provider.py
31.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Experimental framework for generic TensorBoard data providers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
import collections
import six
import numpy as np
@six.add_metaclass(abc.ABCMeta)
class DataProvider(object):
"""Interface for reading TensorBoard scalar, tensor, and blob data.
These APIs are under development and subject to change. For instance,
providers may be asked to implement more filtering mechanisms, such as
downsampling strategies or domain restriction by step or wall time.
The data provider interface specifies three *data classes*: scalars,
tensors, and blob sequences. All data is stored in *time series* for
one of these data classes. A time series is identified by run name and
tag name (each a non-empty text string), as well as an experiment ID
and plugin name (see below). Points in a time series are uniquely
indexed by *step*, an arbitrary non-negative integer. Each point in a
time series also has an associated wall time, plus its actual value,
which is drawn from the corresponding data class.
Each point in a scalar time series contains a single scalar value, as
a 64-bit floating point number. Scalars are "privileged" rather than
being subsumed under tensors because there are useful operations on
scalars that don't make sense in the general tensor case: e.g., "list
all scalar time series with tag name `accuracy` whose exponentially
weighted moving average is at least 0.999".
Each point in a tensor time series contains a tensor of arbitrary
dtype (including byte strings and text strings) and shape (including
rank-0 tensors, a.k.a. scalars). Each tensor is expected to be
"reasonably small" to accommodate common database cell size limits.
For instance, a histogram with a bounded number of buckets (say, 30)
occupies about 500 bytes, and a PR curve with a bounded number of
thresholds (say, 201) occupies about 5000 bytes. These are both well
within typical database tolerances (Google Cloud Spanner: 10 MiB;
MySQL: 64 KiB), and would be appropriate to store as tensors. By
contrast, image, audio, or model graph data may easily be multiple
megabytes in size, and so should be stored as blobs instead. The
tensors at each step in a time series need not have the same dtype or
shape.
Each point in a blob sequence time series contains an ordered sequence
of zero or more blobs, which are arbitrary data with no tensor
structure. These might represent PNG-encoded image data, protobuf wire
encodings of TensorFlow graphs, or PLY-format 3D mesh data, for some
examples. This data class provides blob *sequences* rather than just
blobs because it's common to want to take multiple homogeneous samples
of a given time series: say, "show me the bounding box classifications
for 3 random inputs from this batch". A single blob can of course be
represented as a blob sequence that always has exactly one element.
Every time series belongs to a specific experiment and is owned by a
specific plugin. (Thus, the "primary key" for a time series has four
components: experiment, plugin, run, tag.) The experiment ID is an
arbitrary URL-safe non-empty text string, whose interpretation is at
the discretion of the data provider. As a special case, the empty
string as an experiment ID denotes that no experiment was given. Data
providers may or may not fully support an empty experiment ID. The
plugin name should correspond to the `plugin_data.plugin_name` field
of the `SummaryMetadata` proto passed to `tf.summary.write`.
Unless otherwise noted, any methods on this class may raise errors
defined in `tensorboard.errors`, like `tensorboard.errors.NotFoundError`.
"""
def data_location(self, experiment_id):
"""Render a human-readable description of the data source.
For instance, this might return a path to a directory on disk.
The default implementation always returns the empty string.
Args:
experiment_id: ID of enclosing experiment.
Returns:
A string, which may be empty.
"""
return ""
def experiment_metadata(self, experiment_id):
"""Retrieve metadata of a given experiment.
The metadata may include fields such as name and description
of the experiment, as well as a timestamp for the experiment.
Args:
experiment_id: ID of the experiment in question.
Returns:
If the metadata does not exist, `None`.
Otherwise, an `ExperimentMetadata` object containing metadata about
the experiment.
"""
return None
def list_plugins(self, experiment_id):
"""List all plugins that own data in a given experiment.
This should be the set of all plugin names `p` such that calling
`list_scalars`, `list_tensors`, or `list_blob_sequences` for the
given `experiment_id` and plugin name `p` gives a non-empty
result.
This operation is optional, but may later become required.
Args:
experiment_id: ID of enclosing experiment.
Returns:
A collection of strings representing plugin names, or `None`
if this operation is not supported by this data provider.
"""
return None
@abc.abstractmethod
def list_runs(self, experiment_id):
"""List all runs within an experiment.
Args:
experiment_id: ID of enclosing experiment.
Returns:
A collection of `Run` values.
Raises:
tensorboard.errors.PublicError: See `DataProvider` class docstring.
"""
pass
@abc.abstractmethod
def list_scalars(self, experiment_id, plugin_name, run_tag_filter=None):
"""List metadata about scalar time series.
Args:
experiment_id: ID of enclosing experiment.
plugin_name: String name of the TensorBoard plugin that created
the data to be queried. Required.
run_tag_filter: Optional `RunTagFilter` value. If omitted, all
runs and tags will be included.
The result will only contain keys for run-tag combinations that
actually exist, which may not include all entries in the
`run_tag_filter`.
Returns:
A nested map `d` such that `d[run][tag]` is a `ScalarTimeSeries`
value.
Raises:
tensorboard.errors.PublicError: See `DataProvider` class docstring.
"""
pass
@abc.abstractmethod
def read_scalars(
self, experiment_id, plugin_name, downsample=None, run_tag_filter=None
):
"""Read values from scalar time series.
Args:
experiment_id: ID of enclosing experiment.
plugin_name: String name of the TensorBoard plugin that created
the data to be queried. Required.
downsample: Integer number of steps to which to downsample the
results (e.g., `1000`). Required.
run_tag_filter: Optional `RunTagFilter` value. If provided, a time
series will only be included in the result if its run and tag
both pass this filter. If `None`, all time series will be
included.
The result will only contain keys for run-tag combinations that
actually exist, which may not include all entries in the
`run_tag_filter`.
Returns:
A nested map `d` such that `d[run][tag]` is a list of
`ScalarDatum` values sorted by step.
Raises:
tensorboard.errors.PublicError: See `DataProvider` class docstring.
"""
pass
def list_tensors(self, experiment_id, plugin_name, run_tag_filter=None):
"""List metadata about tensor time series.
Args:
experiment_id: ID of enclosing experiment.
plugin_name: String name of the TensorBoard plugin that created
the data to be queried. Required.
run_tag_filter: Optional `RunTagFilter` value. If omitted, all
runs and tags will be included.
The result will only contain keys for run-tag combinations that
actually exist, which may not include all entries in the
`run_tag_filter`.
Returns:
A nested map `d` such that `d[run][tag]` is a `TensorTimeSeries`
value.
Raises:
tensorboard.errors.PublicError: See `DataProvider` class docstring.
"""
pass
def read_tensors(
self, experiment_id, plugin_name, downsample=None, run_tag_filter=None
):
"""Read values from tensor time series.
Args:
experiment_id: ID of enclosing experiment.
plugin_name: String name of the TensorBoard plugin that created
the data to be queried. Required.
downsample: Integer number of steps to which to downsample the
results (e.g., `1000`). Required.
run_tag_filter: Optional `RunTagFilter` value. If provided, a time
series will only be included in the result if its run and tag
both pass this filter. If `None`, all time series will be
included.
The result will only contain keys for run-tag combinations that
actually exist, which may not include all entries in the
`run_tag_filter`.
Returns:
A nested map `d` such that `d[run][tag]` is a list of
`TensorDatum` values sorted by step.
Raises:
tensorboard.errors.PublicError: See `DataProvider` class docstring.
"""
pass
def list_blob_sequences(
self, experiment_id, plugin_name, run_tag_filter=None
):
"""List metadata about blob sequence time series.
Args:
experiment_id: ID of enclosing experiment.
plugin_name: String name of the TensorBoard plugin that created the data
to be queried. Required.
run_tag_filter: Optional `RunTagFilter` value. If omitted, all runs and
tags will be included. The result will only contain keys for run-tag
combinations that actually exist, which may not include all entries in
the `run_tag_filter`.
Returns:
A nested map `d` such that `d[run][tag]` is a `BlobSequenceTimeSeries`
value.
Raises:
tensorboard.errors.PublicError: See `DataProvider` class docstring.
"""
pass
def read_blob_sequences(
self, experiment_id, plugin_name, downsample=None, run_tag_filter=None
):
"""Read values from blob sequence time series.
Args:
experiment_id: ID of enclosing experiment.
plugin_name: String name of the TensorBoard plugin that created the data
to be queried. Required.
downsample: Integer number of steps to which to downsample the results
(e.g., `1000`). Required.
run_tag_filter: Optional `RunTagFilter` value. If provided, a time series
will only be included in the result if its run and tag both pass this
filter. If `None`, all time series will be included. The result will
only contain keys for run-tag combinations that actually exist, which
may not include all entries in the `run_tag_filter`.
Returns:
A nested map `d` such that `d[run][tag]` is a list of
`BlobSequenceDatum` values sorted by step.
Raises:
tensorboard.errors.PublicError: See `DataProvider` class docstring.
"""
pass
def read_blob(self, blob_key):
"""Read data for a single blob.
Args:
blob_key: A key identifying the desired blob, as provided by
`read_blob_sequences(...)`.
Returns:
Raw binary data as `bytes`.
Raises:
tensorboard.errors.PublicError: See `DataProvider` class docstring.
"""
pass
class ExperimentMetadata(object):
"""Metadata about an experiment.
Attributes:
experiment_name: A user-facing name for the experiment (as a `str`).
experiment_description: A user-facing description for the experiment
(as a `str`).
creation_time: A timestamp for the creation of the experiment, as `float`
seconds since the epoch.
"""
def __init__(self, experiment_name, experiment_description, creation_time):
self._experiment_name = experiment_name
self._experiment_description = experiment_description
self._creation_time = creation_time
@property
def experiment_name(self):
return self._experiment_name
@property
def experiment_description(self):
return self._experiment_description
@property
def creation_time(self):
return self._creation_time
class Run(object):
"""Metadata about a run.
Attributes:
run_id: A unique opaque string identifier for this run.
run_name: A user-facing name for this run (as a `str`).
start_time: The wall time of the earliest recorded event in this
run, as `float` seconds since epoch, or `None` if this run has no
recorded events.
"""
__slots__ = ("_run_id", "_run_name", "_start_time")
def __init__(self, run_id, run_name, start_time):
self._run_id = run_id
self._run_name = run_name
self._start_time = start_time
@property
def run_id(self):
return self._run_id
@property
def run_name(self):
return self._run_name
@property
def start_time(self):
return self._start_time
def __eq__(self, other):
if not isinstance(other, Run):
return False
if self._run_id != other._run_id:
return False
if self._run_name != other._run_name:
return False
if self._start_time != other._start_time:
return False
return True
def __hash__(self):
return hash((self._run_id, self._run_name, self._start_time))
def __repr__(self):
return "Run(%s)" % ", ".join(
(
"run_id=%r" % (self._run_id,),
"run_name=%r" % (self._run_name,),
"start_time=%r" % (self._start_time,),
)
)
class _TimeSeries(object):
"""Metadata about time series data for a particular run and tag.
Superclass of `ScalarTimeSeries`, `TensorTimeSeries`, and
`BlobSequenceTimeSeries`.
"""
__slots__ = (
"_max_step",
"_max_wall_time",
"_plugin_content",
"_description",
"_display_name",
)
def __init__(
self,
*,
max_step,
max_wall_time,
plugin_content,
description,
display_name
):
self._max_step = max_step
self._max_wall_time = max_wall_time
self._plugin_content = plugin_content
self._description = description
self._display_name = display_name
@property
def max_step(self):
return self._max_step
@property
def max_wall_time(self):
return self._max_wall_time
@property
def plugin_content(self):
return self._plugin_content
@property
def description(self):
return self._description
@property
def display_name(self):
return self._display_name
class ScalarTimeSeries(_TimeSeries):
"""Metadata about a scalar time series for a particular run and tag.
Attributes:
max_step: The largest step value of any datum in this scalar time series; a
nonnegative integer.
max_wall_time: The largest wall time of any datum in this time series, as
`float` seconds since epoch.
plugin_content: A bytestring of arbitrary plugin-specific metadata for this
time series, as provided to `tf.summary.write` in the
`plugin_data.content` field of the `metadata` argument.
description: An optional long-form Markdown description, as a `str` that is
empty if no description was specified.
display_name: An optional long-form Markdown description, as a `str` that is
empty if no description was specified. Deprecated; may be removed soon.
"""
def __eq__(self, other):
if not isinstance(other, ScalarTimeSeries):
return False
if self._max_step != other._max_step:
return False
if self._max_wall_time != other._max_wall_time:
return False
if self._plugin_content != other._plugin_content:
return False
if self._description != other._description:
return False
if self._display_name != other._display_name:
return False
return True
def __hash__(self):
return hash(
(
self._max_step,
self._max_wall_time,
self._plugin_content,
self._description,
self._display_name,
)
)
def __repr__(self):
return "ScalarTimeSeries(%s)" % ", ".join(
(
"max_step=%r" % (self._max_step,),
"max_wall_time=%r" % (self._max_wall_time,),
"plugin_content=%r" % (self._plugin_content,),
"description=%r" % (self._description,),
"display_name=%r" % (self._display_name,),
)
)
class ScalarDatum(object):
"""A single datum in a scalar time series for a run and tag.
Attributes:
step: The global step at which this datum occurred; an integer. This
is a unique key among data of this time series.
wall_time: The real-world time at which this datum occurred, as
`float` seconds since epoch.
value: The scalar value for this datum; a `float`.
"""
__slots__ = ("_step", "_wall_time", "_value")
def __init__(self, step, wall_time, value):
self._step = step
self._wall_time = wall_time
self._value = value
@property
def step(self):
return self._step
@property
def wall_time(self):
return self._wall_time
@property
def value(self):
return self._value
def __eq__(self, other):
if not isinstance(other, ScalarDatum):
return False
if self._step != other._step:
return False
if self._wall_time != other._wall_time:
return False
if self._value != other._value:
return False
return True
def __hash__(self):
return hash((self._step, self._wall_time, self._value))
def __repr__(self):
return "ScalarDatum(%s)" % ", ".join(
(
"step=%r" % (self._step,),
"wall_time=%r" % (self._wall_time,),
"value=%r" % (self._value,),
)
)
class TensorTimeSeries(_TimeSeries):
"""Metadata about a tensor time series for a particular run and tag.
Attributes:
max_step: The largest step value of any datum in this tensor time series; a
nonnegative integer.
max_wall_time: The largest wall time of any datum in this time series, as
`float` seconds since epoch.
plugin_content: A bytestring of arbitrary plugin-specific metadata for this
time series, as provided to `tf.summary.write` in the
`plugin_data.content` field of the `metadata` argument.
description: An optional long-form Markdown description, as a `str` that is
empty if no description was specified.
display_name: An optional long-form Markdown description, as a `str` that is
empty if no description was specified. Deprecated; may be removed soon.
"""
def __eq__(self, other):
if not isinstance(other, TensorTimeSeries):
return False
if self._max_step != other._max_step:
return False
if self._max_wall_time != other._max_wall_time:
return False
if self._plugin_content != other._plugin_content:
return False
if self._description != other._description:
return False
if self._display_name != other._display_name:
return False
return True
def __hash__(self):
return hash(
(
self._max_step,
self._max_wall_time,
self._plugin_content,
self._description,
self._display_name,
)
)
def __repr__(self):
return "TensorTimeSeries(%s)" % ", ".join(
(
"max_step=%r" % (self._max_step,),
"max_wall_time=%r" % (self._max_wall_time,),
"plugin_content=%r" % (self._plugin_content,),
"description=%r" % (self._description,),
"display_name=%r" % (self._display_name,),
)
)
class TensorDatum(object):
"""A single datum in a tensor time series for a run and tag.
Attributes:
step: The global step at which this datum occurred; an integer. This
is a unique key among data of this time series.
wall_time: The real-world time at which this datum occurred, as
`float` seconds since epoch.
numpy: The `numpy.ndarray` value with the tensor contents of this
datum.
"""
__slots__ = ("_step", "_wall_time", "_numpy")
def __init__(self, step, wall_time, numpy):
self._step = step
self._wall_time = wall_time
self._numpy = numpy
@property
def step(self):
return self._step
@property
def wall_time(self):
return self._wall_time
@property
def numpy(self):
return self._numpy
def __eq__(self, other):
if not isinstance(other, TensorDatum):
return False
if self._step != other._step:
return False
if self._wall_time != other._wall_time:
return False
if not np.array_equal(self._numpy, other._numpy):
return False
return True
# Unhashable type: numpy arrays are mutable.
__hash__ = None
def __repr__(self):
return "TensorDatum(%s)" % ", ".join(
(
"step=%r" % (self._step,),
"wall_time=%r" % (self._wall_time,),
"numpy=%r" % (self._numpy,),
)
)
class BlobSequenceTimeSeries(_TimeSeries):
"""Metadata about a blob sequence time series for a particular run and tag.
Attributes:
max_step: The largest step value of any datum in this scalar time series; a
nonnegative integer.
max_wall_time: The largest wall time of any datum in this time series, as
`float` seconds since epoch.
max_length: The largest length (number of blobs) of any datum in
this scalar time series, or `None` if this time series is empty.
plugin_content: A bytestring of arbitrary plugin-specific metadata for this
time series, as provided to `tf.summary.write` in the
`plugin_data.content` field of the `metadata` argument.
description: An optional long-form Markdown description, as a `str` that is
empty if no description was specified.
display_name: An optional long-form Markdown description, as a `str` that is
empty if no description was specified. Deprecated; may be removed soon.
"""
__slots__ = ("_max_length",)
def __init__(
self,
*,
max_step,
max_wall_time,
max_length,
plugin_content,
description,
display_name
):
super(BlobSequenceTimeSeries, self).__init__(
max_step=max_step,
max_wall_time=max_wall_time,
plugin_content=plugin_content,
description=description,
display_name=display_name,
)
self._max_length = max_length
@property
def max_length(self):
return self._max_length
def __eq__(self, other):
if not isinstance(other, BlobSequenceTimeSeries):
return False
if self._max_step != other._max_step:
return False
if self._max_wall_time != other._max_wall_time:
return False
if self._max_length != other._max_length:
return False
if self._plugin_content != other._plugin_content:
return False
if self._description != other._description:
return False
if self._display_name != other._display_name:
return False
return True
def __hash__(self):
return hash(
(
self._max_step,
self._max_wall_time,
self._max_length,
self._plugin_content,
self._description,
self._display_name,
)
)
def __repr__(self):
return "BlobSequenceTimeSeries(%s)" % ", ".join(
(
"max_step=%r" % (self._max_step,),
"max_wall_time=%r" % (self._max_wall_time,),
"max_length=%r" % (self._max_length,),
"plugin_content=%r" % (self._plugin_content,),
"description=%r" % (self._description,),
"display_name=%r" % (self._display_name,),
)
)
class BlobReference(object):
"""A reference to a blob.
Attributes:
blob_key: A string containing a key uniquely identifying a blob, which
may be dereferenced via `provider.read_blob(blob_key)`.
These keys must be constructed such that they can be included directly in
a URL, with no further encoding. Concretely, this means that they consist
exclusively of "unreserved characters" per RFC 3986, namely
[a-zA-Z0-9._~-]. These keys are case-sensitive; it may be wise for
implementations to normalize case to reduce confusion. The empty string
is not a valid key.
Blob keys must not contain information that should be kept secret.
Privacy-sensitive applications should use random keys (e.g. UUIDs), or
encrypt keys containing secret fields.
url: (optional) A string containing a URL from which the blob data may be
fetched directly, bypassing the data provider. URLs may be a vector
for data leaks (e.g. via browser history, web proxies, etc.), so these
URLs should not expose secret information.
"""
__slots__ = ("_url", "_blob_key")
def __init__(self, blob_key, url=None):
self._blob_key = blob_key
self._url = url
@property
def blob_key(self):
"""Provide a key uniquely identifying a blob.
Callers should consider these keys to be opaque-- i.e., to have
no intrinsic meaning. Some data providers may use random IDs;
but others may encode information into the key, in which case
callers must make no attempt to decode it.
"""
return self._blob_key
@property
def url(self):
"""Provide the direct-access URL for this blob, if available.
Note that this method is *not* expected to construct a URL to
the data-loading endpoint provided by TensorBoard. If this
method returns None, then the caller should proceed to use
`blob_key()` to build the URL, as needed.
"""
return self._url
def __eq__(self, other):
if not isinstance(other, BlobReference):
return False
if self._blob_key != other._blob_key:
return False
if self._url != other._url:
return False
return True
def __hash__(self):
return hash((self._blob_key, self._url))
def __repr__(self):
return "BlobReference(%s)" % ", ".join(
("blob_key=%r" % (self._blob_key,), "url=%r" % (self._url,))
)
class BlobSequenceDatum(object):
"""A single datum in a blob sequence time series for a run and tag.
Attributes:
step: The global step at which this datum occurred; an integer. This is a
unique key among data of this time series.
wall_time: The real-world time at which this datum occurred, as `float`
seconds since epoch.
values: A tuple of `BlobReference` objects, providing access to elements of
this sequence.
"""
__slots__ = ("_step", "_wall_time", "_values")
def __init__(self, step, wall_time, values):
self._step = step
self._wall_time = wall_time
self._values = values
@property
def step(self):
return self._step
@property
def wall_time(self):
return self._wall_time
@property
def values(self):
return self._values
def __eq__(self, other):
if not isinstance(other, BlobSequenceDatum):
return False
if self._step != other._step:
return False
if self._wall_time != other._wall_time:
return False
if self._values != other._values:
return False
return True
def __hash__(self):
return hash((self._step, self._wall_time, self._values))
def __repr__(self):
return "BlobSequenceDatum(%s)" % ", ".join(
(
"step=%r" % (self._step,),
"wall_time=%r" % (self._wall_time,),
"values=%r" % (self._values,),
)
)
class RunTagFilter(object):
"""Filters data by run and tag names."""
def __init__(self, runs=None, tags=None):
"""Construct a `RunTagFilter`.
A time series passes this filter if both its run *and* its tag are
included in the corresponding whitelists.
Order and multiplicity are ignored; `runs` and `tags` are treated as
sets.
Args:
runs: Collection of run names, as strings, or `None` to admit all
runs.
tags: Collection of tag names, as strings, or `None` to admit all
tags.
"""
self._runs = self._parse_optional_string_set("runs", runs)
self._tags = self._parse_optional_string_set("tags", tags)
def _parse_optional_string_set(self, name, value):
if value is None:
return None
if isinstance(value, six.string_types):
# Prevent confusion: strings _are_ iterable, but as
# sequences of characters, so this likely signals an error.
raise TypeError(
"%s: expected `None` or collection of strings; got %r: %r"
% (name, type(value), value)
)
value = frozenset(value)
for item in value:
if not isinstance(item, six.string_types):
raise TypeError(
"%s: expected `None` or collection of strings; "
"got item of type %r: %r" % (name, type(item), item)
)
return value
@property
def runs(self):
return self._runs
@property
def tags(self):
return self._tags
def __repr__(self):
return "RunTagFilter(%s)" % ", ".join(
("runs=%r" % (self._runs,), "tags=%r" % (self._tags,),)
)