util.py
8.71 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import time
import importlib
import collections
import pickle as cp
import glob
import numpy as np
import pandas as pd
from natsort import natsorted
from PIL import Image
import torch
import torchvision
import torch.nn.functional as F
import torchvision.models as models
import torchvision.transforms as transforms
from torch.utils.data import Subset
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from networks import *
TRAIN_DATASET_PATH = '/content/drive/My Drive/CD2 Project/data/nonaug+Normal_train/'
TRAIN_TARGET_PATH = '/content/drive/My Drive/CD2 Project/data/train_nonaug_classify_target.csv'
# VAL_DATASET_PATH = '../../data/MICCAI_BraTS_2019_Data_Training/ce_valid/'
# VAL_TARGET_PATH = '../../data/MICCAI_BraTS_2019_Data_Training/ce_valid_targets.csv'
current_epoch = 0
def split_dataset(args, dataset, k):
# load dataset
X = list(range(len(dataset)))
Y = dataset.targets
# split to k-fold
assert len(X) == len(Y)
def _it_to_list(_it):
return list(zip(*list(_it)))
sss = StratifiedShuffleSplit(n_splits=k, random_state=args.seed, test_size=0.1)
Dm_indexes, Da_indexes = _it_to_list(sss.split(X, Y))
return Dm_indexes, Da_indexes
def get_model_name(args):
from datetime import datetime, timedelta, timezone
now = datetime.now(timezone.utc)
tz = timezone(timedelta(hours=9))
now = now.astimezone(tz)
date_time = now.strftime("%B_%d_%H:%M:%S")
model_name = '__'.join([date_time, args.network, str(args.seed)])
return model_name
def dict_to_namedtuple(d):
Args = collections.namedtuple('Args', sorted(d.keys()))
for k,v in d.items():
if type(v) is dict:
d[k] = dict_to_namedtuple(v)
elif type(v) is str:
try:
d[k] = eval(v)
except:
d[k] = v
args = Args(**d)
return args
def parse_args(kwargs):
# combine with default args
kwargs['dataset'] = kwargs['dataset'] if 'dataset' in kwargs else 'BraTS'
kwargs['network'] = kwargs['network'] if 'network' in kwargs else 'resnet50'
kwargs['optimizer'] = kwargs['optimizer'] if 'optimizer' in kwargs else 'adam'
kwargs['learning_rate'] = kwargs['learning_rate'] if 'learning_rate' in kwargs else 0.0001
kwargs['seed'] = kwargs['seed'] if 'seed' in kwargs else None
kwargs['use_cuda'] = kwargs['use_cuda'] if 'use_cuda' in kwargs else True
kwargs['use_cuda'] = kwargs['use_cuda'] and torch.cuda.is_available()
kwargs['num_workers'] = kwargs['num_workers'] if 'num_workers' in kwargs else 4
kwargs['print_step'] = kwargs['print_step'] if 'print_step' in kwargs else 500
kwargs['val_step'] = kwargs['val_step'] if 'val_step' in kwargs else 500
kwargs['scheduler'] = kwargs['scheduler'] if 'scheduler' in kwargs else 'exp'
kwargs['batch_size'] = kwargs['batch_size'] if 'batch_size' in kwargs else 128
kwargs['start_step'] = kwargs['start_step'] if 'start_step' in kwargs else 0
kwargs['max_step'] = kwargs['max_step'] if 'max_step' in kwargs else 5000
kwargs['augment_path'] = kwargs['augment_path'] if 'augment_path' in kwargs else None
# to named tuple
args = dict_to_namedtuple(kwargs)
return args, kwargs
def select_model(args):
# grayResNet2
resnet_dict = {'resnet18':grayResNet2.resnet18(), 'resnet34':grayResNet2.resnet34(),
'resnet50':grayResNet2.resnet50(), 'resnet101':grayResNet2.resnet101(), 'resnet152':grayResNet2.resnet152()}
if args.network in resnet_dict:
backbone = resnet_dict[args.network]
model = basenet.BaseNet(backbone, args)
else:
Net = getattr(importlib.import_module('networks.{}'.format(args.network)), 'Net')
model = Net(args)
#print(model) # print model architecture
return model
def select_optimizer(args, model):
if args.optimizer == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate, momentum=0.9, weight_decay=0.0001)
elif args.optimizer == 'rms':
optimizer = torch.optim.RMSprop(model.parameters(), lr=args.learning_rate)
elif args.optimizer == 'adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
else:
raise Exception('Unknown Optimizer')
return optimizer
def select_scheduler(args, optimizer):
if not args.scheduler or args.scheduler == 'None':
return None
elif args.scheduler =='clr':
return torch.optim.lr_scheduler.CyclicLR(optimizer, 0.01, 0.015, mode='triangular2', step_size_up=250000, cycle_momentum=False)
elif args.scheduler =='exp':
return torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9999283, last_epoch=-1)
else:
raise Exception('Unknown Scheduler')
class CustomDataset(Dataset):
def __init__(self, data_path, csv_path):
self.len = len(self.imgs)
self.path = data_path
self.imgs = natsorted(os.listdir(data_path))
df = pd.read_csv(csv_path)
targets_list = []
for fname in self.imgs:
row = df.loc[df['filename'] == fname]
targets_list.append(row.iloc[0, 1])
self.targets = targets_list
def __len__(self):
return self.len
def __getitem__(self, idx):
img_loc = os.path.join(self.path, self.imgs[idx])
targets = self.targets[idx]
image = Image.open(img_loc)
return image, targets
def get_dataset(args, transform, split='train'):
assert split in ['train', 'val', 'test', 'trainval']
if split in ['train']:
dataset = CustomDataset(TRAIN_DATASET_PATH, TRAIN_TARGET_PATH, transform=transform)
else: #test
dataset = CustomDataset(VAL_DATASET_PATH, VAL_TARGET_PATH, transform=transform)
return dataset
def get_dataloader(args, dataset, shuffle=False, pin_memory=True):
data_loader = torch.utils.data.DataLoader(dataset,
batch_size=args.batch_size,
shuffle=shuffle,
num_workers=args.num_workers,
pin_memory=pin_memory)
return data_loader
def get_aug_dataloader(args, dataset, shuffle=False, pin_memory=True):
data_loader = torch.utils.data.DataLoader(dataset,
batch_size=args.batch_size,
shuffle=shuffle,
num_workers=args.num_workers,
pin_memory=pin_memory)
return data_loader
def get_inf_dataloader(args, dataset):
global current_epoch
data_loader = iter(get_dataloader(args, dataset, shuffle=True))
while True:
try:
batch = next(data_loader)
except StopIteration:
current_epoch += 1
data_loader = iter(get_dataloader(args, dataset, shuffle=True))
batch = next(data_loader)
yield batch
def train_step(args, model, optimizer, scheduler, criterion, batch, step, writer, device=None):
model.train()
images, target = batch
if device:
images = images.to(device)
target = target.to(device)
elif args.use_cuda:
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
start_t = time.time()
output, first = model(images)
forward_t = time.time() - start_t
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
acc1 /= images.size(0)
acc5 /= images.size(0)
# compute gradient and do SGD step
optimizer.zero_grad()
start_t = time.time()
loss.backward()
backward_t = time.time() - start_t
optimizer.step()
if scheduler: scheduler.step()
if writer and step % args.print_step == 0:
n_imgs = min(images.size(0), 10)
tag = 'train/' + str(step)
for j in range(n_imgs):
writer.add_image(tag,
concat_image_features(images[j], first[j]), global_step=step)
return acc1, acc5, loss, forward_t, backward_t
#_acc1, _acc5 = accuracy(output, target, topk=(1, 5))
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k)
return res