. [2] Panda, S., Palaniappan, S., Xiong, J., Swaminathan, A.,
Ramachandran, S., Bridgeford, E. W., ... Vogelstein, J. T. (2019).
mgcpy: A Comprehensive High Dimensional Independence Testing Python
Package. ArXiv:1907.02088 [Cs, Stat].
.. [3] Shen, C., Priebe, C.E., & Vogelstein, J. T. (2019). From distance
correlation to multiscale graph correlation. Journal of the American
Statistical Association.
.. [4] Shen, C. & Vogelstein, J. T. (2018). The Exact Equivalence of
Distance and Kernel Methods for Hypothesis Testing. ArXiv:1806.05514
[Cs, Stat].
Examples
--------
>>> from scipy.stats import multiscale_graphcorr
>>> x = np.arange(100)
>>> y = x
>>> stat, pvalue, _ = multiscale_graphcorr(x, y, workers=-1)
>>> '%.1f, %.3f' % (stat, pvalue)
'1.0, 0.001'
Alternatively,
>>> x = np.arange(100)
>>> y = x
>>> mgc = multiscale_graphcorr(x, y)
>>> '%.1f, %.3f' % (mgc.stat, mgc.pvalue)
'1.0, 0.001'
To run an unpaired two-sample test,
>>> x = np.arange(100)
>>> y = np.arange(79)
>>> mgc = multiscale_graphcorr(x, y, random_state=1)
>>> '%.3f, %.2f' % (mgc.stat, mgc.pvalue)
'0.033, 0.02'
or, if shape of the inputs are the same,
>>> x = np.arange(100)
>>> y = x
>>> mgc = multiscale_graphcorr(x, y, is_twosamp=True)
>>> '%.3f, %.1f' % (mgc.stat, mgc.pvalue)
'-0.008, 1.0'
"""
if not isinstance(x, np.ndarray) or not isinstance(y, np.ndarray):
raise ValueError("x and y must be ndarrays")
# convert arrays of type (n,) to (n, 1)
if x.ndim == 1:
x = x[:, np.newaxis]
elif x.ndim != 2:
raise ValueError("Expected a 2-D array `x`, found shape "
"{}".format(x.shape))
if y.ndim == 1:
y = y[:, np.newaxis]
elif y.ndim != 2:
raise ValueError("Expected a 2-D array `y`, found shape "
"{}".format(y.shape))
nx, px = x.shape
ny, py = y.shape
# check for NaNs
_contains_nan(x, nan_policy='raise')
_contains_nan(y, nan_policy='raise')
# check for positive or negative infinity and raise error
if np.sum(np.isinf(x)) > 0 or np.sum(np.isinf(y)) > 0:
raise ValueError("Inputs contain infinities")
if nx != ny:
if px == py:
# reshape x and y for two sample testing
is_twosamp = True
else:
raise ValueError("Shape mismatch, x and y must have shape [n, p] "
"and [n, q] or have shape [n, p] and [m, p].")
if nx < 5 or ny < 5:
raise ValueError("MGC requires at least 5 samples to give reasonable "
"results.")
# convert x and y to float
x = x.astype(np.float64)
y = y.astype(np.float64)
# check if compute_distance_matrix if a callable()
if not callable(compute_distance) and compute_distance is not None:
raise ValueError("Compute_distance must be a function.")
# check if number of reps exists, integer, or > 0 (if under 1000 raises
# warning)
if not isinstance(reps, int) or reps < 0:
raise ValueError("Number of reps must be an integer greater than 0.")
elif reps < 1000:
msg = ("The number of replications is low (under 1000), and p-value "
"calculations may be unreliable. Use the p-value result, with "
"caution!")
warnings.warn(msg, RuntimeWarning)
if is_twosamp:
x, y = _two_sample_transform(x, y)
# calculate MGC stat
stat, stat_dict = _mgc_stat(x, y, compute_distance)
stat_mgc_map = stat_dict["stat_mgc_map"]
opt_scale = stat_dict["opt_scale"]
# calculate permutation MGC p-value
pvalue, null_dist = _perm_test(x, y, stat, compute_distance, reps=reps,
workers=workers, random_state=random_state)
# save all stats (other than stat/p-value) in dictionary
mgc_dict = {"mgc_map": stat_mgc_map,
"opt_scale": opt_scale,
"null_dist": null_dist}
return MGCResult(stat, pvalue, mgc_dict)
def _mgc_stat(x, y, compute_distance):
r"""
Helper function that calculates the MGC stat. See above for use.
Parameters
----------
x, y : ndarray
`x` and `y` have shapes `(n, p)` and `(n, q)` or `(n, n)` and `(n, n)`
if distance matrices.
compute_distance : callable
A function that computes the distance or similarity among the samples
within each data matrix. Set to `None` if `x` and `y` are already
distance.
Returns
-------
stat : float
The sample MGC test statistic within `[-1, 1]`.
stat_dict : dict
Contains additional useful additional returns containing the following
keys:
- stat_mgc_map : ndarray
MGC-map of the statistics.
- opt_scale : (float, float)
The estimated optimal scale as a `(x, y)` pair.
"""
# set distx and disty to x and y when compute_distance = None
distx = x
disty = y
if compute_distance is not None:
# compute distance matrices for x and y
distx = compute_distance(x)
disty = compute_distance(y)
# calculate MGC map and optimal scale
stat_mgc_map = _local_correlations(distx, disty, global_corr='mgc')
n, m = stat_mgc_map.shape
if m == 1 or n == 1:
# the global scale at is the statistic calculated at maximial nearest
# neighbors. There is not enough local scale to search over, so
# default to global scale
stat = stat_mgc_map[m - 1][n - 1]
opt_scale = m * n
else:
samp_size = len(distx) - 1
# threshold to find connected region of significant local correlations
sig_connect = _threshold_mgc_map(stat_mgc_map, samp_size)
# maximum within the significant region
stat, opt_scale = _smooth_mgc_map(sig_connect, stat_mgc_map)
stat_dict = {"stat_mgc_map": stat_mgc_map,
"opt_scale": opt_scale}
return stat, stat_dict
def _threshold_mgc_map(stat_mgc_map, samp_size):
r"""
Finds a connected region of significance in the MGC-map by thresholding.
Parameters
----------
stat_mgc_map : ndarray
All local correlations within `[-1,1]`.
samp_size : int
The sample size of original data.
Returns
-------
sig_connect : ndarray
A binary matrix with 1's indicating the significant region.
"""
m, n = stat_mgc_map.shape
# 0.02 is simply an empirical threshold, this can be set to 0.01 or 0.05
# with varying levels of performance. Threshold is based on a beta
# approximation.
per_sig = 1 - (0.02 / samp_size) # Percentile to consider as significant
threshold = samp_size * (samp_size - 3)/4 - 1/2 # Beta approximation
threshold = distributions.beta.ppf(per_sig, threshold, threshold) * 2 - 1
# the global scale at is the statistic calculated at maximial nearest
# neighbors. Threshold is the maximium on the global and local scales
threshold = max(threshold, stat_mgc_map[m - 1][n - 1])
# find the largest connected component of significant correlations
sig_connect = stat_mgc_map > threshold
if np.sum(sig_connect) > 0:
sig_connect, _ = measurements.label(sig_connect)
_, label_counts = np.unique(sig_connect, return_counts=True)
# skip the first element in label_counts, as it is count(zeros)
max_label = np.argmax(label_counts[1:]) + 1
sig_connect = sig_connect == max_label
else:
sig_connect = np.array([[False]])
return sig_connect
def _smooth_mgc_map(sig_connect, stat_mgc_map):
"""
Finds the smoothed maximal within the significant region R.
If area of R is too small it returns the last local correlation. Otherwise,
returns the maximum within significant_connected_region.
Parameters
----------
sig_connect: ndarray
A binary matrix with 1's indicating the significant region.
stat_mgc_map: ndarray
All local correlations within `[-1, 1]`.
Returns
-------
stat : float
The sample MGC statistic within `[-1, 1]`.
opt_scale: (float, float)
The estimated optimal scale as an `(x, y)` pair.
"""
m, n = stat_mgc_map.shape
# the global scale at is the statistic calculated at maximial nearest
# neighbors. By default, statistic and optimal scale are global.
stat = stat_mgc_map[m - 1][n - 1]
opt_scale = [m, n]
if np.linalg.norm(sig_connect) != 0:
# proceed only when the connected region's area is sufficiently large
# 0.02 is simply an empirical threshold, this can be set to 0.01 or 0.05
# with varying levels of performance
if np.sum(sig_connect) >= np.ceil(0.02 * max(m, n)) * min(m, n):
max_corr = max(stat_mgc_map[sig_connect])
# find all scales within significant_connected_region that maximize
# the local correlation
max_corr_index = np.where((stat_mgc_map >= max_corr) & sig_connect)
if max_corr >= stat:
stat = max_corr
k, l = max_corr_index
one_d_indices = k * n + l # 2D to 1D indexing
k = np.max(one_d_indices) // n
l = np.max(one_d_indices) % n
opt_scale = [k+1, l+1] # adding 1s to match R indexing
return stat, opt_scale
def _two_sample_transform(u, v):
"""
Helper function that concatenates x and y for two sample MGC stat. See
above for use.
Parameters
----------
u, v : ndarray
`u` and `v` have shapes `(n, p)` and `(m, p)`,
Returns
-------
x : ndarray
Concatenate `u` and `v` along the `axis = 0`. `x` thus has shape
`(2n, p)`.
y : ndarray
Label matrix for `x` where 0 refers to samples that comes from `u` and
1 refers to samples that come from `v`. `y` thus has shape `(2n, 1)`.
"""
nx = u.shape[0]
ny = v.shape[0]
x = np.concatenate([u, v], axis=0)
y = np.concatenate([np.zeros(nx), np.ones(ny)], axis=0).reshape(-1, 1)
return x, y
#####################################
# INFERENTIAL STATISTICS #
#####################################
Ttest_1sampResult = namedtuple('Ttest_1sampResult', ('statistic', 'pvalue'))
def ttest_1samp(a, popmean, axis=0, nan_policy='propagate'):
"""
Calculate the T-test for the mean of ONE group of scores.
This is a two-sided test for the null hypothesis that the expected value
(mean) of a sample of independent observations `a` is equal to the given
population mean, `popmean`.
Parameters
----------
a : array_like
Sample observation.
popmean : float or array_like
Expected value in null hypothesis. If array_like, then it must have the
same shape as `a` excluding the axis dimension.
axis : int or None, optional
Axis along which to compute test. If None, compute over the whole
array `a`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float or array
t-statistic.
pvalue : float or array
Two-sided p-value.
Examples
--------
>>> from scipy import stats
>>> np.random.seed(7654567) # fix seed to get the same result
>>> rvs = stats.norm.rvs(loc=5, scale=10, size=(50,2))
Test if mean of random sample is equal to true mean, and different mean.
We reject the null hypothesis in the second case and don't reject it in
the first case.
>>> stats.ttest_1samp(rvs,5.0)
(array([-0.68014479, -0.04323899]), array([ 0.49961383, 0.96568674]))
>>> stats.ttest_1samp(rvs,0.0)
(array([ 2.77025808, 4.11038784]), array([ 0.00789095, 0.00014999]))
Examples using axis and non-scalar dimension for population mean.
>>> stats.ttest_1samp(rvs,[5.0,0.0])
(array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
(array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
(array([[-0.68014479, -0.04323899],
[ 2.77025808, 4.11038784]]), array([[ 4.99613833e-01, 9.65686743e-01],
[ 7.89094663e-03, 1.49986458e-04]]))
"""
a, axis = _chk_asarray(a, axis)
contains_nan, nan_policy = _contains_nan(a, nan_policy)
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
return mstats_basic.ttest_1samp(a, popmean, axis)
n = a.shape[axis]
df = n - 1
d = np.mean(a, axis) - popmean
v = np.var(a, axis, ddof=1)
denom = np.sqrt(v / n)
with np.errstate(divide='ignore', invalid='ignore'):
t = np.divide(d, denom)
t, prob = _ttest_finish(df, t)
return Ttest_1sampResult(t, prob)
def _ttest_finish(df, t):
"""Common code between all 3 t-test functions."""
prob = distributions.t.sf(np.abs(t), df) * 2 # use np.abs to get upper tail
if t.ndim == 0:
t = t[()]
return t, prob
def _ttest_ind_from_stats(mean1, mean2, denom, df):
d = mean1 - mean2
with np.errstate(divide='ignore', invalid='ignore'):
t = np.divide(d, denom)
t, prob = _ttest_finish(df, t)
return (t, prob)
def _unequal_var_ttest_denom(v1, n1, v2, n2):
vn1 = v1 / n1
vn2 = v2 / n2
with np.errstate(divide='ignore', invalid='ignore'):
df = (vn1 + vn2)**2 / (vn1**2 / (n1 - 1) + vn2**2 / (n2 - 1))
# If df is undefined, variances are zero (assumes n1 > 0 & n2 > 0).
# Hence it doesn't matter what df is as long as it's not NaN.
df = np.where(np.isnan(df), 1, df)
denom = np.sqrt(vn1 + vn2)
return df, denom
def _equal_var_ttest_denom(v1, n1, v2, n2):
df = n1 + n2 - 2.0
svar = ((n1 - 1) * v1 + (n2 - 1) * v2) / df
denom = np.sqrt(svar * (1.0 / n1 + 1.0 / n2))
return df, denom
Ttest_indResult = namedtuple('Ttest_indResult', ('statistic', 'pvalue'))
def ttest_ind_from_stats(mean1, std1, nobs1, mean2, std2, nobs2,
equal_var=True):
r"""
T-test for means of two independent samples from descriptive statistics.
This is a two-sided test for the null hypothesis that two independent
samples have identical average (expected) values.
Parameters
----------
mean1 : array_like
The mean(s) of sample 1.
std1 : array_like
The standard deviation(s) of sample 1.
nobs1 : array_like
The number(s) of observations of sample 1.
mean2 : array_like
The mean(s) of sample 2.
std2 : array_like
The standard deviations(s) of sample 2.
nobs2 : array_like
The number(s) of observations of sample 2.
equal_var : bool, optional
If True (default), perform a standard independent 2 sample test
that assumes equal population variances [1]_.
If False, perform Welch's t-test, which does not assume equal
population variance [2]_.
Returns
-------
statistic : float or array
The calculated t-statistics.
pvalue : float or array
The two-tailed p-value.
See Also
--------
scipy.stats.ttest_ind
Notes
-----
.. versionadded:: 0.16.0
References
----------
.. [1] https://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test
.. [2] https://en.wikipedia.org/wiki/Welch%27s_t-test
Examples
--------
Suppose we have the summary data for two samples, as follows::
Sample Sample
Size Mean Variance
Sample 1 13 15.0 87.5
Sample 2 11 12.0 39.0
Apply the t-test to this data (with the assumption that the population
variances are equal):
>>> from scipy.stats import ttest_ind_from_stats
>>> ttest_ind_from_stats(mean1=15.0, std1=np.sqrt(87.5), nobs1=13,
... mean2=12.0, std2=np.sqrt(39.0), nobs2=11)
Ttest_indResult(statistic=0.9051358093310269, pvalue=0.3751996797581487)
For comparison, here is the data from which those summary statistics
were taken. With this data, we can compute the same result using
`scipy.stats.ttest_ind`:
>>> a = np.array([1, 3, 4, 6, 11, 13, 15, 19, 22, 24, 25, 26, 26])
>>> b = np.array([2, 4, 6, 9, 11, 13, 14, 15, 18, 19, 21])
>>> from scipy.stats import ttest_ind
>>> ttest_ind(a, b)
Ttest_indResult(statistic=0.905135809331027, pvalue=0.3751996797581486)
Suppose we instead have binary data and would like to apply a t-test to
compare the proportion of 1s in two independent groups::
Number of Sample Sample
Size ones Mean Variance
Sample 1 150 30 0.2 0.16
Sample 2 200 45 0.225 0.174375
The sample mean :math:`\hat{p}` is the proportion of ones in the sample
and the variance for a binary observation is estimated by
:math:`\hat{p}(1-\hat{p})`.
>>> ttest_ind_from_stats(mean1=0.2, std1=np.sqrt(0.16), nobs1=150,
... mean2=0.225, std2=np.sqrt(0.17437), nobs2=200)
Ttest_indResult(statistic=-0.564327545549774, pvalue=0.5728947691244874)
For comparison, we could compute the t statistic and p-value using
arrays of 0s and 1s and `scipy.stat.ttest_ind`, as above.
>>> group1 = np.array([1]*30 + [0]*(150-30))
>>> group2 = np.array([1]*45 + [0]*(200-45))
>>> ttest_ind(group1, group2)
Ttest_indResult(statistic=-0.5627179589855622, pvalue=0.573989277115258)
"""
if equal_var:
df, denom = _equal_var_ttest_denom(std1**2, nobs1, std2**2, nobs2)
else:
df, denom = _unequal_var_ttest_denom(std1**2, nobs1,
std2**2, nobs2)
res = _ttest_ind_from_stats(mean1, mean2, denom, df)
return Ttest_indResult(*res)
def ttest_ind(a, b, axis=0, equal_var=True, nan_policy='propagate'):
"""
Calculate the T-test for the means of *two independent* samples of scores.
This is a two-sided test for the null hypothesis that 2 independent samples
have identical average (expected) values. This test assumes that the
populations have identical variances by default.
Parameters
----------
a, b : array_like
The arrays must have the same shape, except in the dimension
corresponding to `axis` (the first, by default).
axis : int or None, optional
Axis along which to compute test. If None, compute over the whole
arrays, `a`, and `b`.
equal_var : bool, optional
If True (default), perform a standard independent 2 sample test
that assumes equal population variances [1]_.
If False, perform Welch's t-test, which does not assume equal
population variance [2]_.
.. versionadded:: 0.11.0
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float or array
The calculated t-statistic.
pvalue : float or array
The two-tailed p-value.
Notes
-----
We can use this test, if we observe two independent samples from
the same or different population, e.g. exam scores of boys and
girls or of two ethnic groups. The test measures whether the
average (expected) value differs significantly across samples. If
we observe a large p-value, for example larger than 0.05 or 0.1,
then we cannot reject the null hypothesis of identical average scores.
If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%,
then we reject the null hypothesis of equal averages.
References
----------
.. [1] https://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test
.. [2] https://en.wikipedia.org/wiki/Welch%27s_t-test
Examples
--------
>>> from scipy import stats
>>> np.random.seed(12345678)
Test with sample with identical means:
>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs2)
(0.26833823296239279, 0.78849443369564776)
>>> stats.ttest_ind(rvs1,rvs2, equal_var = False)
(0.26833823296239279, 0.78849452749500748)
`ttest_ind` underestimates p for unequal variances:
>>> rvs3 = stats.norm.rvs(loc=5, scale=20, size=500)
>>> stats.ttest_ind(rvs1, rvs3)
(-0.46580283298287162, 0.64145827413436174)
>>> stats.ttest_ind(rvs1, rvs3, equal_var = False)
(-0.46580283298287162, 0.64149646246569292)
When n1 != n2, the equal variance t-statistic is no longer equal to the
unequal variance t-statistic:
>>> rvs4 = stats.norm.rvs(loc=5, scale=20, size=100)
>>> stats.ttest_ind(rvs1, rvs4)
(-0.99882539442782481, 0.3182832709103896)
>>> stats.ttest_ind(rvs1, rvs4, equal_var = False)
(-0.69712570584654099, 0.48716927725402048)
T-test with different means, variance, and n:
>>> rvs5 = stats.norm.rvs(loc=8, scale=20, size=100)
>>> stats.ttest_ind(rvs1, rvs5)
(-1.4679669854490653, 0.14263895620529152)
>>> stats.ttest_ind(rvs1, rvs5, equal_var = False)
(-0.94365973617132992, 0.34744170334794122)
"""
a, b, axis = _chk2_asarray(a, b, axis)
# check both a and b
cna, npa = _contains_nan(a, nan_policy)
cnb, npb = _contains_nan(b, nan_policy)
contains_nan = cna or cnb
if npa == 'omit' or npb == 'omit':
nan_policy = 'omit'
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
b = ma.masked_invalid(b)
return mstats_basic.ttest_ind(a, b, axis, equal_var)
if a.size == 0 or b.size == 0:
return Ttest_indResult(np.nan, np.nan)
v1 = np.var(a, axis, ddof=1)
v2 = np.var(b, axis, ddof=1)
n1 = a.shape[axis]
n2 = b.shape[axis]
if equal_var:
df, denom = _equal_var_ttest_denom(v1, n1, v2, n2)
else:
df, denom = _unequal_var_ttest_denom(v1, n1, v2, n2)
res = _ttest_ind_from_stats(np.mean(a, axis), np.mean(b, axis), denom, df)
return Ttest_indResult(*res)
Ttest_relResult = namedtuple('Ttest_relResult', ('statistic', 'pvalue'))
def ttest_rel(a, b, axis=0, nan_policy='propagate'):
"""
Calculate the t-test on TWO RELATED samples of scores, a and b.
This is a two-sided test for the null hypothesis that 2 related or
repeated samples have identical average (expected) values.
Parameters
----------
a, b : array_like
The arrays must have the same shape.
axis : int or None, optional
Axis along which to compute test. If None, compute over the whole
arrays, `a`, and `b`.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float or array
t-statistic.
pvalue : float or array
Two-sided p-value.
Notes
-----
Examples for use are scores of the same set of student in
different exams, or repeated sampling from the same units. The
test measures whether the average score differs significantly
across samples (e.g. exams). If we observe a large p-value, for
example greater than 0.05 or 0.1 then we cannot reject the null
hypothesis of identical average scores. If the p-value is smaller
than the threshold, e.g. 1%, 5% or 10%, then we reject the null
hypothesis of equal averages. Small p-values are associated with
large t-statistics.
References
----------
https://en.wikipedia.org/wiki/T-test#Dependent_t-test_for_paired_samples
Examples
--------
>>> from scipy import stats
>>> np.random.seed(12345678) # fix random seed to get same numbers
>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs2)
(0.24101764965300962, 0.80964043445811562)
>>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs3)
(-3.9995108708727933, 7.3082402191726459e-005)
"""
a, b, axis = _chk2_asarray(a, b, axis)
cna, npa = _contains_nan(a, nan_policy)
cnb, npb = _contains_nan(b, nan_policy)
contains_nan = cna or cnb
if npa == 'omit' or npb == 'omit':
nan_policy = 'omit'
if contains_nan and nan_policy == 'omit':
a = ma.masked_invalid(a)
b = ma.masked_invalid(b)
m = ma.mask_or(ma.getmask(a), ma.getmask(b))
aa = ma.array(a, mask=m, copy=True)
bb = ma.array(b, mask=m, copy=True)
return mstats_basic.ttest_rel(aa, bb, axis)
if a.shape[axis] != b.shape[axis]:
raise ValueError('unequal length arrays')
if a.size == 0 or b.size == 0:
return np.nan, np.nan
n = a.shape[axis]
df = n - 1
d = (a - b).astype(np.float64)
v = np.var(d, axis, ddof=1)
dm = np.mean(d, axis)
denom = np.sqrt(v / n)
with np.errstate(divide='ignore', invalid='ignore'):
t = np.divide(dm, denom)
t, prob = _ttest_finish(df, t)
return Ttest_relResult(t, prob)
KstestResult = namedtuple('KstestResult', ('statistic', 'pvalue'))
def kstest(rvs, cdf, args=(), N=20, alternative='two-sided', mode='approx'):
"""
Perform the Kolmogorov-Smirnov test for goodness of fit.
This performs a test of the distribution F(x) of an observed
random variable against a given distribution G(x). Under the null
hypothesis, the two distributions are identical, F(x)=G(x). The
alternative hypothesis can be either 'two-sided' (default), 'less'
or 'greater'. The KS test is only valid for continuous distributions.
Parameters
----------
rvs : str, array_like, or callable
If a string, it should be the name of a distribution in `scipy.stats`.
If an array, it should be a 1-D array of observations of random
variables.
If a callable, it should be a function to generate random variables;
it is required to have a keyword argument `size`.
cdf : str or callable
If a string, it should be the name of a distribution in `scipy.stats`.
If `rvs` is a string then `cdf` can be False or the same as `rvs`.
If a callable, that callable is used to calculate the cdf.
args : tuple, sequence, optional
Distribution parameters, used if `rvs` or `cdf` are strings.
N : int, optional
Sample size if `rvs` is string or callable. Default is 20.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided'
* 'less': one-sided, see explanation in Notes
* 'greater': one-sided, see explanation in Notes
mode : {'approx', 'asymp'}, optional
Defines the distribution used for calculating the p-value.
The following options are available (default is 'approx'):
* 'approx': use approximation to exact distribution of test statistic
* 'asymp': use asymptotic distribution of test statistic
Returns
-------
statistic : float
KS test statistic, either D, D+ or D-.
pvalue : float
One-tailed or two-tailed p-value.
See Also
--------
ks_2samp
Notes
-----
In the one-sided test, the alternative is that the empirical
cumulative distribution function of the random variable is "less"
or "greater" than the cumulative distribution function G(x) of the
hypothesis, ``F(x)<=G(x)``, resp. ``F(x)>=G(x)``.
Examples
--------
>>> from scipy import stats
>>> x = np.linspace(-15, 15, 9)
>>> stats.kstest(x, 'norm')
(0.44435602715924361, 0.038850142705171065)
>>> np.random.seed(987654321) # set random seed to get the same result
>>> stats.kstest('norm', False, N=100)
(0.058352892479417884, 0.88531190944151261)
The above lines are equivalent to:
>>> np.random.seed(987654321)
>>> stats.kstest(stats.norm.rvs(size=100), 'norm')
(0.058352892479417884, 0.88531190944151261)
*Test against one-sided alternative hypothesis*
Shift distribution to larger values, so that ``cdf_dgp(x) < norm.cdf(x)``:
>>> np.random.seed(987654321)
>>> x = stats.norm.rvs(loc=0.2, size=100)
>>> stats.kstest(x,'norm', alternative = 'less')
(0.12464329735846891, 0.040989164077641749)
Reject equal distribution against alternative hypothesis: less
>>> stats.kstest(x,'norm', alternative = 'greater')
(0.0072115233216311081, 0.98531158590396395)
Don't reject equal distribution against alternative hypothesis: greater
>>> stats.kstest(x,'norm', mode='asymp')
(0.12464329735846891, 0.08944488871182088)
*Testing t distributed random variables against normal distribution*
With 100 degrees of freedom the t distribution looks close to the normal
distribution, and the K-S test does not reject the hypothesis that the
sample came from the normal distribution:
>>> np.random.seed(987654321)
>>> stats.kstest(stats.t.rvs(100,size=100),'norm')
(0.072018929165471257, 0.67630062862479168)
With 3 degrees of freedom the t distribution looks sufficiently different
from the normal distribution, that we can reject the hypothesis that the
sample came from the normal distribution at the 10% level:
>>> np.random.seed(987654321)
>>> stats.kstest(stats.t.rvs(3,size=100),'norm')
(0.131016895759829, 0.058826222555312224)
"""
if isinstance(rvs, string_types):
if (not cdf) or (cdf == rvs):
cdf = getattr(distributions, rvs).cdf
rvs = getattr(distributions, rvs).rvs
else:
raise AttributeError("if rvs is string, cdf has to be the "
"same distribution")
if isinstance(cdf, string_types):
cdf = getattr(distributions, cdf).cdf
if callable(rvs):
kwds = {'size': N}
vals = np.sort(rvs(*args, **kwds))
else:
vals = np.sort(rvs)
N = len(vals)
cdfvals = cdf(vals, *args)
# to not break compatibility with existing code
if alternative == 'two_sided':
alternative = 'two-sided'
if alternative in ['two-sided', 'greater']:
Dplus = (np.arange(1.0, N + 1)/N - cdfvals).max()
if alternative == 'greater':
return KstestResult(Dplus, distributions.ksone.sf(Dplus, N))
if alternative in ['two-sided', 'less']:
Dmin = (cdfvals - np.arange(0.0, N)/N).max()
if alternative == 'less':
return KstestResult(Dmin, distributions.ksone.sf(Dmin, N))
if alternative == 'two-sided':
D = np.max([Dplus, Dmin])
if mode == 'asymp':
return KstestResult(D, distributions.kstwobign.sf(D * np.sqrt(N)))
if mode == 'approx':
pval_two = distributions.kstwobign.sf(D * np.sqrt(N))
if N > 2666 or pval_two > 0.80 - N*0.3/1000:
return KstestResult(D, pval_two)
else:
return KstestResult(D, 2 * distributions.ksone.sf(D, N))
# Map from names to lambda_ values used in power_divergence().
_power_div_lambda_names = {
"pearson": 1,
"log-likelihood": 0,
"freeman-tukey": -0.5,
"mod-log-likelihood": -1,
"neyman": -2,
"cressie-read": 2/3,
}
def _count(a, axis=None):
"""
Count the number of non-masked elements of an array.
This function behaves like np.ma.count(), but is much faster
for ndarrays.
"""
if hasattr(a, 'count'):
num = a.count(axis=axis)
if isinstance(num, np.ndarray) and num.ndim == 0:
# In some cases, the `count` method returns a scalar array (e.g.
# np.array(3)), but we want a plain integer.
num = int(num)
else:
if axis is None:
num = a.size
else:
num = a.shape[axis]
return num
Power_divergenceResult = namedtuple('Power_divergenceResult',
('statistic', 'pvalue'))
def power_divergence(f_obs, f_exp=None, ddof=0, axis=0, lambda_=None):
"""
Cressie-Read power divergence statistic and goodness of fit test.
This function tests the null hypothesis that the categorical data
has the given frequencies, using the Cressie-Read power divergence
statistic.
Parameters
----------
f_obs : array_like
Observed frequencies in each category.
f_exp : array_like, optional
Expected frequencies in each category. By default the categories are
assumed to be equally likely.
ddof : int, optional
"Delta degrees of freedom": adjustment to the degrees of freedom
for the p-value. The p-value is computed using a chi-squared
distribution with ``k - 1 - ddof`` degrees of freedom, where `k`
is the number of observed frequencies. The default value of `ddof`
is 0.
axis : int or None, optional
The axis of the broadcast result of `f_obs` and `f_exp` along which to
apply the test. If axis is None, all values in `f_obs` are treated
as a single data set. Default is 0.
lambda_ : float or str, optional
The power in the Cressie-Read power divergence statistic. The default
is 1. For convenience, `lambda_` may be assigned one of the following
strings, in which case the corresponding numerical value is used::
String Value Description
"pearson" 1 Pearson's chi-squared statistic.
In this case, the function is
equivalent to `stats.chisquare`.
"log-likelihood" 0 Log-likelihood ratio. Also known as
the G-test [3]_.
"freeman-tukey" -1/2 Freeman-Tukey statistic.
"mod-log-likelihood" -1 Modified log-likelihood ratio.
"neyman" -2 Neyman's statistic.
"cressie-read" 2/3 The power recommended in [5]_.
Returns
-------
statistic : float or ndarray
The Cressie-Read power divergence test statistic. The value is
a float if `axis` is None or if` `f_obs` and `f_exp` are 1-D.
pvalue : float or ndarray
The p-value of the test. The value is a float if `ddof` and the
return value `stat` are scalars.
See Also
--------
chisquare
Notes
-----
This test is invalid when the observed or expected frequencies in each
category are too small. A typical rule is that all of the observed
and expected frequencies should be at least 5.
When `lambda_` is less than zero, the formula for the statistic involves
dividing by `f_obs`, so a warning or error may be generated if any value
in `f_obs` is 0.
Similarly, a warning or error may be generated if any value in `f_exp` is
zero when `lambda_` >= 0.
The default degrees of freedom, k-1, are for the case when no parameters
of the distribution are estimated. If p parameters are estimated by
efficient maximum likelihood then the correct degrees of freedom are
k-1-p. If the parameters are estimated in a different way, then the
dof can be between k-1-p and k-1. However, it is also possible that
the asymptotic distribution is not a chisquare, in which case this
test is not appropriate.
This function handles masked arrays. If an element of `f_obs` or `f_exp`
is masked, then data at that position is ignored, and does not count
towards the size of the data set.
.. versionadded:: 0.13.0
References
----------
.. [1] Lowry, Richard. "Concepts and Applications of Inferential
Statistics". Chapter 8.
https://web.archive.org/web/20171015035606/http://faculty.vassar.edu/lowry/ch8pt1.html
.. [2] "Chi-squared test", https://en.wikipedia.org/wiki/Chi-squared_test
.. [3] "G-test", https://en.wikipedia.org/wiki/G-test
.. [4] Sokal, R. R. and Rohlf, F. J. "Biometry: the principles and
practice of statistics in biological research", New York: Freeman
(1981)
.. [5] Cressie, N. and Read, T. R. C., "Multinomial Goodness-of-Fit
Tests", J. Royal Stat. Soc. Series B, Vol. 46, No. 3 (1984),
pp. 440-464.
Examples
--------
(See `chisquare` for more examples.)
When just `f_obs` is given, it is assumed that the expected frequencies
are uniform and given by the mean of the observed frequencies. Here we
perform a G-test (i.e. use the log-likelihood ratio statistic):
>>> from scipy.stats import power_divergence
>>> power_divergence([16, 18, 16, 14, 12, 12], lambda_='log-likelihood')
(2.006573162632538, 0.84823476779463769)
The expected frequencies can be given with the `f_exp` argument:
>>> power_divergence([16, 18, 16, 14, 12, 12],
... f_exp=[16, 16, 16, 16, 16, 8],
... lambda_='log-likelihood')
(3.3281031458963746, 0.6495419288047497)
When `f_obs` is 2-D, by default the test is applied to each column.
>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
>>> obs.shape
(6, 2)
>>> power_divergence(obs, lambda_="log-likelihood")
(array([ 2.00657316, 6.77634498]), array([ 0.84823477, 0.23781225]))
By setting ``axis=None``, the test is applied to all data in the array,
which is equivalent to applying the test to the flattened array.
>>> power_divergence(obs, axis=None)
(23.31034482758621, 0.015975692534127565)
>>> power_divergence(obs.ravel())
(23.31034482758621, 0.015975692534127565)
`ddof` is the change to make to the default degrees of freedom.
>>> power_divergence([16, 18, 16, 14, 12, 12], ddof=1)
(2.0, 0.73575888234288467)
The calculation of the p-values is done by broadcasting the
test statistic with `ddof`.
>>> power_divergence([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
(2.0, array([ 0.84914504, 0.73575888, 0.5724067 ]))
`f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has
shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting
`f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared
statistics, we must use ``axis=1``:
>>> power_divergence([16, 18, 16, 14, 12, 12],
... f_exp=[[16, 16, 16, 16, 16, 8],
... [8, 20, 20, 16, 12, 12]],
... axis=1)
(array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846]))
"""
# Convert the input argument `lambda_` to a numerical value.
if isinstance(lambda_, string_types):
if lambda_ not in _power_div_lambda_names:
names = repr(list(_power_div_lambda_names.keys()))[1:-1]
raise ValueError("invalid string for lambda_: {0!r}. Valid strings "
"are {1}".format(lambda_, names))
lambda_ = _power_div_lambda_names[lambda_]
elif lambda_ is None:
lambda_ = 1
f_obs = np.asanyarray(f_obs)
if f_exp is not None:
f_exp = np.asanyarray(f_exp)
else:
# Ignore 'invalid' errors so the edge case of a data set with length 0
# is handled without spurious warnings.
with np.errstate(invalid='ignore'):
f_exp = f_obs.mean(axis=axis, keepdims=True)
# `terms` is the array of terms that are summed along `axis` to create
# the test statistic. We use some specialized code for a few special
# cases of lambda_.
if lambda_ == 1:
# Pearson's chi-squared statistic
terms = (f_obs - f_exp)**2 / f_exp
elif lambda_ == 0:
# Log-likelihood ratio (i.e. G-test)
terms = 2.0 * special.xlogy(f_obs, f_obs / f_exp)
elif lambda_ == -1:
# Modified log-likelihood ratio
terms = 2.0 * special.xlogy(f_exp, f_exp / f_obs)
else:
# General Cressie-Read power divergence.
terms = f_obs * ((f_obs / f_exp)**lambda_ - 1)
terms /= 0.5 * lambda_ * (lambda_ + 1)
stat = terms.sum(axis=axis)
num_obs = _count(terms, axis=axis)
ddof = asarray(ddof)
p = distributions.chi2.sf(stat, num_obs - 1 - ddof)
return Power_divergenceResult(stat, p)
def chisquare(f_obs, f_exp=None, ddof=0, axis=0):
"""
Calculate a one-way chi-square test.
The chi-square test tests the null hypothesis that the categorical data
has the given frequencies.
Parameters
----------
f_obs : array_like
Observed frequencies in each category.
f_exp : array_like, optional
Expected frequencies in each category. By default the categories are
assumed to be equally likely.
ddof : int, optional
"Delta degrees of freedom": adjustment to the degrees of freedom
for the p-value. The p-value is computed using a chi-squared
distribution with ``k - 1 - ddof`` degrees of freedom, where `k`
is the number of observed frequencies. The default value of `ddof`
is 0.
axis : int or None, optional
The axis of the broadcast result of `f_obs` and `f_exp` along which to
apply the test. If axis is None, all values in `f_obs` are treated
as a single data set. Default is 0.
Returns
-------
chisq : float or ndarray
The chi-squared test statistic. The value is a float if `axis` is
None or `f_obs` and `f_exp` are 1-D.
p : float or ndarray
The p-value of the test. The value is a float if `ddof` and the
return value `chisq` are scalars.
See Also
--------
scipy.stats.power_divergence
Notes
-----
This test is invalid when the observed or expected frequencies in each
category are too small. A typical rule is that all of the observed
and expected frequencies should be at least 5.
The default degrees of freedom, k-1, are for the case when no parameters
of the distribution are estimated. If p parameters are estimated by
efficient maximum likelihood then the correct degrees of freedom are
k-1-p. If the parameters are estimated in a different way, then the
dof can be between k-1-p and k-1. However, it is also possible that
the asymptotic distribution is not chi-square, in which case this test
is not appropriate.
References
----------
.. [1] Lowry, Richard. "Concepts and Applications of Inferential
Statistics". Chapter 8.
https://web.archive.org/web/20171022032306/http://vassarstats.net:80/textbook/ch8pt1.html
.. [2] "Chi-squared test", https://en.wikipedia.org/wiki/Chi-squared_test
Examples
--------
When just `f_obs` is given, it is assumed that the expected frequencies
are uniform and given by the mean of the observed frequencies.
>>> from scipy.stats import chisquare
>>> chisquare([16, 18, 16, 14, 12, 12])
(2.0, 0.84914503608460956)
With `f_exp` the expected frequencies can be given.
>>> chisquare([16, 18, 16, 14, 12, 12], f_exp=[16, 16, 16, 16, 16, 8])
(3.5, 0.62338762774958223)
When `f_obs` is 2-D, by default the test is applied to each column.
>>> obs = np.array([[16, 18, 16, 14, 12, 12], [32, 24, 16, 28, 20, 24]]).T
>>> obs.shape
(6, 2)
>>> chisquare(obs)
(array([ 2. , 6.66666667]), array([ 0.84914504, 0.24663415]))
By setting ``axis=None``, the test is applied to all data in the array,
which is equivalent to applying the test to the flattened array.
>>> chisquare(obs, axis=None)
(23.31034482758621, 0.015975692534127565)
>>> chisquare(obs.ravel())
(23.31034482758621, 0.015975692534127565)
`ddof` is the change to make to the default degrees of freedom.
>>> chisquare([16, 18, 16, 14, 12, 12], ddof=1)
(2.0, 0.73575888234288467)
The calculation of the p-values is done by broadcasting the
chi-squared statistic with `ddof`.
>>> chisquare([16, 18, 16, 14, 12, 12], ddof=[0,1,2])
(2.0, array([ 0.84914504, 0.73575888, 0.5724067 ]))
`f_obs` and `f_exp` are also broadcast. In the following, `f_obs` has
shape (6,) and `f_exp` has shape (2, 6), so the result of broadcasting
`f_obs` and `f_exp` has shape (2, 6). To compute the desired chi-squared
statistics, we use ``axis=1``:
>>> chisquare([16, 18, 16, 14, 12, 12],
... f_exp=[[16, 16, 16, 16, 16, 8], [8, 20, 20, 16, 12, 12]],
... axis=1)
(array([ 3.5 , 9.25]), array([ 0.62338763, 0.09949846]))
"""
return power_divergence(f_obs, f_exp=f_exp, ddof=ddof, axis=axis,
lambda_="pearson")
Ks_2sampResult = namedtuple('Ks_2sampResult', ('statistic', 'pvalue'))
def _compute_prob_inside_method(m, n, g, h):
"""
Count the proportion of paths that stay strictly inside two diagonal lines.
Parameters
----------
m : integer
m > 0
n : integer
n > 0
g : integer
g is greatest common divisor of m and n
h : integer
0 <= h <= lcm(m,n)
Returns
-------
p : float
The proportion of paths that stay inside the two lines.
Count the integer lattice paths from (0, 0) to (m, n) which satisfy
|x/m - y/n| < h / lcm(m, n).
The paths make steps of size +1 in either positive x or positive y directions.
We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk.
Hodges, J.L. Jr.,
"The Significance Probability of the Smirnov Two-Sample Test,"
Arkiv fiur Matematik, 3, No. 43 (1958), 469-86.
"""
# Probability is symmetrical in m, n. Computation below uses m >= n.
if m < n:
m, n = n, m
mg = m // g
ng = n // g
# Count the integer lattice paths from (0, 0) to (m, n) which satisfy
# |nx/g - my/g| < h.
# Compute matrix A such that:
# A(x, 0) = A(0, y) = 1
# A(x, y) = A(x, y-1) + A(x-1, y), for x,y>=1, except that
# A(x, y) = 0 if |x/m - y/n|>= h
# Probability is A(m, n)/binom(m+n, n)
# Optimizations exist for m==n, m==n*p.
# Only need to preserve a single column of A, and only a sliding window of it.
# minj keeps track of the slide.
minj, maxj = 0, min(int(np.ceil(h / mg)), n + 1)
curlen = maxj - minj
# Make a vector long enough to hold maximum window needed.
lenA = min(2 * maxj + 2, n + 1)
# This is an integer calculation, but the entries are essentially
# binomial coefficients, hence grow quickly.
# Scaling after each column is computed avoids dividing by a
# large binomial coefficent at the end. Instead it is incorporated
# one factor at a time during the computation.
dtype = np.float64
A = np.zeros(lenA, dtype=dtype)
# Initialize the first column
A[minj:maxj] = 1
for i in range(1, m + 1):
# Generate the next column.
# First calculate the sliding window
lastminj, lastmaxj, lastlen = minj, maxj, curlen
minj = max(int(np.floor((ng * i - h) / mg)) + 1, 0)
minj = min(minj, n)
maxj = min(int(np.ceil((ng * i + h) / mg)), n + 1)
if maxj <= minj:
return 0
# Now fill in the values
A[0:maxj - minj] = np.cumsum(A[minj - lastminj:maxj - lastminj])
curlen = maxj - minj
if lastlen > curlen:
# Set some carried-over elements to 0
A[maxj - minj:maxj - minj + (lastlen - curlen)] = 0
# Peel off one term from each of top and bottom of the binomial coefficient.
scaling_factor = i * 1.0 / (n + i)
A *= scaling_factor
return A[maxj - minj - 1]
def _compute_prob_outside_square(n, h):
"""
Compute the proportion of paths that pass outside the two diagonal lines.
Parameters
----------
n : integer
n > 0
h : integer
0 <= h <= n
Returns
-------
p : float
The proportion of paths that pass outside the lines x-y = +/-h.
"""
# Compute Pr(D_{n,n} >= h/n)
# Prob = 2 * ( binom(2n, n-h) - binom(2n, n-2a) + binom(2n, n-3a) - ... ) / binom(2n, n)
# This formulation exhibits subtractive cancellation.
# Instead divide each term by binom(2n, n), then factor common terms
# and use a Horner-like algorithm
# P = 2 * A0 * (1 - A1*(1 - A2*(1 - A3*(1 - A4*(...)))))
P = 0.0
k = int(np.floor(n / h))
while k >= 0:
p1 = 1.0
# Each of the Ai terms has numerator and denominator with h simple terms.
for j in range(h):
p1 = (n - k * h - j) * p1 / (n + k * h + j + 1)
P = p1 * (1.0 - P)
k -= 1
return 2 * P
def _count_paths_outside_method(m, n, g, h):
"""
Count the number of paths that pass outside the specified diagonal.
Parameters
----------
m : integer
m > 0
n : integer
n > 0
g : integer
g is greatest common divisor of m and n
h : integer
0 <= h <= lcm(m,n)
Returns
-------
p : float
The number of paths that go low.
The calculation may overflow - check for a finite answer.
Exceptions
----------
FloatingPointError: Raised if the intermediate computation goes outside
the range of a float.
Notes
-----
Count the integer lattice paths from (0, 0) to (m, n), which at some
point (x, y) along the path, satisfy:
m*y <= n*x - h*g
The paths make steps of size +1 in either positive x or positive y directions.
We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk.
Hodges, J.L. Jr.,
"The Significance Probability of the Smirnov Two-Sample Test,"
Arkiv fiur Matematik, 3, No. 43 (1958), 469-86.
"""
# Compute #paths which stay lower than x/m-y/n = h/lcm(m,n)
# B(x, y) = #{paths from (0,0) to (x,y) without previously crossing the boundary}
# = binom(x, y) - #{paths which already reached the boundary}
# Multiply by the number of path extensions going from (x, y) to (m, n)
# Sum.
# Probability is symmetrical in m, n. Computation below assumes m >= n.
if m < n:
m, n = n, m
mg = m // g
ng = n // g
# 0 <= x_j <= m is the smallest integer for which n*x_j - m*j < g*h
xj = [int(np.ceil((h + mg * j)/ng)) for j in range(n+1)]
xj = [_ for _ in xj if _ <= m]
lxj = len(xj)
# B is an array just holding a few values of B(x,y), the ones needed.
# B[j] == B(x_j, j)
if lxj == 0:
return np.round(special.binom(m + n, n))
B = np.zeros(lxj)
B[0] = 1
# Compute the B(x, y) terms
# The binomial coefficient is an integer, but special.binom() may return a float.
# Round it to the nearest integer.
for j in range(1, lxj):
Bj = np.round(special.binom(xj[j] + j, j))
if not np.isfinite(Bj):
raise FloatingPointError()
for i in range(j):
bin = np.round(special.binom(xj[j] - xj[i] + j - i, j-i))
dec = bin * B[i]
Bj -= dec
B[j] = Bj
if not np.isfinite(Bj):
raise FloatingPointError()
# Compute the number of path extensions...
num_paths = 0
for j in range(lxj):
bin = np.round(special.binom((m-xj[j]) + (n - j), n-j))
term = B[j] * bin
if not np.isfinite(term):
raise FloatingPointError()
num_paths += term
return np.round(num_paths)
def ks_2samp(data1, data2, alternative='two-sided', mode='auto'):
"""
Compute the Kolmogorov-Smirnov statistic on 2 samples.
This is a two-sided test for the null hypothesis that 2 independent samples
are drawn from the same continuous distribution. The alternative hypothesis
can be either 'two-sided' (default), 'less' or 'greater'.
Parameters
----------
data1, data2 : sequence of 1-D ndarrays
Two arrays of sample observations assumed to be drawn from a continuous
distribution, sample sizes can be different.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided'
* 'less': one-sided, see explanation in Notes
* 'greater': one-sided, see explanation in Notes
mode : {'auto', 'exact', 'asymp'}, optional
Defines the method used for calculating the p-value.
The following options are available (default is 'auto'):
* 'auto' : use 'exact' for small size arrays, 'asymp' for large
* 'exact' : use approximation to exact distribution of test statistic
* 'asymp' : use asymptotic distribution of test statistic
Returns
-------
statistic : float
KS statistic.
pvalue : float
Two-tailed p-value.
See Also
--------
kstest
Notes
-----
This tests whether 2 samples are drawn from the same distribution. Note
that, like in the case of the one-sample KS test, the distribution is
assumed to be continuous.
In the one-sided test, the alternative is that the empirical
cumulative distribution function F(x) of the data1 variable is "less"
or "greater" than the empirical cumulative distribution function G(x)
of the data2 variable, ``F(x)<=G(x)``, resp. ``F(x)>=G(x)``.
If the KS statistic is small or the p-value is high, then we cannot
reject the hypothesis that the distributions of the two samples
are the same.
If the mode is 'auto', the computation is exact if the sample sizes are
less than 10000. For larger sizes, the computation uses the
Kolmogorov-Smirnov distributions to compute an approximate value.
We generally follow Hodges' treatment of Drion/Gnedenko/Korolyuk [1]_.
References
----------
.. [1] Hodges, J.L. Jr., "The Significance Probability of the Smirnov
Two-Sample Test," Arkiv fiur Matematik, 3, No. 43 (1958), 469-86.
Examples
--------
>>> from scipy import stats
>>> np.random.seed(12345678) #fix random seed to get the same result
>>> n1 = 200 # size of first sample
>>> n2 = 300 # size of second sample
For a different distribution, we can reject the null hypothesis since the
pvalue is below 1%:
>>> rvs1 = stats.norm.rvs(size=n1, loc=0., scale=1)
>>> rvs2 = stats.norm.rvs(size=n2, loc=0.5, scale=1.5)
>>> stats.ks_2samp(rvs1, rvs2)
(0.20833333333333334, 5.129279597781977e-05)
For a slightly different distribution, we cannot reject the null hypothesis
at a 10% or lower alpha since the p-value at 0.144 is higher than 10%
>>> rvs3 = stats.norm.rvs(size=n2, loc=0.01, scale=1.0)
>>> stats.ks_2samp(rvs1, rvs3)
(0.10333333333333333, 0.14691437867433876)
For an identical distribution, we cannot reject the null hypothesis since
the p-value is high, 41%:
>>> rvs4 = stats.norm.rvs(size=n2, loc=0.0, scale=1.0)
>>> stats.ks_2samp(rvs1, rvs4)
(0.07999999999999996, 0.41126949729859719)
"""
LARGE_N = 10000 # 'auto' will attempt to be exact if n1,n2 <= LARGE_N
data1 = np.sort(data1)
data2 = np.sort(data2)
n1 = data1.shape[0]
n2 = data2.shape[0]
if min(n1, n2) == 0:
raise ValueError('Data passed to ks_2samp must not be empty')
data_all = np.concatenate([data1, data2])
# using searchsorted solves equal data problem
cdf1 = np.searchsorted(data1, data_all, side='right') / n1
cdf2 = np.searchsorted(data2, data_all, side='right') / n2
cddiffs = cdf1 - cdf2
minS = -np.min(cddiffs)
maxS = np.max(cddiffs)
alt2Dvalue = {'less': minS, 'greater': maxS, 'two-sided': max(minS, maxS)}
d = alt2Dvalue[alternative]
g = gcd(n1, n2)
n1g = n1 // g
n2g = n2 // g
prob = -np.inf
original_mode = mode
if mode == 'auto':
if max(n1, n2) <= LARGE_N:
mode = 'exact'
else:
mode = 'asymp'
elif mode == 'exact':
# If lcm(n1, n2) is too big, switch from exact to asymp
if n1g >= np.iinfo(np.int).max / n2g:
mode = 'asymp'
warnings.warn(
"Exact ks_2samp calculation not possible with samples sizes "
"%d and %d. Switching to 'asymp' " % (n1, n2), RuntimeWarning)
saw_fp_error = False
if mode == 'exact':
lcm = (n1 // g) * n2
h = int(np.round(d * lcm))
d = h * 1.0 / lcm
if h == 0:
prob = 1.0
else:
try:
if alternative == 'two-sided':
if n1 == n2:
prob = _compute_prob_outside_square(n1, h)
else:
prob = 1 - _compute_prob_inside_method(n1, n2, g, h)
else:
if n1 == n2:
# prob = binom(2n, n-h) / binom(2n, n)
# Evaluating in that form incurs roundoff errors
# from special.binom. Instead calculate directly
prob = 1.0
for j in range(h):
prob = (n1 - j) * prob / (n1 + j + 1)
else:
num_paths = _count_paths_outside_method(n1, n2, g, h)
bin = special.binom(n1 + n2, n1)
if not np.isfinite(bin) or not np.isfinite(num_paths) or num_paths > bin:
raise FloatingPointError()
prob = num_paths / bin
except FloatingPointError:
# Switch mode
mode = 'asymp'
saw_fp_error = True
# Can't raise warning here, inside the try
finally:
if saw_fp_error:
if original_mode == 'exact':
warnings.warn(
"ks_2samp: Exact calculation overflowed. "
"Switching to mode=%s" % mode, RuntimeWarning)
else:
if prob > 1 or prob < 0:
mode = 'asymp'
if original_mode == 'exact':
warnings.warn(
"ks_2samp: Exact calculation incurred large"
" rounding error. Switching to mode=%s" % mode,
RuntimeWarning)
if mode == 'asymp':
# The product n1*n2 is large. Use Smirnov's asymptoptic formula.
if alternative == 'two-sided':
en = np.sqrt(n1 * n2 / (n1 + n2))
# Switch to using kstwo.sf() when it becomes available.
# prob = distributions.kstwo.sf(d, int(np.round(en)))
prob = distributions.kstwobign.sf(en * d)
else:
m, n = max(n1, n2), min(n1, n2)
z = np.sqrt(m*n/(m+n)) * d
# Use Hodges' suggested approximation Eqn 5.3
expt = -2 * z**2 - 2 * z * (m + 2*n)/np.sqrt(m*n*(m+n))/3.0
prob = np.exp(expt)
prob = (0 if prob < 0 else (1 if prob > 1 else prob))
return Ks_2sampResult(d, prob)
def tiecorrect(rankvals):
"""
Tie correction factor for Mann-Whitney U and Kruskal-Wallis H tests.
Parameters
----------
rankvals : array_like
A 1-D sequence of ranks. Typically this will be the array
returned by `~scipy.stats.rankdata`.
Returns
-------
factor : float
Correction factor for U or H.
See Also
--------
rankdata : Assign ranks to the data
mannwhitneyu : Mann-Whitney rank test
kruskal : Kruskal-Wallis H test
References
----------
.. [1] Siegel, S. (1956) Nonparametric Statistics for the Behavioral
Sciences. New York: McGraw-Hill.
Examples
--------
>>> from scipy.stats import tiecorrect, rankdata
>>> tiecorrect([1, 2.5, 2.5, 4])
0.9
>>> ranks = rankdata([1, 3, 2, 4, 5, 7, 2, 8, 4])
>>> ranks
array([ 1. , 4. , 2.5, 5.5, 7. , 8. , 2.5, 9. , 5.5])
>>> tiecorrect(ranks)
0.9833333333333333
"""
arr = np.sort(rankvals)
idx = np.nonzero(np.r_[True, arr[1:] != arr[:-1], True])[0]
cnt = np.diff(idx).astype(np.float64)
size = np.float64(arr.size)
return 1.0 if size < 2 else 1.0 - (cnt**3 - cnt).sum() / (size**3 - size)
MannwhitneyuResult = namedtuple('MannwhitneyuResult', ('statistic', 'pvalue'))
def mannwhitneyu(x, y, use_continuity=True, alternative=None):
"""
Compute the Mann-Whitney rank test on samples x and y.
Parameters
----------
x, y : array_like
Array of samples, should be one-dimensional.
use_continuity : bool, optional
Whether a continuity correction (1/2.) should be taken into
account. Default is True.
alternative : {None, 'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is None):
* None: computes p-value half the size of the 'two-sided' p-value and
a different U statistic. The default behavior is not the same as
using 'less' or 'greater'; it only exists for backward compatibility
and is deprecated.
* 'two-sided'
* 'less': one-sided
* 'greater': one-sided
Use of the None option is deprecated.
Returns
-------
statistic : float
The Mann-Whitney U statistic, equal to min(U for x, U for y) if
`alternative` is equal to None (deprecated; exists for backward
compatibility), and U for y otherwise.
pvalue : float
p-value assuming an asymptotic normal distribution. One-sided or
two-sided, depending on the choice of `alternative`.
Notes
-----
Use only when the number of observation in each sample is > 20 and
you have 2 independent samples of ranks. Mann-Whitney U is
significant if the u-obtained is LESS THAN or equal to the critical
value of U.
This test corrects for ties and by default uses a continuity correction.
References
----------
.. [1] https://en.wikipedia.org/wiki/Mann-Whitney_U_test
.. [2] H.B. Mann and D.R. Whitney, "On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other," The Annals of
Mathematical Statistics, vol. 18, no. 1, pp. 50-60, 1947.
"""
if alternative is None:
warnings.warn("Calling `mannwhitneyu` without specifying "
"`alternative` is deprecated.", DeprecationWarning)
x = np.asarray(x)
y = np.asarray(y)
n1 = len(x)
n2 = len(y)
ranked = rankdata(np.concatenate((x, y)))
rankx = ranked[0:n1] # get the x-ranks
u1 = n1*n2 + (n1*(n1+1))/2.0 - np.sum(rankx, axis=0) # calc U for x
u2 = n1*n2 - u1 # remainder is U for y
T = tiecorrect(ranked)
if T == 0:
raise ValueError('All numbers are identical in mannwhitneyu')
sd = np.sqrt(T * n1 * n2 * (n1+n2+1) / 12.0)
meanrank = n1*n2/2.0 + 0.5 * use_continuity
if alternative is None or alternative == 'two-sided':
bigu = max(u1, u2)
elif alternative == 'less':
bigu = u1
elif alternative == 'greater':
bigu = u2
else:
raise ValueError("alternative should be None, 'less', 'greater' "
"or 'two-sided'")
z = (bigu - meanrank) / sd
if alternative is None:
# This behavior, equal to half the size of the two-sided
# p-value, is deprecated.
p = distributions.norm.sf(abs(z))
elif alternative == 'two-sided':
p = 2 * distributions.norm.sf(abs(z))
else:
p = distributions.norm.sf(z)
u = u2
# This behavior is deprecated.
if alternative is None:
u = min(u1, u2)
return MannwhitneyuResult(u, p)
RanksumsResult = namedtuple('RanksumsResult', ('statistic', 'pvalue'))
def ranksums(x, y):
"""
Compute the Wilcoxon rank-sum statistic for two samples.
The Wilcoxon rank-sum test tests the null hypothesis that two sets
of measurements are drawn from the same distribution. The alternative
hypothesis is that values in one sample are more likely to be
larger than the values in the other sample.
This test should be used to compare two samples from continuous
distributions. It does not handle ties between measurements
in x and y. For tie-handling and an optional continuity correction
see `scipy.stats.mannwhitneyu`.
Parameters
----------
x,y : array_like
The data from the two samples.
Returns
-------
statistic : float
The test statistic under the large-sample approximation that the
rank sum statistic is normally distributed.
pvalue : float
The two-sided p-value of the test.
References
----------
.. [1] https://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test
"""
x, y = map(np.asarray, (x, y))
n1 = len(x)
n2 = len(y)
alldata = np.concatenate((x, y))
ranked = rankdata(alldata)
x = ranked[:n1]
s = np.sum(x, axis=0)
expected = n1 * (n1+n2+1) / 2.0
z = (s - expected) / np.sqrt(n1*n2*(n1+n2+1)/12.0)
prob = 2 * distributions.norm.sf(abs(z))
return RanksumsResult(z, prob)
KruskalResult = namedtuple('KruskalResult', ('statistic', 'pvalue'))
def kruskal(*args, **kwargs):
"""
Compute the Kruskal-Wallis H-test for independent samples.
The Kruskal-Wallis H-test tests the null hypothesis that the population
median of all of the groups are equal. It is a non-parametric version of
ANOVA. The test works on 2 or more independent samples, which may have
different sizes. Note that rejecting the null hypothesis does not
indicate which of the groups differs. Post hoc comparisons between
groups are required to determine which groups are different.
Parameters
----------
sample1, sample2, ... : array_like
Two or more arrays with the sample measurements can be given as
arguments.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float
The Kruskal-Wallis H statistic, corrected for ties.
pvalue : float
The p-value for the test using the assumption that H has a chi
square distribution.
See Also
--------
f_oneway : 1-way ANOVA.
mannwhitneyu : Mann-Whitney rank test on two samples.
friedmanchisquare : Friedman test for repeated measurements.
Notes
-----
Due to the assumption that H has a chi square distribution, the number
of samples in each group must not be too small. A typical rule is
that each sample must have at least 5 measurements.
References
----------
.. [1] W. H. Kruskal & W. W. Wallis, "Use of Ranks in
One-Criterion Variance Analysis", Journal of the American Statistical
Association, Vol. 47, Issue 260, pp. 583-621, 1952.
.. [2] https://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance
Examples
--------
>>> from scipy import stats
>>> x = [1, 3, 5, 7, 9]
>>> y = [2, 4, 6, 8, 10]
>>> stats.kruskal(x, y)
KruskalResult(statistic=0.2727272727272734, pvalue=0.6015081344405895)
>>> x = [1, 1, 1]
>>> y = [2, 2, 2]
>>> z = [2, 2]
>>> stats.kruskal(x, y, z)
KruskalResult(statistic=7.0, pvalue=0.0301973834223185)
"""
args = list(map(np.asarray, args))
num_groups = len(args)
if num_groups < 2:
raise ValueError("Need at least two groups in stats.kruskal()")
for arg in args:
if arg.size == 0:
return KruskalResult(np.nan, np.nan)
n = np.asarray(list(map(len, args)))
if 'nan_policy' in kwargs.keys():
if kwargs['nan_policy'] not in ('propagate', 'raise', 'omit'):
raise ValueError("nan_policy must be 'propagate', "
"'raise' or'omit'")
else:
nan_policy = kwargs['nan_policy']
else:
nan_policy = 'propagate'
contains_nan = False
for arg in args:
cn = _contains_nan(arg, nan_policy)
if cn[0]:
contains_nan = True
break
if contains_nan and nan_policy == 'omit':
for a in args:
a = ma.masked_invalid(a)
return mstats_basic.kruskal(*args)
if contains_nan and nan_policy == 'propagate':
return KruskalResult(np.nan, np.nan)
alldata = np.concatenate(args)
ranked = rankdata(alldata)
ties = tiecorrect(ranked)
if ties == 0:
raise ValueError('All numbers are identical in kruskal')
# Compute sum^2/n for each group and sum
j = np.insert(np.cumsum(n), 0, 0)
ssbn = 0
for i in range(num_groups):
ssbn += _square_of_sums(ranked[j[i]:j[i+1]]) / n[i]
totaln = np.sum(n, dtype=float)
h = 12.0 / (totaln * (totaln + 1)) * ssbn - 3 * (totaln + 1)
df = num_groups - 1
h /= ties
return KruskalResult(h, distributions.chi2.sf(h, df))
FriedmanchisquareResult = namedtuple('FriedmanchisquareResult',
('statistic', 'pvalue'))
def friedmanchisquare(*args):
"""
Compute the Friedman test for repeated measurements.
The Friedman test tests the null hypothesis that repeated measurements of
the same individuals have the same distribution. It is often used
to test for consistency among measurements obtained in different ways.
For example, if two measurement techniques are used on the same set of
individuals, the Friedman test can be used to determine if the two
measurement techniques are consistent.
Parameters
----------
measurements1, measurements2, measurements3... : array_like
Arrays of measurements. All of the arrays must have the same number
of elements. At least 3 sets of measurements must be given.
Returns
-------
statistic : float
The test statistic, correcting for ties.
pvalue : float
The associated p-value assuming that the test statistic has a chi
squared distribution.
Notes
-----
Due to the assumption that the test statistic has a chi squared
distribution, the p-value is only reliable for n > 10 and more than
6 repeated measurements.
References
----------
.. [1] https://en.wikipedia.org/wiki/Friedman_test
"""
k = len(args)
if k < 3:
raise ValueError('Less than 3 levels. Friedman test not appropriate.')
n = len(args[0])
for i in range(1, k):
if len(args[i]) != n:
raise ValueError('Unequal N in friedmanchisquare. Aborting.')
# Rank data
data = np.vstack(args).T
data = data.astype(float)
for i in range(len(data)):
data[i] = rankdata(data[i])
# Handle ties
ties = 0
for i in range(len(data)):
replist, repnum = find_repeats(array(data[i]))
for t in repnum:
ties += t * (t*t - 1)
c = 1 - ties / (k*(k*k - 1)*n)
ssbn = np.sum(data.sum(axis=0)**2)
chisq = (12.0 / (k*n*(k+1)) * ssbn - 3*n*(k+1)) / c
return FriedmanchisquareResult(chisq, distributions.chi2.sf(chisq, k - 1))
BrunnerMunzelResult = namedtuple('BrunnerMunzelResult',
('statistic', 'pvalue'))
def brunnermunzel(x, y, alternative="two-sided", distribution="t",
nan_policy='propagate'):
"""
Compute the Brunner-Munzel test on samples x and y.
The Brunner-Munzel test is a nonparametric test of the null hypothesis that
when values are taken one by one from each group, the probabilities of
getting large values in both groups are equal.
Unlike the Wilcoxon-Mann-Whitney's U test, this does not require the
assumption of equivariance of two groups. Note that this does not assume
the distributions are same. This test works on two independent samples,
which may have different sizes.
Parameters
----------
x, y : array_like
Array of samples, should be one-dimensional.
alternative : {'two-sided', 'less', 'greater'}, optional
Defines the alternative hypothesis.
The following options are available (default is 'two-sided'):
* 'two-sided'
* 'less': one-sided
* 'greater': one-sided
distribution : {'t', 'normal'}, optional
Defines how to get the p-value.
The following options are available (default is 't'):
* 't': get the p-value by t-distribution
* 'normal': get the p-value by standard normal distribution.
nan_policy : {'propagate', 'raise', 'omit'}, optional
Defines how to handle when input contains nan.
The following options are available (default is 'propagate'):
* 'propagate': returns nan
* 'raise': throws an error
* 'omit': performs the calculations ignoring nan values
Returns
-------
statistic : float
The Brunner-Munzer W statistic.
pvalue : float
p-value assuming an t distribution. One-sided or
two-sided, depending on the choice of `alternative` and `distribution`.
See Also
--------
mannwhitneyu : Mann-Whitney rank test on two samples.
Notes
-----
Brunner and Munzel recommended to estimate the p-value by t-distribution
when the size of data is 50 or less. If the size is lower than 10, it would
be better to use permuted Brunner Munzel test (see [2]_).
References
----------
.. [1] Brunner, E. and Munzel, U. "The nonparametric Benhrens-Fisher
problem: Asymptotic theory and a small-sample approximation".
Biometrical Journal. Vol. 42(2000): 17-25.
.. [2] Neubert, K. and Brunner, E. "A studentized permutation test for the
non-parametric Behrens-Fisher problem". Computational Statistics and
Data Analysis. Vol. 51(2007): 5192-5204.
Examples
--------
>>> from scipy import stats
>>> x1 = [1,2,1,1,1,1,1,1,1,1,2,4,1,1]
>>> x2 = [3,3,4,3,1,2,3,1,1,5,4]
>>> w, p_value = stats.brunnermunzel(x1, x2)
>>> w
3.1374674823029505
>>> p_value
0.0057862086661515377
"""
x = np.asarray(x)
y = np.asarray(y)
# check both x and y
cnx, npx = _contains_nan(x, nan_policy)
cny, npy = _contains_nan(y, nan_policy)
contains_nan = cnx or cny
if npx == "omit" or npy == "omit":
nan_policy = "omit"
if contains_nan and nan_policy == "propagate":
return BrunnerMunzelResult(np.nan, np.nan)
elif contains_nan and nan_policy == "omit":
x = ma.masked_invalid(x)
y = ma.masked_invalid(y)
return mstats_basic.brunnermunzel(x, y, alternative, distribution)
nx = len(x)
ny = len(y)
if nx == 0 or ny == 0:
return BrunnerMunzelResult(np.nan, np.nan)
rankc = rankdata(np.concatenate((x, y)))
rankcx = rankc[0:nx]
rankcy = rankc[nx:nx+ny]
rankcx_mean = np.mean(rankcx)
rankcy_mean = np.mean(rankcy)
rankx = rankdata(x)
ranky = rankdata(y)
rankx_mean = np.mean(rankx)
ranky_mean = np.mean(ranky)
Sx = np.sum(np.power(rankcx - rankx - rankcx_mean + rankx_mean, 2.0))
Sx /= nx - 1
Sy = np.sum(np.power(rankcy - ranky - rankcy_mean + ranky_mean, 2.0))
Sy /= ny - 1
wbfn = nx * ny * (rankcy_mean - rankcx_mean)
wbfn /= (nx + ny) * np.sqrt(nx * Sx + ny * Sy)
if distribution == "t":
df_numer = np.power(nx * Sx + ny * Sy, 2.0)
df_denom = np.power(nx * Sx, 2.0) / (nx - 1)
df_denom += np.power(ny * Sy, 2.0) / (ny - 1)
df = df_numer / df_denom
p = distributions.t.cdf(wbfn, df)
elif distribution == "normal":
p = distributions.norm.cdf(wbfn)
else:
raise ValueError(
"distribution should be 't' or 'normal'")
if alternative == "greater":
pass
elif alternative == "less":
p = 1 - p
elif alternative == "two-sided":
p = 2 * np.min([p, 1-p])
else:
raise ValueError(
"alternative should be 'less', 'greater' or 'two-sided'")
return BrunnerMunzelResult(wbfn, p)
def combine_pvalues(pvalues, method='fisher', weights=None):
"""
Combine p-values from independent tests bearing upon the same hypothesis.
Parameters
----------
pvalues : array_like, 1-D
Array of p-values assumed to come from independent tests.
method : {'fisher', 'pearson', 'tippett', 'stouffer', 'mudholkar_george'}, optional
Name of method to use to combine p-values.
The following methods are available (default is 'fisher'):
* 'fisher': Fisher's method (Fisher's combined probability test), the
sum of the logarithm of the p-values
* 'pearson': Pearson's method (similar to Fisher's but uses sum of the
complement of the p-values inside the logarithms)
* 'tippett': Tippett's method (minimum of p-values)
* 'stouffer': Stouffer's Z-score method
* 'mudholkar_george': the difference of Fisher's and Pearson's methods
divided by 2
weights : array_like, 1-D, optional
Optional array of weights used only for Stouffer's Z-score method.
Returns
-------
statistic: float
The statistic calculated by the specified method.
pval: float
The combined p-value.
Notes
-----
Fisher's method (also known as Fisher's combined probability test) [1]_ uses
a chi-squared statistic to compute a combined p-value. The closely related
Stouffer's Z-score method [2]_ uses Z-scores rather than p-values. The
advantage of Stouffer's method is that it is straightforward to introduce
weights, which can make Stouffer's method more powerful than Fisher's
method when the p-values are from studies of different size [6]_ [7]_.
The Pearson's method uses :math:`log(1-p_i)` inside the sum whereas Fisher's
method uses :math:`log(p_i)` [4]_. For Fisher's and Pearson's method, the
sum of the logarithms is multiplied by -2 in the implementation. This
quantity has a chi-square distribution that determines the p-value. The
`mudholkar_george` method is the difference of the Fisher's and Pearson's
test statistics, each of which include the -2 factor [4]_. However, the
`mudholkar_george` method does not include these -2 factors. The test
statistic of `mudholkar_george` is the sum of logisitic random variables and
equation 3.6 in [3]_ is used to approximate the p-value based on Student's
t-distribution.
Fisher's method may be extended to combine p-values from dependent tests
[5]_. Extensions such as Brown's method and Kost's method are not currently
implemented.
.. versionadded:: 0.15.0
References
----------
.. [1] https://en.wikipedia.org/wiki/Fisher%27s_method
.. [2] https://en.wikipedia.org/wiki/Fisher%27s_method#Relation_to_Stouffer.27s_Z-score_method
.. [3] George, E. O., and G. S. Mudholkar. "On the convolution of logistic
random variables." Metrika 30.1 (1983): 1-13.
.. [4] Heard, N. and Rubin-Delanchey, P. "Choosing between methods of
combining p-values." Biometrika 105.1 (2018): 239-246.
.. [5] Whitlock, M. C. "Combining probability from independent tests: the
weighted Z-method is superior to Fisher's approach." Journal of
Evolutionary Biology 18, no. 5 (2005): 1368-1373.
.. [6] Zaykin, Dmitri V. "Optimally weighted Z-test is a powerful method
for combining probabilities in meta-analysis." Journal of
Evolutionary Biology 24, no. 8 (2011): 1836-1841.
.. [7] https://en.wikipedia.org/wiki/Extensions_of_Fisher%27s_method
"""
pvalues = np.asarray(pvalues)
if pvalues.ndim != 1:
raise ValueError("pvalues is not 1-D")
if method == 'fisher':
statistic = -2 * np.sum(np.log(pvalues))
pval = distributions.chi2.sf(statistic, 2 * len(pvalues))
elif method == 'pearson':
statistic = -2 * np.sum(np.log1p(-pvalues))
pval = distributions.chi2.sf(statistic, 2 * len(pvalues))
elif method == 'mudholkar_george':
statistic = -np.sum(np.log(pvalues)) + np.sum(np.log1p(-pvalues))
nu = 5 * len(pvalues) + 4
approx_factor = np.sqrt(nu / (nu - 2))
pval = distributions.t.sf(statistic * approx_factor, nu)
elif method == 'tippett':
statistic = np.min(pvalues)
pval = distributions.beta.sf(statistic, 1, len(pvalues))
elif method == 'stouffer':
if weights is None:
weights = np.ones_like(pvalues)
elif len(weights) != len(pvalues):
raise ValueError("pvalues and weights must be of the same size.")
weights = np.asarray(weights)
if weights.ndim != 1:
raise ValueError("weights is not 1-D")
Zi = distributions.norm.isf(pvalues)
statistic = np.dot(weights, Zi) / np.linalg.norm(weights)
pval = distributions.norm.sf(statistic)
else:
raise ValueError(
"Invalid method '%s'. Options are 'fisher', 'pearson', \
'mudholkar_george', 'tippett', 'or 'stouffer'", method)
return (statistic, pval)
#####################################
# STATISTICAL DISTANCES #
#####################################
def wasserstein_distance(u_values, v_values, u_weights=None, v_weights=None):
r"""
Compute the first Wasserstein distance between two 1D distributions.
This distance is also known as the earth mover's distance, since it can be
seen as the minimum amount of "work" required to transform :math:`u` into
:math:`v`, where "work" is measured as the amount of distribution weight
that must be moved, multiplied by the distance it has to be moved.
.. versionadded:: 1.0.0
Parameters
----------
u_values, v_values : array_like
Values observed in the (empirical) distribution.
u_weights, v_weights : array_like, optional
Weight for each value. If unspecified, each value is assigned the same
weight.
`u_weights` (resp. `v_weights`) must have the same length as
`u_values` (resp. `v_values`). If the weight sum differs from 1, it
must still be positive and finite so that the weights can be normalized
to sum to 1.
Returns
-------
distance : float
The computed distance between the distributions.
Notes
-----
The first Wasserstein distance between the distributions :math:`u` and
:math:`v` is:
.. math::
l_1 (u, v) = \inf_{\pi \in \Gamma (u, v)} \int_{\mathbb{R} \times
\mathbb{R}} |x-y| \mathrm{d} \pi (x, y)
where :math:`\Gamma (u, v)` is the set of (probability) distributions on
:math:`\mathbb{R} \times \mathbb{R}` whose marginals are :math:`u` and
:math:`v` on the first and second factors respectively.
If :math:`U` and :math:`V` are the respective CDFs of :math:`u` and
:math:`v`, this distance also equals to:
.. math::
l_1(u, v) = \int_{-\infty}^{+\infty} |U-V|
See [2]_ for a proof of the equivalence of both definitions.
The input distributions can be empirical, therefore coming from samples
whose values are effectively inputs of the function, or they can be seen as
generalized functions, in which case they are weighted sums of Dirac delta
functions located at the specified values.
References
----------
.. [1] "Wasserstein metric", https://en.wikipedia.org/wiki/Wasserstein_metric
.. [2] Ramdas, Garcia, Cuturi "On Wasserstein Two Sample Testing and Related
Families of Nonparametric Tests" (2015). :arXiv:`1509.02237`.
Examples
--------
>>> from scipy.stats import wasserstein_distance
>>> wasserstein_distance([0, 1, 3], [5, 6, 8])
5.0
>>> wasserstein_distance([0, 1], [0, 1], [3, 1], [2, 2])
0.25
>>> wasserstein_distance([3.4, 3.9, 7.5, 7.8], [4.5, 1.4],
... [1.4, 0.9, 3.1, 7.2], [3.2, 3.5])
4.0781331438047861
"""
return _cdf_distance(1, u_values, v_values, u_weights, v_weights)
def energy_distance(u_values, v_values, u_weights=None, v_weights=None):
r"""
Compute the energy distance between two 1D distributions.
.. versionadded:: 1.0.0
Parameters
----------
u_values, v_values : array_like
Values observed in the (empirical) distribution.
u_weights, v_weights : array_like, optional
Weight for each value. If unspecified, each value is assigned the same
weight.
`u_weights` (resp. `v_weights`) must have the same length as
`u_values` (resp. `v_values`). If the weight sum differs from 1, it
must still be positive and finite so that the weights can be normalized
to sum to 1.
Returns
-------
distance : float
The computed distance between the distributions.
Notes
-----
The energy distance between two distributions :math:`u` and :math:`v`, whose
respective CDFs are :math:`U` and :math:`V`, equals to:
.. math::
D(u, v) = \left( 2\mathbb E|X - Y| - \mathbb E|X - X'| -
\mathbb E|Y - Y'| \right)^{1/2}
where :math:`X` and :math:`X'` (resp. :math:`Y` and :math:`Y'`) are
independent random variables whose probability distribution is :math:`u`
(resp. :math:`v`).
As shown in [2]_, for one-dimensional real-valued variables, the energy
distance is linked to the non-distribution-free version of the Cramer-von
Mises distance:
.. math::
D(u, v) = \sqrt{2} l_2(u, v) = \left( 2 \int_{-\infty}^{+\infty} (U-V)^2
\right)^{1/2}
Note that the common Cramer-von Mises criterion uses the distribution-free
version of the distance. See [2]_ (section 2), for more details about both
versions of the distance.
The input distributions can be empirical, therefore coming from samples
whose values are effectively inputs of the function, or they can be seen as
generalized functions, in which case they are weighted sums of Dirac delta
functions located at the specified values.
References
----------
.. [1] "Energy distance", https://en.wikipedia.org/wiki/Energy_distance
.. [2] Szekely "E-statistics: The energy of statistical samples." Bowling
Green State University, Department of Mathematics and Statistics,
Technical Report 02-16 (2002).
.. [3] Rizzo, Szekely "Energy distance." Wiley Interdisciplinary Reviews:
Computational Statistics, 8(1):27-38 (2015).
.. [4] Bellemare, Danihelka, Dabney, Mohamed, Lakshminarayanan, Hoyer,
Munos "The Cramer Distance as a Solution to Biased Wasserstein
Gradients" (2017). :arXiv:`1705.10743`.
Examples
--------
>>> from scipy.stats import energy_distance
>>> energy_distance([0], [2])
2.0000000000000004
>>> energy_distance([0, 8], [0, 8], [3, 1], [2, 2])
1.0000000000000002
>>> energy_distance([0.7, 7.4, 2.4, 6.8], [1.4, 8. ],
... [2.1, 4.2, 7.4, 8. ], [7.6, 8.8])
0.88003340976158217
"""
return np.sqrt(2) * _cdf_distance(2, u_values, v_values,
u_weights, v_weights)
def _cdf_distance(p, u_values, v_values, u_weights=None, v_weights=None):
r"""
Compute, between two one-dimensional distributions :math:`u` and
:math:`v`, whose respective CDFs are :math:`U` and :math:`V`, the
statistical distance that is defined as:
.. math::
l_p(u, v) = \left( \int_{-\infty}^{+\infty} |U-V|^p \right)^{1/p}
p is a positive parameter; p = 1 gives the Wasserstein distance, p = 2
gives the energy distance.
Parameters
----------
u_values, v_values : array_like
Values observed in the (empirical) distribution.
u_weights, v_weights : array_like, optional
Weight for each value. If unspecified, each value is assigned the same
weight.
`u_weights` (resp. `v_weights`) must have the same length as
`u_values` (resp. `v_values`). If the weight sum differs from 1, it
must still be positive and finite so that the weights can be normalized
to sum to 1.
Returns
-------
distance : float
The computed distance between the distributions.
Notes
-----
The input distributions can be empirical, therefore coming from samples
whose values are effectively inputs of the function, or they can be seen as
generalized functions, in which case they are weighted sums of Dirac delta
functions located at the specified values.
References
----------
.. [1] Bellemare, Danihelka, Dabney, Mohamed, Lakshminarayanan, Hoyer,
Munos "The Cramer Distance as a Solution to Biased Wasserstein
Gradients" (2017). :arXiv:`1705.10743`.
"""
u_values, u_weights = _validate_distribution(u_values, u_weights)
v_values, v_weights = _validate_distribution(v_values, v_weights)
u_sorter = np.argsort(u_values)
v_sorter = np.argsort(v_values)
all_values = np.concatenate((u_values, v_values))
all_values.sort(kind='mergesort')
# Compute the differences between pairs of successive values of u and v.
deltas = np.diff(all_values)
# Get the respective positions of the values of u and v among the values of
# both distributions.
u_cdf_indices = u_values[u_sorter].searchsorted(all_values[:-1], 'right')
v_cdf_indices = v_values[v_sorter].searchsorted(all_values[:-1], 'right')
# Calculate the CDFs of u and v using their weights, if specified.
if u_weights is None:
u_cdf = u_cdf_indices / u_values.size
else:
u_sorted_cumweights = np.concatenate(([0],
np.cumsum(u_weights[u_sorter])))
u_cdf = u_sorted_cumweights[u_cdf_indices] / u_sorted_cumweights[-1]
if v_weights is None:
v_cdf = v_cdf_indices / v_values.size
else:
v_sorted_cumweights = np.concatenate(([0],
np.cumsum(v_weights[v_sorter])))
v_cdf = v_sorted_cumweights[v_cdf_indices] / v_sorted_cumweights[-1]
# Compute the value of the integral based on the CDFs.
# If p = 1 or p = 2, we avoid using np.power, which introduces an overhead
# of about 15%.
if p == 1:
return np.sum(np.multiply(np.abs(u_cdf - v_cdf), deltas))
if p == 2:
return np.sqrt(np.sum(np.multiply(np.square(u_cdf - v_cdf), deltas)))
return np.power(np.sum(np.multiply(np.power(np.abs(u_cdf - v_cdf), p),
deltas)), 1/p)
def _validate_distribution(values, weights):
"""
Validate the values and weights from a distribution input of `cdf_distance`
and return them as ndarray objects.
Parameters
----------
values : array_like
Values observed in the (empirical) distribution.
weights : array_like
Weight for each value.
Returns
-------
values : ndarray
Values as ndarray.
weights : ndarray
Weights as ndarray.
"""
# Validate the value array.
values = np.asarray(values, dtype=float)
if len(values) == 0:
raise ValueError("Distribution can't be empty.")
# Validate the weight array, if specified.
if weights is not None:
weights = np.asarray(weights, dtype=float)
if len(weights) != len(values):
raise ValueError('Value and weight array-likes for the same '
'empirical distribution must be of the same size.')
if np.any(weights < 0):
raise ValueError('All weights must be non-negative.')
if not 0 < np.sum(weights) < np.inf:
raise ValueError('Weight array-like sum must be positive and '
'finite. Set as None for an equal distribution of '
'weight.')
return values, weights
return values, None
#####################################
# SUPPORT FUNCTIONS #
#####################################
RepeatedResults = namedtuple('RepeatedResults', ('values', 'counts'))
def find_repeats(arr):
"""
Find repeats and repeat counts.
Parameters
----------
arr : array_like
Input array. This is cast to float64.
Returns
-------
values : ndarray
The unique values from the (flattened) input that are repeated.
counts : ndarray
Number of times the corresponding 'value' is repeated.
Notes
-----
In numpy >= 1.9 `numpy.unique` provides similar functionality. The main
difference is that `find_repeats` only returns repeated values.
Examples
--------
>>> from scipy import stats
>>> stats.find_repeats([2, 1, 2, 3, 2, 2, 5])
RepeatedResults(values=array([2.]), counts=array([4]))
>>> stats.find_repeats([[10, 20, 1, 2], [5, 5, 4, 4]])
RepeatedResults(values=array([4., 5.]), counts=array([2, 2]))
"""
# Note: always copies.
return RepeatedResults(*_find_repeats(np.array(arr, dtype=np.float64)))
def _sum_of_squares(a, axis=0):
"""
Square each element of the input array, and return the sum(s) of that.
Parameters
----------
a : array_like
Input array.
axis : int or None, optional
Axis along which to calculate. Default is 0. If None, compute over
the whole array `a`.
Returns
-------
sum_of_squares : ndarray
The sum along the given axis for (a**2).
See Also
--------
_square_of_sums : The square(s) of the sum(s) (the opposite of
`_sum_of_squares`).
"""
a, axis = _chk_asarray(a, axis)
return np.sum(a*a, axis)
def _square_of_sums(a, axis=0):
"""
Sum elements of the input array, and return the square(s) of that sum.
Parameters
----------
a : array_like
Input array.
axis : int or None, optional
Axis along which to calculate. Default is 0. If None, compute over
the whole array `a`.
Returns
-------
square_of_sums : float or ndarray
The square of the sum over `axis`.
See Also
--------
_sum_of_squares : The sum of squares (the opposite of `square_of_sums`).
"""
a, axis = _chk_asarray(a, axis)
s = np.sum(a, axis)
if not np.isscalar(s):
return s.astype(float) * s
else:
return float(s) * s
def rankdata(a, method='average'):
"""
Assign ranks to data, dealing with ties appropriately.
Ranks begin at 1. The `method` argument controls how ranks are assigned
to equal values. See [1]_ for further discussion of ranking methods.
Parameters
----------
a : array_like
The array of values to be ranked. The array is first flattened.
method : {'average', 'min', 'max', 'dense', 'ordinal'}, optional
The method used to assign ranks to tied elements.
The following methods are available (default is 'average'):
* 'average': The average of the ranks that would have been assigned to
all the tied values is assigned to each value.
* 'min': The minimum of the ranks that would have been assigned to all
the tied values is assigned to each value. (This is also
referred to as "competition" ranking.)
* 'max': The maximum of the ranks that would have been assigned to all
the tied values is assigned to each value.
* 'dense': Like 'min', but the rank of the next highest element is
assigned the rank immediately after those assigned to the tied
elements.
* 'ordinal': All values are given a distinct rank, corresponding to
the order that the values occur in `a`.
Returns
-------
ranks : ndarray
An array of length equal to the size of `a`, containing rank
scores.
References
----------
.. [1] "Ranking", https://en.wikipedia.org/wiki/Ranking
Examples
--------
>>> from scipy.stats import rankdata
>>> rankdata([0, 2, 3, 2])
array([ 1. , 2.5, 4. , 2.5])
>>> rankdata([0, 2, 3, 2], method='min')
array([ 1, 2, 4, 2])
>>> rankdata([0, 2, 3, 2], method='max')
array([ 1, 3, 4, 3])
>>> rankdata([0, 2, 3, 2], method='dense')
array([ 1, 2, 3, 2])
>>> rankdata([0, 2, 3, 2], method='ordinal')
array([ 1, 2, 4, 3])
"""
if method not in ('average', 'min', 'max', 'dense', 'ordinal'):
raise ValueError('unknown method "{0}"'.format(method))
arr = np.ravel(np.asarray(a))
algo = 'mergesort' if method == 'ordinal' else 'quicksort'
sorter = np.argsort(arr, kind=algo)
inv = np.empty(sorter.size, dtype=np.intp)
inv[sorter] = np.arange(sorter.size, dtype=np.intp)
if method == 'ordinal':
return inv + 1
arr = arr[sorter]
obs = np.r_[True, arr[1:] != arr[:-1]]
dense = obs.cumsum()[inv]
if method == 'dense':
return dense
# cumulative counts of each unique value
count = np.r_[np.nonzero(obs)[0], len(obs)]
if method == 'max':
return count[dense]
if method == 'min':
return count[dense - 1] + 1
# average method
return .5 * (count[dense] + count[dense - 1] + 1)