nanfunctions.py
57.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
"""
Functions that ignore NaN.
Functions
---------
- `nanmin` -- minimum non-NaN value
- `nanmax` -- maximum non-NaN value
- `nanargmin` -- index of minimum non-NaN value
- `nanargmax` -- index of maximum non-NaN value
- `nansum` -- sum of non-NaN values
- `nanprod` -- product of non-NaN values
- `nancumsum` -- cumulative sum of non-NaN values
- `nancumprod` -- cumulative product of non-NaN values
- `nanmean` -- mean of non-NaN values
- `nanvar` -- variance of non-NaN values
- `nanstd` -- standard deviation of non-NaN values
- `nanmedian` -- median of non-NaN values
- `nanquantile` -- qth quantile of non-NaN values
- `nanpercentile` -- qth percentile of non-NaN values
"""
from __future__ import division, absolute_import, print_function
import functools
import warnings
import numpy as np
from numpy.lib import function_base
from numpy.core import overrides
array_function_dispatch = functools.partial(
overrides.array_function_dispatch, module='numpy')
__all__ = [
'nansum', 'nanmax', 'nanmin', 'nanargmax', 'nanargmin', 'nanmean',
'nanmedian', 'nanpercentile', 'nanvar', 'nanstd', 'nanprod',
'nancumsum', 'nancumprod', 'nanquantile'
]
def _nan_mask(a, out=None):
"""
Parameters
----------
a : array-like
Input array with at least 1 dimension.
out : ndarray, optional
Alternate output array in which to place the result. The default
is ``None``; if provided, it must have the same shape as the
expected output and will prevent the allocation of a new array.
Returns
-------
y : bool ndarray or True
A bool array where ``np.nan`` positions are marked with ``False``
and other positions are marked with ``True``. If the type of ``a``
is such that it can't possibly contain ``np.nan``, returns ``True``.
"""
# we assume that a is an array for this private function
if a.dtype.kind not in 'fc':
return True
y = np.isnan(a, out=out)
y = np.invert(y, out=y)
return y
def _replace_nan(a, val):
"""
If `a` is of inexact type, make a copy of `a`, replace NaNs with
the `val` value, and return the copy together with a boolean mask
marking the locations where NaNs were present. If `a` is not of
inexact type, do nothing and return `a` together with a mask of None.
Note that scalars will end up as array scalars, which is important
for using the result as the value of the out argument in some
operations.
Parameters
----------
a : array-like
Input array.
val : float
NaN values are set to val before doing the operation.
Returns
-------
y : ndarray
If `a` is of inexact type, return a copy of `a` with the NaNs
replaced by the fill value, otherwise return `a`.
mask: {bool, None}
If `a` is of inexact type, return a boolean mask marking locations of
NaNs, otherwise return None.
"""
a = np.asanyarray(a)
if a.dtype == np.object_:
# object arrays do not support `isnan` (gh-9009), so make a guess
mask = np.not_equal(a, a, dtype=bool)
elif issubclass(a.dtype.type, np.inexact):
mask = np.isnan(a)
else:
mask = None
if mask is not None:
a = np.array(a, subok=True, copy=True)
np.copyto(a, val, where=mask)
return a, mask
def _copyto(a, val, mask):
"""
Replace values in `a` with NaN where `mask` is True. This differs from
copyto in that it will deal with the case where `a` is a numpy scalar.
Parameters
----------
a : ndarray or numpy scalar
Array or numpy scalar some of whose values are to be replaced
by val.
val : numpy scalar
Value used a replacement.
mask : ndarray, scalar
Boolean array. Where True the corresponding element of `a` is
replaced by `val`. Broadcasts.
Returns
-------
res : ndarray, scalar
Array with elements replaced or scalar `val`.
"""
if isinstance(a, np.ndarray):
np.copyto(a, val, where=mask, casting='unsafe')
else:
a = a.dtype.type(val)
return a
def _remove_nan_1d(arr1d, overwrite_input=False):
"""
Equivalent to arr1d[~arr1d.isnan()], but in a different order
Presumably faster as it incurs fewer copies
Parameters
----------
arr1d : ndarray
Array to remove nans from
overwrite_input : bool
True if `arr1d` can be modified in place
Returns
-------
res : ndarray
Array with nan elements removed
overwrite_input : bool
True if `res` can be modified in place, given the constraint on the
input
"""
c = np.isnan(arr1d)
s = np.nonzero(c)[0]
if s.size == arr1d.size:
warnings.warn("All-NaN slice encountered", RuntimeWarning,
stacklevel=5)
return arr1d[:0], True
elif s.size == 0:
return arr1d, overwrite_input
else:
if not overwrite_input:
arr1d = arr1d.copy()
# select non-nans at end of array
enonan = arr1d[-s.size:][~c[-s.size:]]
# fill nans in beginning of array with non-nans of end
arr1d[s[:enonan.size]] = enonan
return arr1d[:-s.size], True
def _divide_by_count(a, b, out=None):
"""
Compute a/b ignoring invalid results. If `a` is an array the division
is done in place. If `a` is a scalar, then its type is preserved in the
output. If out is None, then then a is used instead so that the
division is in place. Note that this is only called with `a` an inexact
type.
Parameters
----------
a : {ndarray, numpy scalar}
Numerator. Expected to be of inexact type but not checked.
b : {ndarray, numpy scalar}
Denominator.
out : ndarray, optional
Alternate output array in which to place the result. The default
is ``None``; if provided, it must have the same shape as the
expected output, but the type will be cast if necessary.
Returns
-------
ret : {ndarray, numpy scalar}
The return value is a/b. If `a` was an ndarray the division is done
in place. If `a` is a numpy scalar, the division preserves its type.
"""
with np.errstate(invalid='ignore', divide='ignore'):
if isinstance(a, np.ndarray):
if out is None:
return np.divide(a, b, out=a, casting='unsafe')
else:
return np.divide(a, b, out=out, casting='unsafe')
else:
if out is None:
return a.dtype.type(a / b)
else:
# This is questionable, but currently a numpy scalar can
# be output to a zero dimensional array.
return np.divide(a, b, out=out, casting='unsafe')
def _nanmin_dispatcher(a, axis=None, out=None, keepdims=None):
return (a, out)
@array_function_dispatch(_nanmin_dispatcher)
def nanmin(a, axis=None, out=None, keepdims=np._NoValue):
"""
Return minimum of an array or minimum along an axis, ignoring any NaNs.
When all-NaN slices are encountered a ``RuntimeWarning`` is raised and
Nan is returned for that slice.
Parameters
----------
a : array_like
Array containing numbers whose minimum is desired. If `a` is not an
array, a conversion is attempted.
axis : {int, tuple of int, None}, optional
Axis or axes along which the minimum is computed. The default is to compute
the minimum of the flattened array.
out : ndarray, optional
Alternate output array in which to place the result. The default
is ``None``; if provided, it must have the same shape as the
expected output, but the type will be cast if necessary. See
`ufuncs-output-type` for more details.
.. versionadded:: 1.8.0
keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original `a`.
If the value is anything but the default, then
`keepdims` will be passed through to the `min` method
of sub-classes of `ndarray`. If the sub-classes methods
does not implement `keepdims` any exceptions will be raised.
.. versionadded:: 1.8.0
Returns
-------
nanmin : ndarray
An array with the same shape as `a`, with the specified axis
removed. If `a` is a 0-d array, or if axis is None, an ndarray
scalar is returned. The same dtype as `a` is returned.
See Also
--------
nanmax :
The maximum value of an array along a given axis, ignoring any NaNs.
amin :
The minimum value of an array along a given axis, propagating any NaNs.
fmin :
Element-wise minimum of two arrays, ignoring any NaNs.
minimum :
Element-wise minimum of two arrays, propagating any NaNs.
isnan :
Shows which elements are Not a Number (NaN).
isfinite:
Shows which elements are neither NaN nor infinity.
amax, fmax, maximum
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Positive infinity is treated as a very large number and negative
infinity is treated as a very small (i.e. negative) number.
If the input has a integer type the function is equivalent to np.min.
Examples
--------
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanmin(a)
1.0
>>> np.nanmin(a, axis=0)
array([1., 2.])
>>> np.nanmin(a, axis=1)
array([1., 3.])
When positive infinity and negative infinity are present:
>>> np.nanmin([1, 2, np.nan, np.inf])
1.0
>>> np.nanmin([1, 2, np.nan, np.NINF])
-inf
"""
kwargs = {}
if keepdims is not np._NoValue:
kwargs['keepdims'] = keepdims
if type(a) is np.ndarray and a.dtype != np.object_:
# Fast, but not safe for subclasses of ndarray, or object arrays,
# which do not implement isnan (gh-9009), or fmin correctly (gh-8975)
res = np.fmin.reduce(a, axis=axis, out=out, **kwargs)
if np.isnan(res).any():
warnings.warn("All-NaN slice encountered", RuntimeWarning,
stacklevel=3)
else:
# Slow, but safe for subclasses of ndarray
a, mask = _replace_nan(a, +np.inf)
res = np.amin(a, axis=axis, out=out, **kwargs)
if mask is None:
return res
# Check for all-NaN axis
mask = np.all(mask, axis=axis, **kwargs)
if np.any(mask):
res = _copyto(res, np.nan, mask)
warnings.warn("All-NaN axis encountered", RuntimeWarning,
stacklevel=3)
return res
def _nanmax_dispatcher(a, axis=None, out=None, keepdims=None):
return (a, out)
@array_function_dispatch(_nanmax_dispatcher)
def nanmax(a, axis=None, out=None, keepdims=np._NoValue):
"""
Return the maximum of an array or maximum along an axis, ignoring any
NaNs. When all-NaN slices are encountered a ``RuntimeWarning`` is
raised and NaN is returned for that slice.
Parameters
----------
a : array_like
Array containing numbers whose maximum is desired. If `a` is not an
array, a conversion is attempted.
axis : {int, tuple of int, None}, optional
Axis or axes along which the maximum is computed. The default is to compute
the maximum of the flattened array.
out : ndarray, optional
Alternate output array in which to place the result. The default
is ``None``; if provided, it must have the same shape as the
expected output, but the type will be cast if necessary. See
`ufuncs-output-type` for more details.
.. versionadded:: 1.8.0
keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original `a`.
If the value is anything but the default, then
`keepdims` will be passed through to the `max` method
of sub-classes of `ndarray`. If the sub-classes methods
does not implement `keepdims` any exceptions will be raised.
.. versionadded:: 1.8.0
Returns
-------
nanmax : ndarray
An array with the same shape as `a`, with the specified axis removed.
If `a` is a 0-d array, or if axis is None, an ndarray scalar is
returned. The same dtype as `a` is returned.
See Also
--------
nanmin :
The minimum value of an array along a given axis, ignoring any NaNs.
amax :
The maximum value of an array along a given axis, propagating any NaNs.
fmax :
Element-wise maximum of two arrays, ignoring any NaNs.
maximum :
Element-wise maximum of two arrays, propagating any NaNs.
isnan :
Shows which elements are Not a Number (NaN).
isfinite:
Shows which elements are neither NaN nor infinity.
amin, fmin, minimum
Notes
-----
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic
(IEEE 754). This means that Not a Number is not equivalent to infinity.
Positive infinity is treated as a very large number and negative
infinity is treated as a very small (i.e. negative) number.
If the input has a integer type the function is equivalent to np.max.
Examples
--------
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanmax(a)
3.0
>>> np.nanmax(a, axis=0)
array([3., 2.])
>>> np.nanmax(a, axis=1)
array([2., 3.])
When positive infinity and negative infinity are present:
>>> np.nanmax([1, 2, np.nan, np.NINF])
2.0
>>> np.nanmax([1, 2, np.nan, np.inf])
inf
"""
kwargs = {}
if keepdims is not np._NoValue:
kwargs['keepdims'] = keepdims
if type(a) is np.ndarray and a.dtype != np.object_:
# Fast, but not safe for subclasses of ndarray, or object arrays,
# which do not implement isnan (gh-9009), or fmax correctly (gh-8975)
res = np.fmax.reduce(a, axis=axis, out=out, **kwargs)
if np.isnan(res).any():
warnings.warn("All-NaN slice encountered", RuntimeWarning,
stacklevel=3)
else:
# Slow, but safe for subclasses of ndarray
a, mask = _replace_nan(a, -np.inf)
res = np.amax(a, axis=axis, out=out, **kwargs)
if mask is None:
return res
# Check for all-NaN axis
mask = np.all(mask, axis=axis, **kwargs)
if np.any(mask):
res = _copyto(res, np.nan, mask)
warnings.warn("All-NaN axis encountered", RuntimeWarning,
stacklevel=3)
return res
def _nanargmin_dispatcher(a, axis=None):
return (a,)
@array_function_dispatch(_nanargmin_dispatcher)
def nanargmin(a, axis=None):
"""
Return the indices of the minimum values in the specified axis ignoring
NaNs. For all-NaN slices ``ValueError`` is raised. Warning: the results
cannot be trusted if a slice contains only NaNs and Infs.
Parameters
----------
a : array_like
Input data.
axis : int, optional
Axis along which to operate. By default flattened input is used.
Returns
-------
index_array : ndarray
An array of indices or a single index value.
See Also
--------
argmin, nanargmax
Examples
--------
>>> a = np.array([[np.nan, 4], [2, 3]])
>>> np.argmin(a)
0
>>> np.nanargmin(a)
2
>>> np.nanargmin(a, axis=0)
array([1, 1])
>>> np.nanargmin(a, axis=1)
array([1, 0])
"""
a, mask = _replace_nan(a, np.inf)
res = np.argmin(a, axis=axis)
if mask is not None:
mask = np.all(mask, axis=axis)
if np.any(mask):
raise ValueError("All-NaN slice encountered")
return res
def _nanargmax_dispatcher(a, axis=None):
return (a,)
@array_function_dispatch(_nanargmax_dispatcher)
def nanargmax(a, axis=None):
"""
Return the indices of the maximum values in the specified axis ignoring
NaNs. For all-NaN slices ``ValueError`` is raised. Warning: the
results cannot be trusted if a slice contains only NaNs and -Infs.
Parameters
----------
a : array_like
Input data.
axis : int, optional
Axis along which to operate. By default flattened input is used.
Returns
-------
index_array : ndarray
An array of indices or a single index value.
See Also
--------
argmax, nanargmin
Examples
--------
>>> a = np.array([[np.nan, 4], [2, 3]])
>>> np.argmax(a)
0
>>> np.nanargmax(a)
1
>>> np.nanargmax(a, axis=0)
array([1, 0])
>>> np.nanargmax(a, axis=1)
array([1, 1])
"""
a, mask = _replace_nan(a, -np.inf)
res = np.argmax(a, axis=axis)
if mask is not None:
mask = np.all(mask, axis=axis)
if np.any(mask):
raise ValueError("All-NaN slice encountered")
return res
def _nansum_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None):
return (a, out)
@array_function_dispatch(_nansum_dispatcher)
def nansum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue):
"""
Return the sum of array elements over a given axis treating Not a
Numbers (NaNs) as zero.
In NumPy versions <= 1.9.0 Nan is returned for slices that are all-NaN or
empty. In later versions zero is returned.
Parameters
----------
a : array_like
Array containing numbers whose sum is desired. If `a` is not an
array, a conversion is attempted.
axis : {int, tuple of int, None}, optional
Axis or axes along which the sum is computed. The default is to compute the
sum of the flattened array.
dtype : data-type, optional
The type of the returned array and of the accumulator in which the
elements are summed. By default, the dtype of `a` is used. An
exception is when `a` has an integer type with less precision than
the platform (u)intp. In that case, the default will be either
(u)int32 or (u)int64 depending on whether the platform is 32 or 64
bits. For inexact inputs, dtype must be inexact.
.. versionadded:: 1.8.0
out : ndarray, optional
Alternate output array in which to place the result. The default
is ``None``. If provided, it must have the same shape as the
expected output, but the type will be cast if necessary. See
`ufuncs-output-type` for more details. The casting of NaN to integer
can yield unexpected results.
.. versionadded:: 1.8.0
keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original `a`.
If the value is anything but the default, then
`keepdims` will be passed through to the `mean` or `sum` methods
of sub-classes of `ndarray`. If the sub-classes methods
does not implement `keepdims` any exceptions will be raised.
.. versionadded:: 1.8.0
Returns
-------
nansum : ndarray.
A new array holding the result is returned unless `out` is
specified, in which it is returned. The result has the same
size as `a`, and the same shape as `a` if `axis` is not None
or `a` is a 1-d array.
See Also
--------
numpy.sum : Sum across array propagating NaNs.
isnan : Show which elements are NaN.
isfinite: Show which elements are not NaN or +/-inf.
Notes
-----
If both positive and negative infinity are present, the sum will be Not
A Number (NaN).
Examples
--------
>>> np.nansum(1)
1
>>> np.nansum([1])
1
>>> np.nansum([1, np.nan])
1.0
>>> a = np.array([[1, 1], [1, np.nan]])
>>> np.nansum(a)
3.0
>>> np.nansum(a, axis=0)
array([2., 1.])
>>> np.nansum([1, np.nan, np.inf])
inf
>>> np.nansum([1, np.nan, np.NINF])
-inf
>>> from numpy.testing import suppress_warnings
>>> with suppress_warnings() as sup:
... sup.filter(RuntimeWarning)
... np.nansum([1, np.nan, np.inf, -np.inf]) # both +/- infinity present
nan
"""
a, mask = _replace_nan(a, 0)
return np.sum(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims)
def _nanprod_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None):
return (a, out)
@array_function_dispatch(_nanprod_dispatcher)
def nanprod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue):
"""
Return the product of array elements over a given axis treating Not a
Numbers (NaNs) as ones.
One is returned for slices that are all-NaN or empty.
.. versionadded:: 1.10.0
Parameters
----------
a : array_like
Array containing numbers whose product is desired. If `a` is not an
array, a conversion is attempted.
axis : {int, tuple of int, None}, optional
Axis or axes along which the product is computed. The default is to compute
the product of the flattened array.
dtype : data-type, optional
The type of the returned array and of the accumulator in which the
elements are summed. By default, the dtype of `a` is used. An
exception is when `a` has an integer type with less precision than
the platform (u)intp. In that case, the default will be either
(u)int32 or (u)int64 depending on whether the platform is 32 or 64
bits. For inexact inputs, dtype must be inexact.
out : ndarray, optional
Alternate output array in which to place the result. The default
is ``None``. If provided, it must have the same shape as the
expected output, but the type will be cast if necessary. See
`ufuncs-output-type` for more details. The casting of NaN to integer
can yield unexpected results.
keepdims : bool, optional
If True, the axes which are reduced are left in the result as
dimensions with size one. With this option, the result will
broadcast correctly against the original `arr`.
Returns
-------
nanprod : ndarray
A new array holding the result is returned unless `out` is
specified, in which case it is returned.
See Also
--------
numpy.prod : Product across array propagating NaNs.
isnan : Show which elements are NaN.
Examples
--------
>>> np.nanprod(1)
1
>>> np.nanprod([1])
1
>>> np.nanprod([1, np.nan])
1.0
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nanprod(a)
6.0
>>> np.nanprod(a, axis=0)
array([3., 2.])
"""
a, mask = _replace_nan(a, 1)
return np.prod(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims)
def _nancumsum_dispatcher(a, axis=None, dtype=None, out=None):
return (a, out)
@array_function_dispatch(_nancumsum_dispatcher)
def nancumsum(a, axis=None, dtype=None, out=None):
"""
Return the cumulative sum of array elements over a given axis treating Not a
Numbers (NaNs) as zero. The cumulative sum does not change when NaNs are
encountered and leading NaNs are replaced by zeros.
Zeros are returned for slices that are all-NaN or empty.
.. versionadded:: 1.12.0
Parameters
----------
a : array_like
Input array.
axis : int, optional
Axis along which the cumulative sum is computed. The default
(None) is to compute the cumsum over the flattened array.
dtype : dtype, optional
Type of the returned array and of the accumulator in which the
elements are summed. If `dtype` is not specified, it defaults
to the dtype of `a`, unless `a` has an integer dtype with a
precision less than that of the default platform integer. In
that case, the default platform integer is used.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary. See `ufuncs-output-type` for
more details.
Returns
-------
nancumsum : ndarray.
A new array holding the result is returned unless `out` is
specified, in which it is returned. The result has the same
size as `a`, and the same shape as `a` if `axis` is not None
or `a` is a 1-d array.
See Also
--------
numpy.cumsum : Cumulative sum across array propagating NaNs.
isnan : Show which elements are NaN.
Examples
--------
>>> np.nancumsum(1)
array([1])
>>> np.nancumsum([1])
array([1])
>>> np.nancumsum([1, np.nan])
array([1., 1.])
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nancumsum(a)
array([1., 3., 6., 6.])
>>> np.nancumsum(a, axis=0)
array([[1., 2.],
[4., 2.]])
>>> np.nancumsum(a, axis=1)
array([[1., 3.],
[3., 3.]])
"""
a, mask = _replace_nan(a, 0)
return np.cumsum(a, axis=axis, dtype=dtype, out=out)
def _nancumprod_dispatcher(a, axis=None, dtype=None, out=None):
return (a, out)
@array_function_dispatch(_nancumprod_dispatcher)
def nancumprod(a, axis=None, dtype=None, out=None):
"""
Return the cumulative product of array elements over a given axis treating Not a
Numbers (NaNs) as one. The cumulative product does not change when NaNs are
encountered and leading NaNs are replaced by ones.
Ones are returned for slices that are all-NaN or empty.
.. versionadded:: 1.12.0
Parameters
----------
a : array_like
Input array.
axis : int, optional
Axis along which the cumulative product is computed. By default
the input is flattened.
dtype : dtype, optional
Type of the returned array, as well as of the accumulator in which
the elements are multiplied. If *dtype* is not specified, it
defaults to the dtype of `a`, unless `a` has an integer dtype with
a precision less than that of the default platform integer. In
that case, the default platform integer is used instead.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type of the resulting values will be cast if necessary.
Returns
-------
nancumprod : ndarray
A new array holding the result is returned unless `out` is
specified, in which case it is returned.
See Also
--------
numpy.cumprod : Cumulative product across array propagating NaNs.
isnan : Show which elements are NaN.
Examples
--------
>>> np.nancumprod(1)
array([1])
>>> np.nancumprod([1])
array([1])
>>> np.nancumprod([1, np.nan])
array([1., 1.])
>>> a = np.array([[1, 2], [3, np.nan]])
>>> np.nancumprod(a)
array([1., 2., 6., 6.])
>>> np.nancumprod(a, axis=0)
array([[1., 2.],
[3., 2.]])
>>> np.nancumprod(a, axis=1)
array([[1., 2.],
[3., 3.]])
"""
a, mask = _replace_nan(a, 1)
return np.cumprod(a, axis=axis, dtype=dtype, out=out)
def _nanmean_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None):
return (a, out)
@array_function_dispatch(_nanmean_dispatcher)
def nanmean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue):
"""
Compute the arithmetic mean along the specified axis, ignoring NaNs.
Returns the average of the array elements. The average is taken over
the flattened array by default, otherwise over the specified axis.
`float64` intermediate and return values are used for integer inputs.
For all-NaN slices, NaN is returned and a `RuntimeWarning` is raised.
.. versionadded:: 1.8.0
Parameters
----------
a : array_like
Array containing numbers whose mean is desired. If `a` is not an
array, a conversion is attempted.
axis : {int, tuple of int, None}, optional
Axis or axes along which the means are computed. The default is to compute
the mean of the flattened array.
dtype : data-type, optional
Type to use in computing the mean. For integer inputs, the default
is `float64`; for inexact inputs, it is the same as the input
dtype.
out : ndarray, optional
Alternate output array in which to place the result. The default
is ``None``; if provided, it must have the same shape as the
expected output, but the type will be cast if necessary. See
`ufuncs-output-type` for more details.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original `a`.
If the value is anything but the default, then
`keepdims` will be passed through to the `mean` or `sum` methods
of sub-classes of `ndarray`. If the sub-classes methods
does not implement `keepdims` any exceptions will be raised.
Returns
-------
m : ndarray, see dtype parameter above
If `out=None`, returns a new array containing the mean values,
otherwise a reference to the output array is returned. Nan is
returned for slices that contain only NaNs.
See Also
--------
average : Weighted average
mean : Arithmetic mean taken while not ignoring NaNs
var, nanvar
Notes
-----
The arithmetic mean is the sum of the non-NaN elements along the axis
divided by the number of non-NaN elements.
Note that for floating-point input, the mean is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for `float32`. Specifying a
higher-precision accumulator using the `dtype` keyword can alleviate
this issue.
Examples
--------
>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.nanmean(a)
2.6666666666666665
>>> np.nanmean(a, axis=0)
array([2., 4.])
>>> np.nanmean(a, axis=1)
array([1., 3.5]) # may vary
"""
arr, mask = _replace_nan(a, 0)
if mask is None:
return np.mean(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims)
if dtype is not None:
dtype = np.dtype(dtype)
if dtype is not None and not issubclass(dtype.type, np.inexact):
raise TypeError("If a is inexact, then dtype must be inexact")
if out is not None and not issubclass(out.dtype.type, np.inexact):
raise TypeError("If a is inexact, then out must be inexact")
cnt = np.sum(~mask, axis=axis, dtype=np.intp, keepdims=keepdims)
tot = np.sum(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims)
avg = _divide_by_count(tot, cnt, out=out)
isbad = (cnt == 0)
if isbad.any():
warnings.warn("Mean of empty slice", RuntimeWarning, stacklevel=3)
# NaN is the only possible bad value, so no further
# action is needed to handle bad results.
return avg
def _nanmedian1d(arr1d, overwrite_input=False):
"""
Private function for rank 1 arrays. Compute the median ignoring NaNs.
See nanmedian for parameter usage
"""
arr1d, overwrite_input = _remove_nan_1d(arr1d,
overwrite_input=overwrite_input)
if arr1d.size == 0:
return np.nan
return np.median(arr1d, overwrite_input=overwrite_input)
def _nanmedian(a, axis=None, out=None, overwrite_input=False):
"""
Private function that doesn't support extended axis or keepdims.
These methods are extended to this function using _ureduce
See nanmedian for parameter usage
"""
if axis is None or a.ndim == 1:
part = a.ravel()
if out is None:
return _nanmedian1d(part, overwrite_input)
else:
out[...] = _nanmedian1d(part, overwrite_input)
return out
else:
# for small medians use sort + indexing which is still faster than
# apply_along_axis
# benchmarked with shuffled (50, 50, x) containing a few NaN
if a.shape[axis] < 600:
return _nanmedian_small(a, axis, out, overwrite_input)
result = np.apply_along_axis(_nanmedian1d, axis, a, overwrite_input)
if out is not None:
out[...] = result
return result
def _nanmedian_small(a, axis=None, out=None, overwrite_input=False):
"""
sort + indexing median, faster for small medians along multiple
dimensions due to the high overhead of apply_along_axis
see nanmedian for parameter usage
"""
a = np.ma.masked_array(a, np.isnan(a))
m = np.ma.median(a, axis=axis, overwrite_input=overwrite_input)
for i in range(np.count_nonzero(m.mask.ravel())):
warnings.warn("All-NaN slice encountered", RuntimeWarning,
stacklevel=4)
if out is not None:
out[...] = m.filled(np.nan)
return out
return m.filled(np.nan)
def _nanmedian_dispatcher(
a, axis=None, out=None, overwrite_input=None, keepdims=None):
return (a, out)
@array_function_dispatch(_nanmedian_dispatcher)
def nanmedian(a, axis=None, out=None, overwrite_input=False, keepdims=np._NoValue):
"""
Compute the median along the specified axis, while ignoring NaNs.
Returns the median of the array elements.
.. versionadded:: 1.9.0
Parameters
----------
a : array_like
Input array or object that can be converted to an array.
axis : {int, sequence of int, None}, optional
Axis or axes along which the medians are computed. The default
is to compute the median along a flattened version of the array.
A sequence of axes is supported since version 1.9.0.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output,
but the type (of the output) will be cast if necessary.
overwrite_input : bool, optional
If True, then allow use of memory of input array `a` for
calculations. The input array will be modified by the call to
`median`. This will save memory when you do not need to preserve
the contents of the input array. Treat the input as undefined,
but it will probably be fully or partially sorted. Default is
False. If `overwrite_input` is ``True`` and `a` is not already an
`ndarray`, an error will be raised.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original `a`.
If this is anything but the default value it will be passed
through (in the special case of an empty array) to the
`mean` function of the underlying array. If the array is
a sub-class and `mean` does not have the kwarg `keepdims` this
will raise a RuntimeError.
Returns
-------
median : ndarray
A new array holding the result. If the input contains integers
or floats smaller than ``float64``, then the output data-type is
``np.float64``. Otherwise, the data-type of the output is the
same as that of the input. If `out` is specified, that array is
returned instead.
See Also
--------
mean, median, percentile
Notes
-----
Given a vector ``V`` of length ``N``, the median of ``V`` is the
middle value of a sorted copy of ``V``, ``V_sorted`` - i.e.,
``V_sorted[(N-1)/2]``, when ``N`` is odd and the average of the two
middle values of ``V_sorted`` when ``N`` is even.
Examples
--------
>>> a = np.array([[10.0, 7, 4], [3, 2, 1]])
>>> a[0, 1] = np.nan
>>> a
array([[10., nan, 4.],
[ 3., 2., 1.]])
>>> np.median(a)
nan
>>> np.nanmedian(a)
3.0
>>> np.nanmedian(a, axis=0)
array([6.5, 2. , 2.5])
>>> np.median(a, axis=1)
array([nan, 2.])
>>> b = a.copy()
>>> np.nanmedian(b, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a==b)
>>> b = a.copy()
>>> np.nanmedian(b, axis=None, overwrite_input=True)
3.0
>>> assert not np.all(a==b)
"""
a = np.asanyarray(a)
# apply_along_axis in _nanmedian doesn't handle empty arrays well,
# so deal them upfront
if a.size == 0:
return np.nanmean(a, axis, out=out, keepdims=keepdims)
r, k = function_base._ureduce(a, func=_nanmedian, axis=axis, out=out,
overwrite_input=overwrite_input)
if keepdims and keepdims is not np._NoValue:
return r.reshape(k)
else:
return r
def _nanpercentile_dispatcher(a, q, axis=None, out=None, overwrite_input=None,
interpolation=None, keepdims=None):
return (a, q, out)
@array_function_dispatch(_nanpercentile_dispatcher)
def nanpercentile(a, q, axis=None, out=None, overwrite_input=False,
interpolation='linear', keepdims=np._NoValue):
"""
Compute the qth percentile of the data along the specified axis,
while ignoring nan values.
Returns the qth percentile(s) of the array elements.
.. versionadded:: 1.9.0
Parameters
----------
a : array_like
Input array or object that can be converted to an array, containing
nan values to be ignored.
q : array_like of float
Percentile or sequence of percentiles to compute, which must be between
0 and 100 inclusive.
axis : {int, tuple of int, None}, optional
Axis or axes along which the percentiles are computed. The
default is to compute the percentile(s) along a flattened
version of the array.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output,
but the type (of the output) will be cast if necessary.
overwrite_input : bool, optional
If True, then allow the input array `a` to be modified by intermediate
calculations, to save memory. In this case, the contents of the input
`a` after this function completes is undefined.
interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
This optional parameter specifies the interpolation method to
use when the desired percentile lies between two data points
``i < j``:
* 'linear': ``i + (j - i) * fraction``, where ``fraction``
is the fractional part of the index surrounded by ``i``
and ``j``.
* 'lower': ``i``.
* 'higher': ``j``.
* 'nearest': ``i`` or ``j``, whichever is nearest.
* 'midpoint': ``(i + j) / 2``.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in
the result as dimensions with size one. With this option, the
result will broadcast correctly against the original array `a`.
If this is anything but the default value it will be passed
through (in the special case of an empty array) to the
`mean` function of the underlying array. If the array is
a sub-class and `mean` does not have the kwarg `keepdims` this
will raise a RuntimeError.
Returns
-------
percentile : scalar or ndarray
If `q` is a single percentile and `axis=None`, then the result
is a scalar. If multiple percentiles are given, first axis of
the result corresponds to the percentiles. The other axes are
the axes that remain after the reduction of `a`. If the input
contains integers or floats smaller than ``float64``, the output
data-type is ``float64``. Otherwise, the output data-type is the
same as that of the input. If `out` is specified, that array is
returned instead.
See Also
--------
nanmean
nanmedian : equivalent to ``nanpercentile(..., 50)``
percentile, median, mean
nanquantile : equivalent to nanpercentile, but with q in the range [0, 1].
Notes
-----
Given a vector ``V`` of length ``N``, the ``q``-th percentile of
``V`` is the value ``q/100`` of the way from the minimum to the
maximum in a sorted copy of ``V``. The values and distances of
the two nearest neighbors as well as the `interpolation` parameter
will determine the percentile if the normalized ranking does not
match the location of ``q`` exactly. This function is the same as
the median if ``q=50``, the same as the minimum if ``q=0`` and the
same as the maximum if ``q=100``.
Examples
--------
>>> a = np.array([[10., 7., 4.], [3., 2., 1.]])
>>> a[0][1] = np.nan
>>> a
array([[10., nan, 4.],
[ 3., 2., 1.]])
>>> np.percentile(a, 50)
nan
>>> np.nanpercentile(a, 50)
3.0
>>> np.nanpercentile(a, 50, axis=0)
array([6.5, 2. , 2.5])
>>> np.nanpercentile(a, 50, axis=1, keepdims=True)
array([[7.],
[2.]])
>>> m = np.nanpercentile(a, 50, axis=0)
>>> out = np.zeros_like(m)
>>> np.nanpercentile(a, 50, axis=0, out=out)
array([6.5, 2. , 2.5])
>>> m
array([6.5, 2. , 2.5])
>>> b = a.copy()
>>> np.nanpercentile(b, 50, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a==b)
"""
a = np.asanyarray(a)
q = np.true_divide(q, 100.0) # handles the asarray for us too
if not function_base._quantile_is_valid(q):
raise ValueError("Percentiles must be in the range [0, 100]")
return _nanquantile_unchecked(
a, q, axis, out, overwrite_input, interpolation, keepdims)
def _nanquantile_dispatcher(a, q, axis=None, out=None, overwrite_input=None,
interpolation=None, keepdims=None):
return (a, q, out)
@array_function_dispatch(_nanquantile_dispatcher)
def nanquantile(a, q, axis=None, out=None, overwrite_input=False,
interpolation='linear', keepdims=np._NoValue):
"""
Compute the qth quantile of the data along the specified axis,
while ignoring nan values.
Returns the qth quantile(s) of the array elements.
.. versionadded:: 1.15.0
Parameters
----------
a : array_like
Input array or object that can be converted to an array, containing
nan values to be ignored
q : array_like of float
Quantile or sequence of quantiles to compute, which must be between
0 and 1 inclusive.
axis : {int, tuple of int, None}, optional
Axis or axes along which the quantiles are computed. The
default is to compute the quantile(s) along a flattened
version of the array.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output,
but the type (of the output) will be cast if necessary.
overwrite_input : bool, optional
If True, then allow the input array `a` to be modified by intermediate
calculations, to save memory. In this case, the contents of the input
`a` after this function completes is undefined.
interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
This optional parameter specifies the interpolation method to
use when the desired quantile lies between two data points
``i < j``:
* linear: ``i + (j - i) * fraction``, where ``fraction``
is the fractional part of the index surrounded by ``i``
and ``j``.
* lower: ``i``.
* higher: ``j``.
* nearest: ``i`` or ``j``, whichever is nearest.
* midpoint: ``(i + j) / 2``.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in
the result as dimensions with size one. With this option, the
result will broadcast correctly against the original array `a`.
If this is anything but the default value it will be passed
through (in the special case of an empty array) to the
`mean` function of the underlying array. If the array is
a sub-class and `mean` does not have the kwarg `keepdims` this
will raise a RuntimeError.
Returns
-------
quantile : scalar or ndarray
If `q` is a single percentile and `axis=None`, then the result
is a scalar. If multiple quantiles are given, first axis of
the result corresponds to the quantiles. The other axes are
the axes that remain after the reduction of `a`. If the input
contains integers or floats smaller than ``float64``, the output
data-type is ``float64``. Otherwise, the output data-type is the
same as that of the input. If `out` is specified, that array is
returned instead.
See Also
--------
quantile
nanmean, nanmedian
nanmedian : equivalent to ``nanquantile(..., 0.5)``
nanpercentile : same as nanquantile, but with q in the range [0, 100].
Examples
--------
>>> a = np.array([[10., 7., 4.], [3., 2., 1.]])
>>> a[0][1] = np.nan
>>> a
array([[10., nan, 4.],
[ 3., 2., 1.]])
>>> np.quantile(a, 0.5)
nan
>>> np.nanquantile(a, 0.5)
3.0
>>> np.nanquantile(a, 0.5, axis=0)
array([6.5, 2. , 2.5])
>>> np.nanquantile(a, 0.5, axis=1, keepdims=True)
array([[7.],
[2.]])
>>> m = np.nanquantile(a, 0.5, axis=0)
>>> out = np.zeros_like(m)
>>> np.nanquantile(a, 0.5, axis=0, out=out)
array([6.5, 2. , 2.5])
>>> m
array([6.5, 2. , 2.5])
>>> b = a.copy()
>>> np.nanquantile(b, 0.5, axis=1, overwrite_input=True)
array([7., 2.])
>>> assert not np.all(a==b)
"""
a = np.asanyarray(a)
q = np.asanyarray(q)
if not function_base._quantile_is_valid(q):
raise ValueError("Quantiles must be in the range [0, 1]")
return _nanquantile_unchecked(
a, q, axis, out, overwrite_input, interpolation, keepdims)
def _nanquantile_unchecked(a, q, axis=None, out=None, overwrite_input=False,
interpolation='linear', keepdims=np._NoValue):
"""Assumes that q is in [0, 1], and is an ndarray"""
# apply_along_axis in _nanpercentile doesn't handle empty arrays well,
# so deal them upfront
if a.size == 0:
return np.nanmean(a, axis, out=out, keepdims=keepdims)
r, k = function_base._ureduce(
a, func=_nanquantile_ureduce_func, q=q, axis=axis, out=out,
overwrite_input=overwrite_input, interpolation=interpolation
)
if keepdims and keepdims is not np._NoValue:
return r.reshape(q.shape + k)
else:
return r
def _nanquantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False,
interpolation='linear'):
"""
Private function that doesn't support extended axis or keepdims.
These methods are extended to this function using _ureduce
See nanpercentile for parameter usage
"""
if axis is None or a.ndim == 1:
part = a.ravel()
result = _nanquantile_1d(part, q, overwrite_input, interpolation)
else:
result = np.apply_along_axis(_nanquantile_1d, axis, a, q,
overwrite_input, interpolation)
# apply_along_axis fills in collapsed axis with results.
# Move that axis to the beginning to match percentile's
# convention.
if q.ndim != 0:
result = np.moveaxis(result, axis, 0)
if out is not None:
out[...] = result
return result
def _nanquantile_1d(arr1d, q, overwrite_input=False, interpolation='linear'):
"""
Private function for rank 1 arrays. Compute quantile ignoring NaNs.
See nanpercentile for parameter usage
"""
arr1d, overwrite_input = _remove_nan_1d(arr1d,
overwrite_input=overwrite_input)
if arr1d.size == 0:
return np.full(q.shape, np.nan)[()] # convert to scalar
return function_base._quantile_unchecked(
arr1d, q, overwrite_input=overwrite_input, interpolation=interpolation)
def _nanvar_dispatcher(
a, axis=None, dtype=None, out=None, ddof=None, keepdims=None):
return (a, out)
@array_function_dispatch(_nanvar_dispatcher)
def nanvar(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue):
"""
Compute the variance along the specified axis, while ignoring NaNs.
Returns the variance of the array elements, a measure of the spread of
a distribution. The variance is computed for the flattened array by
default, otherwise over the specified axis.
For all-NaN slices or slices with zero degrees of freedom, NaN is
returned and a `RuntimeWarning` is raised.
.. versionadded:: 1.8.0
Parameters
----------
a : array_like
Array containing numbers whose variance is desired. If `a` is not an
array, a conversion is attempted.
axis : {int, tuple of int, None}, optional
Axis or axes along which the variance is computed. The default is to compute
the variance of the flattened array.
dtype : data-type, optional
Type to use in computing the variance. For arrays of integer type
the default is `float64`; for arrays of float types it is the same as
the array type.
out : ndarray, optional
Alternate output array in which to place the result. It must have
the same shape as the expected output, but the type is cast if
necessary.
ddof : int, optional
"Delta Degrees of Freedom": the divisor used in the calculation is
``N - ddof``, where ``N`` represents the number of non-NaN
elements. By default `ddof` is zero.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original `a`.
Returns
-------
variance : ndarray, see dtype parameter above
If `out` is None, return a new array containing the variance,
otherwise return a reference to the output array. If ddof is >= the
number of non-NaN elements in a slice or the slice contains only
NaNs, then the result for that slice is NaN.
See Also
--------
std : Standard deviation
mean : Average
var : Variance while not ignoring NaNs
nanstd, nanmean
ufuncs-output-type
Notes
-----
The variance is the average of the squared deviations from the mean,
i.e., ``var = mean(abs(x - x.mean())**2)``.
The mean is normally calculated as ``x.sum() / N``, where ``N = len(x)``.
If, however, `ddof` is specified, the divisor ``N - ddof`` is used
instead. In standard statistical practice, ``ddof=1`` provides an
unbiased estimator of the variance of a hypothetical infinite
population. ``ddof=0`` provides a maximum likelihood estimate of the
variance for normally distributed variables.
Note that for complex numbers, the absolute value is taken before
squaring, so that the result is always real and nonnegative.
For floating-point input, the variance is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for `float32` (see example
below). Specifying a higher-accuracy accumulator using the ``dtype``
keyword can alleviate this issue.
For this function to work on sub-classes of ndarray, they must define
`sum` with the kwarg `keepdims`
Examples
--------
>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.nanvar(a)
1.5555555555555554
>>> np.nanvar(a, axis=0)
array([1., 0.])
>>> np.nanvar(a, axis=1)
array([0., 0.25]) # may vary
"""
arr, mask = _replace_nan(a, 0)
if mask is None:
return np.var(arr, axis=axis, dtype=dtype, out=out, ddof=ddof,
keepdims=keepdims)
if dtype is not None:
dtype = np.dtype(dtype)
if dtype is not None and not issubclass(dtype.type, np.inexact):
raise TypeError("If a is inexact, then dtype must be inexact")
if out is not None and not issubclass(out.dtype.type, np.inexact):
raise TypeError("If a is inexact, then out must be inexact")
# Compute mean
if type(arr) is np.matrix:
_keepdims = np._NoValue
else:
_keepdims = True
# we need to special case matrix for reverse compatibility
# in order for this to work, these sums need to be called with
# keepdims=True, however matrix now raises an error in this case, but
# the reason that it drops the keepdims kwarg is to force keepdims=True
# so this used to work by serendipity.
cnt = np.sum(~mask, axis=axis, dtype=np.intp, keepdims=_keepdims)
avg = np.sum(arr, axis=axis, dtype=dtype, keepdims=_keepdims)
avg = _divide_by_count(avg, cnt)
# Compute squared deviation from mean.
np.subtract(arr, avg, out=arr, casting='unsafe')
arr = _copyto(arr, 0, mask)
if issubclass(arr.dtype.type, np.complexfloating):
sqr = np.multiply(arr, arr.conj(), out=arr).real
else:
sqr = np.multiply(arr, arr, out=arr)
# Compute variance.
var = np.sum(sqr, axis=axis, dtype=dtype, out=out, keepdims=keepdims)
if var.ndim < cnt.ndim:
# Subclasses of ndarray may ignore keepdims, so check here.
cnt = cnt.squeeze(axis)
dof = cnt - ddof
var = _divide_by_count(var, dof)
isbad = (dof <= 0)
if np.any(isbad):
warnings.warn("Degrees of freedom <= 0 for slice.", RuntimeWarning,
stacklevel=3)
# NaN, inf, or negative numbers are all possible bad
# values, so explicitly replace them with NaN.
var = _copyto(var, np.nan, isbad)
return var
def _nanstd_dispatcher(
a, axis=None, dtype=None, out=None, ddof=None, keepdims=None):
return (a, out)
@array_function_dispatch(_nanstd_dispatcher)
def nanstd(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue):
"""
Compute the standard deviation along the specified axis, while
ignoring NaNs.
Returns the standard deviation, a measure of the spread of a
distribution, of the non-NaN array elements. The standard deviation is
computed for the flattened array by default, otherwise over the
specified axis.
For all-NaN slices or slices with zero degrees of freedom, NaN is
returned and a `RuntimeWarning` is raised.
.. versionadded:: 1.8.0
Parameters
----------
a : array_like
Calculate the standard deviation of the non-NaN values.
axis : {int, tuple of int, None}, optional
Axis or axes along which the standard deviation is computed. The default is
to compute the standard deviation of the flattened array.
dtype : dtype, optional
Type to use in computing the standard deviation. For arrays of
integer type the default is float64, for arrays of float types it
is the same as the array type.
out : ndarray, optional
Alternative output array in which to place the result. It must have
the same shape as the expected output but the type (of the
calculated values) will be cast if necessary.
ddof : int, optional
Means Delta Degrees of Freedom. The divisor used in calculations
is ``N - ddof``, where ``N`` represents the number of non-NaN
elements. By default `ddof` is zero.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the original `a`.
If this value is anything but the default it is passed through
as-is to the relevant functions of the sub-classes. If these
functions do not have a `keepdims` kwarg, a RuntimeError will
be raised.
Returns
-------
standard_deviation : ndarray, see dtype parameter above.
If `out` is None, return a new array containing the standard
deviation, otherwise return a reference to the output array. If
ddof is >= the number of non-NaN elements in a slice or the slice
contains only NaNs, then the result for that slice is NaN.
See Also
--------
var, mean, std
nanvar, nanmean
ufuncs-output-type
Notes
-----
The standard deviation is the square root of the average of the squared
deviations from the mean: ``std = sqrt(mean(abs(x - x.mean())**2))``.
The average squared deviation is normally calculated as
``x.sum() / N``, where ``N = len(x)``. If, however, `ddof` is
specified, the divisor ``N - ddof`` is used instead. In standard
statistical practice, ``ddof=1`` provides an unbiased estimator of the
variance of the infinite population. ``ddof=0`` provides a maximum
likelihood estimate of the variance for normally distributed variables.
The standard deviation computed in this function is the square root of
the estimated variance, so even with ``ddof=1``, it will not be an
unbiased estimate of the standard deviation per se.
Note that, for complex numbers, `std` takes the absolute value before
squaring, so that the result is always real and nonnegative.
For floating-point input, the *std* is computed using the same
precision the input has. Depending on the input data, this can cause
the results to be inaccurate, especially for float32 (see example
below). Specifying a higher-accuracy accumulator using the `dtype`
keyword can alleviate this issue.
Examples
--------
>>> a = np.array([[1, np.nan], [3, 4]])
>>> np.nanstd(a)
1.247219128924647
>>> np.nanstd(a, axis=0)
array([1., 0.])
>>> np.nanstd(a, axis=1)
array([0., 0.5]) # may vary
"""
var = nanvar(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
keepdims=keepdims)
if isinstance(var, np.ndarray):
std = np.sqrt(var, out=var)
else:
std = var.dtype.type(np.sqrt(var))
return std