_solvers.py 27.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
"""Matrix equation solver routines"""
# Author: Jeffrey Armstrong <jeff@approximatrix.com>
# February 24, 2012

# Modified: Chad Fulton <ChadFulton@gmail.com>
# June 19, 2014

# Modified: Ilhan Polat <ilhanpolat@gmail.com>
# September 13, 2016

from __future__ import division, print_function, absolute_import

import warnings
import numpy as np
from numpy.linalg import inv, LinAlgError, norm, cond, svd

from .basic import solve, solve_triangular, matrix_balance
from .lapack import get_lapack_funcs
from .decomp_schur import schur
from .decomp_lu import lu
from .decomp_qr import qr
from ._decomp_qz import ordqz
from .decomp import _asarray_validated
from .special_matrices import kron, block_diag

__all__ = ['solve_sylvester',
           'solve_continuous_lyapunov', 'solve_discrete_lyapunov',
           'solve_lyapunov',
           'solve_continuous_are', 'solve_discrete_are']


def solve_sylvester(a, b, q):
    """
    Computes a solution (X) to the Sylvester equation :math:`AX + XB = Q`.

    Parameters
    ----------
    a : (M, M) array_like
        Leading matrix of the Sylvester equation
    b : (N, N) array_like
        Trailing matrix of the Sylvester equation
    q : (M, N) array_like
        Right-hand side

    Returns
    -------
    x : (M, N) ndarray
        The solution to the Sylvester equation.

    Raises
    ------
    LinAlgError
        If solution was not found

    Notes
    -----
    Computes a solution to the Sylvester matrix equation via the Bartels-
    Stewart algorithm.  The A and B matrices first undergo Schur
    decompositions.  The resulting matrices are used to construct an
    alternative Sylvester equation (``RY + YS^T = F``) where the R and S
    matrices are in quasi-triangular form (or, when R, S or F are complex,
    triangular form).  The simplified equation is then solved using
    ``*TRSYL`` from LAPACK directly.

    .. versionadded:: 0.11.0

    Examples
    --------
    Given `a`, `b`, and `q` solve for `x`:

    >>> from scipy import linalg
    >>> a = np.array([[-3, -2, 0], [-1, -1, 3], [3, -5, -1]])
    >>> b = np.array([[1]])
    >>> q = np.array([[1],[2],[3]])
    >>> x = linalg.solve_sylvester(a, b, q)
    >>> x
    array([[ 0.0625],
           [-0.5625],
           [ 0.6875]])
    >>> np.allclose(a.dot(x) + x.dot(b), q)
    True

    """

    # Compute the Schur decomp form of a
    r, u = schur(a, output='real')

    # Compute the Schur decomp of b
    s, v = schur(b.conj().transpose(), output='real')

    # Construct f = u'*q*v
    f = np.dot(np.dot(u.conj().transpose(), q), v)

    # Call the Sylvester equation solver
    trsyl, = get_lapack_funcs(('trsyl',), (r, s, f))
    if trsyl is None:
        raise RuntimeError('LAPACK implementation does not contain a proper '
                           'Sylvester equation solver (TRSYL)')
    y, scale, info = trsyl(r, s, f, tranb='C')

    y = scale*y

    if info < 0:
        raise LinAlgError("Illegal value encountered in "
                          "the %d term" % (-info,))

    return np.dot(np.dot(u, y), v.conj().transpose())


def solve_continuous_lyapunov(a, q):
    """
    Solves the continuous Lyapunov equation :math:`AX + XA^H = Q`.

    Uses the Bartels-Stewart algorithm to find :math:`X`.

    Parameters
    ----------
    a : array_like
        A square matrix

    q : array_like
        Right-hand side square matrix

    Returns
    -------
    x : ndarray
        Solution to the continuous Lyapunov equation

    See Also
    --------
    solve_discrete_lyapunov : computes the solution to the discrete-time
        Lyapunov equation
    solve_sylvester : computes the solution to the Sylvester equation

    Notes
    -----
    The continuous Lyapunov equation is a special form of the Sylvester
    equation, hence this solver relies on LAPACK routine ?TRSYL.

    .. versionadded:: 0.11.0

    Examples
    --------
    Given `a` and `q` solve for `x`:

    >>> from scipy import linalg
    >>> a = np.array([[-3, -2, 0], [-1, -1, 0], [0, -5, -1]])
    >>> b = np.array([2, 4, -1])
    >>> q = np.eye(3)
    >>> x = linalg.solve_continuous_lyapunov(a, q)
    >>> x
    array([[ -0.75  ,   0.875 ,  -3.75  ],
           [  0.875 ,  -1.375 ,   5.3125],
           [ -3.75  ,   5.3125, -27.0625]])
    >>> np.allclose(a.dot(x) + x.dot(a.T), q)
    True
    """

    a = np.atleast_2d(_asarray_validated(a, check_finite=True))
    q = np.atleast_2d(_asarray_validated(q, check_finite=True))

    r_or_c = float

    for ind, _ in enumerate((a, q)):
        if np.iscomplexobj(_):
            r_or_c = complex

        if not np.equal(*_.shape):
            raise ValueError("Matrix {} should be square.".format("aq"[ind]))

    # Shape consistency check
    if a.shape != q.shape:
        raise ValueError("Matrix a and q should have the same shape.")

    # Compute the Schur decomp form of a
    r, u = schur(a, output='real')

    # Construct f = u'*q*u
    f = u.conj().T.dot(q.dot(u))

    # Call the Sylvester equation solver
    trsyl = get_lapack_funcs('trsyl', (r, f))

    dtype_string = 'T' if r_or_c == float else 'C'
    y, scale, info = trsyl(r, r, f, tranb=dtype_string)

    if info < 0:
        raise ValueError('?TRSYL exited with the internal error '
                         '"illegal value in argument number {}.". See '
                         'LAPACK documentation for the ?TRSYL error codes.'
                         ''.format(-info))
    elif info == 1:
        warnings.warn('Input "a" has an eigenvalue pair whose sum is '
                      'very close to or exactly zero. The solution is '
                      'obtained via perturbing the coefficients.',
                      RuntimeWarning)
    y *= scale

    return u.dot(y).dot(u.conj().T)


# For backwards compatibility, keep the old name
solve_lyapunov = solve_continuous_lyapunov


def _solve_discrete_lyapunov_direct(a, q):
    """
    Solves the discrete Lyapunov equation directly.

    This function is called by the `solve_discrete_lyapunov` function with
    `method=direct`. It is not supposed to be called directly.
    """

    lhs = kron(a, a.conj())
    lhs = np.eye(lhs.shape[0]) - lhs
    x = solve(lhs, q.flatten())

    return np.reshape(x, q.shape)


def _solve_discrete_lyapunov_bilinear(a, q):
    """
    Solves the discrete Lyapunov equation using a bilinear transformation.

    This function is called by the `solve_discrete_lyapunov` function with
    `method=bilinear`. It is not supposed to be called directly.
    """
    eye = np.eye(a.shape[0])
    aH = a.conj().transpose()
    aHI_inv = inv(aH + eye)
    b = np.dot(aH - eye, aHI_inv)
    c = 2*np.dot(np.dot(inv(a + eye), q), aHI_inv)
    return solve_lyapunov(b.conj().transpose(), -c)


def solve_discrete_lyapunov(a, q, method=None):
    """
    Solves the discrete Lyapunov equation :math:`AXA^H - X + Q = 0`.

    Parameters
    ----------
    a, q : (M, M) array_like
        Square matrices corresponding to A and Q in the equation
        above respectively. Must have the same shape.

    method : {'direct', 'bilinear'}, optional
        Type of solver.

        If not given, chosen to be ``direct`` if ``M`` is less than 10 and
        ``bilinear`` otherwise.

    Returns
    -------
    x : ndarray
        Solution to the discrete Lyapunov equation

    See Also
    --------
    solve_continuous_lyapunov : computes the solution to the continuous-time
        Lyapunov equation

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter. The default method is *direct* if ``M`` is less than 10
    and ``bilinear`` otherwise.

    Method *direct* uses a direct analytical solution to the discrete Lyapunov
    equation. The algorithm is given in, for example, [1]_. However it requires
    the linear solution of a system with dimension :math:`M^2` so that
    performance degrades rapidly for even moderately sized matrices.

    Method *bilinear* uses a bilinear transformation to convert the discrete
    Lyapunov equation to a continuous Lyapunov equation :math:`(BX+XB'=-C)`
    where :math:`B=(A-I)(A+I)^{-1}` and
    :math:`C=2(A' + I)^{-1} Q (A + I)^{-1}`. The continuous equation can be
    efficiently solved since it is a special case of a Sylvester equation.
    The transformation algorithm is from Popov (1964) as described in [2]_.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1] Hamilton, James D. Time Series Analysis, Princeton: Princeton
       University Press, 1994.  265.  Print.
       http://doc1.lbfl.li/aca/FLMF037168.pdf
    .. [2] Gajic, Z., and M.T.J. Qureshi. 2008.
       Lyapunov Matrix Equation in System Stability and Control.
       Dover Books on Engineering Series. Dover Publications.

    Examples
    --------
    Given `a` and `q` solve for `x`:

    >>> from scipy import linalg
    >>> a = np.array([[0.2, 0.5],[0.7, -0.9]])
    >>> q = np.eye(2)
    >>> x = linalg.solve_discrete_lyapunov(a, q)
    >>> x
    array([[ 0.70872893,  1.43518822],
           [ 1.43518822, -2.4266315 ]])
    >>> np.allclose(a.dot(x).dot(a.T)-x, -q)
    True

    """
    a = np.asarray(a)
    q = np.asarray(q)
    if method is None:
        # Select automatically based on size of matrices
        if a.shape[0] >= 10:
            method = 'bilinear'
        else:
            method = 'direct'

    meth = method.lower()

    if meth == 'direct':
        x = _solve_discrete_lyapunov_direct(a, q)
    elif meth == 'bilinear':
        x = _solve_discrete_lyapunov_bilinear(a, q)
    else:
        raise ValueError('Unknown solver %s' % method)

    return x


def solve_continuous_are(a, b, q, r, e=None, s=None, balanced=True):
    r"""
    Solves the continuous-time algebraic Riccati equation (CARE).

    The CARE is defined as

    .. math::

          X A + A^H X - X B R^{-1} B^H X + Q = 0

    The limitations for a solution to exist are :

        * All eigenvalues of :math:`A` on the right half plane, should be
          controllable.

        * The associated hamiltonian pencil (See Notes), should have
          eigenvalues sufficiently away from the imaginary axis.

    Moreover, if ``e`` or ``s`` is not precisely ``None``, then the
    generalized version of CARE

    .. math::

          E^HXA + A^HXE - (E^HXB + S) R^{-1} (B^HXE + S^H) + Q = 0

    is solved. When omitted, ``e`` is assumed to be the identity and ``s``
    is assumed to be the zero matrix with sizes compatible with ``a`` and
    ``b`` respectively.

    Parameters
    ----------
    a : (M, M) array_like
        Square matrix
    b : (M, N) array_like
        Input
    q : (M, M) array_like
        Input
    r : (N, N) array_like
        Nonsingular square matrix
    e : (M, M) array_like, optional
        Nonsingular square matrix
    s : (M, N) array_like, optional
        Input
    balanced : bool, optional
        The boolean that indicates whether a balancing step is performed
        on the data. The default is set to True.

    Returns
    -------
    x : (M, M) ndarray
        Solution to the continuous-time algebraic Riccati equation.

    Raises
    ------
    LinAlgError
        For cases where the stable subspace of the pencil could not be
        isolated. See Notes section and the references for details.

    See Also
    --------
    solve_discrete_are : Solves the discrete-time algebraic Riccati equation

    Notes
    -----
    The equation is solved by forming the extended hamiltonian matrix pencil,
    as described in [1]_, :math:`H - \lambda J` given by the block matrices ::

        [ A    0    B ]             [ E   0    0 ]
        [-Q  -A^H  -S ] - \lambda * [ 0  E^H   0 ]
        [ S^H B^H   R ]             [ 0   0    0 ]

    and using a QZ decomposition method.

    In this algorithm, the fail conditions are linked to the symmetry
    of the product :math:`U_2 U_1^{-1}` and condition number of
    :math:`U_1`. Here, :math:`U` is the 2m-by-m matrix that holds the
    eigenvectors spanning the stable subspace with 2m rows and partitioned
    into two m-row matrices. See [1]_ and [2]_ for more details.

    In order to improve the QZ decomposition accuracy, the pencil goes
    through a balancing step where the sum of absolute values of
    :math:`H` and :math:`J` entries (after removing the diagonal entries of
    the sum) is balanced following the recipe given in [3]_.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1]  P. van Dooren , "A Generalized Eigenvalue Approach For Solving
       Riccati Equations.", SIAM Journal on Scientific and Statistical
       Computing, Vol.2(2), DOI: 10.1137/0902010

    .. [2] A.J. Laub, "A Schur Method for Solving Algebraic Riccati
       Equations.", Massachusetts Institute of Technology. Laboratory for
       Information and Decision Systems. LIDS-R ; 859. Available online :
       http://hdl.handle.net/1721.1/1301

    .. [3] P. Benner, "Symplectic Balancing of Hamiltonian Matrices", 2001,
       SIAM J. Sci. Comput., 2001, Vol.22(5), DOI: 10.1137/S1064827500367993

    Examples
    --------
    Given `a`, `b`, `q`, and `r` solve for `x`:

    >>> from scipy import linalg
    >>> a = np.array([[4, 3], [-4.5, -3.5]])
    >>> b = np.array([[1], [-1]])
    >>> q = np.array([[9, 6], [6, 4.]])
    >>> r = 1
    >>> x = linalg.solve_continuous_are(a, b, q, r)
    >>> x
    array([[ 21.72792206,  14.48528137],
           [ 14.48528137,   9.65685425]])
    >>> np.allclose(a.T.dot(x) + x.dot(a)-x.dot(b).dot(b.T).dot(x), -q)
    True

    """

    # Validate input arguments
    a, b, q, r, e, s, m, n, r_or_c, gen_are = _are_validate_args(
                                                     a, b, q, r, e, s, 'care')

    H = np.empty((2*m+n, 2*m+n), dtype=r_or_c)
    H[:m, :m] = a
    H[:m, m:2*m] = 0.
    H[:m, 2*m:] = b
    H[m:2*m, :m] = -q
    H[m:2*m, m:2*m] = -a.conj().T
    H[m:2*m, 2*m:] = 0. if s is None else -s
    H[2*m:, :m] = 0. if s is None else s.conj().T
    H[2*m:, m:2*m] = b.conj().T
    H[2*m:, 2*m:] = r

    if gen_are and e is not None:
        J = block_diag(e, e.conj().T, np.zeros_like(r, dtype=r_or_c))
    else:
        J = block_diag(np.eye(2*m), np.zeros_like(r, dtype=r_or_c))

    if balanced:
        # xGEBAL does not remove the diagonals before scaling. Also
        # to avoid destroying the Symplectic structure, we follow Ref.3
        M = np.abs(H) + np.abs(J)
        M[np.diag_indices_from(M)] = 0.
        _, (sca, _) = matrix_balance(M, separate=1, permute=0)
        # do we need to bother?
        if not np.allclose(sca, np.ones_like(sca)):
            # Now impose diag(D,inv(D)) from Benner where D is
            # square root of s_i/s_(n+i) for i=0,....
            sca = np.log2(sca)
            # NOTE: Py3 uses "Bankers Rounding: round to the nearest even" !!
            s = np.round((sca[m:2*m] - sca[:m])/2)
            sca = 2 ** np.r_[s, -s, sca[2*m:]]
            # Elementwise multiplication via broadcasting.
            elwisescale = sca[:, None] * np.reciprocal(sca)
            H *= elwisescale
            J *= elwisescale

    # Deflate the pencil to 2m x 2m ala Ref.1, eq.(55)
    q, r = qr(H[:, -n:])
    H = q[:, n:].conj().T.dot(H[:, :2*m])
    J = q[:2*m, n:].conj().T.dot(J[:2*m, :2*m])

    # Decide on which output type is needed for QZ
    out_str = 'real' if r_or_c == float else 'complex'

    _, _, _, _, _, u = ordqz(H, J, sort='lhp', overwrite_a=True,
                             overwrite_b=True, check_finite=False,
                             output=out_str)

    # Get the relevant parts of the stable subspace basis
    if e is not None:
        u, _ = qr(np.vstack((e.dot(u[:m, :m]), u[m:, :m])))
    u00 = u[:m, :m]
    u10 = u[m:, :m]

    # Solve via back-substituion after checking the condition of u00
    up, ul, uu = lu(u00)
    if 1/cond(uu) < np.spacing(1.):
        raise LinAlgError('Failed to find a finite solution.')

    # Exploit the triangular structure
    x = solve_triangular(ul.conj().T,
                         solve_triangular(uu.conj().T,
                                          u10.conj().T,
                                          lower=True),
                         unit_diagonal=True,
                         ).conj().T.dot(up.conj().T)
    if balanced:
        x *= sca[:m, None] * sca[:m]

    # Check the deviation from symmetry for lack of success
    # See proof of Thm.5 item 3 in [2]
    u_sym = u00.conj().T.dot(u10)
    n_u_sym = norm(u_sym, 1)
    u_sym = u_sym - u_sym.conj().T
    sym_threshold = np.max([np.spacing(1000.), 0.1*n_u_sym])

    if norm(u_sym, 1) > sym_threshold:
        raise LinAlgError('The associated Hamiltonian pencil has eigenvalues '
                          'too close to the imaginary axis')

    return (x + x.conj().T)/2


def solve_discrete_are(a, b, q, r, e=None, s=None, balanced=True):
    r"""
    Solves the discrete-time algebraic Riccati equation (DARE).

    The DARE is defined as

    .. math::

          A^HXA - X - (A^HXB) (R + B^HXB)^{-1} (B^HXA) + Q = 0

    The limitations for a solution to exist are :

        * All eigenvalues of :math:`A` outside the unit disc, should be
          controllable.

        * The associated symplectic pencil (See Notes), should have
          eigenvalues sufficiently away from the unit circle.

    Moreover, if ``e`` and ``s`` are not both precisely ``None``, then the
    generalized version of DARE

    .. math::

          A^HXA - E^HXE - (A^HXB+S) (R+B^HXB)^{-1} (B^HXA+S^H) + Q = 0

    is solved. When omitted, ``e`` is assumed to be the identity and ``s``
    is assumed to be the zero matrix.

    Parameters
    ----------
    a : (M, M) array_like
        Square matrix
    b : (M, N) array_like
        Input
    q : (M, M) array_like
        Input
    r : (N, N) array_like
        Square matrix
    e : (M, M) array_like, optional
        Nonsingular square matrix
    s : (M, N) array_like, optional
        Input
    balanced : bool
        The boolean that indicates whether a balancing step is performed
        on the data. The default is set to True.

    Returns
    -------
    x : (M, M) ndarray
        Solution to the discrete algebraic Riccati equation.

    Raises
    ------
    LinAlgError
        For cases where the stable subspace of the pencil could not be
        isolated. See Notes section and the references for details.

    See Also
    --------
    solve_continuous_are : Solves the continuous algebraic Riccati equation

    Notes
    -----
    The equation is solved by forming the extended symplectic matrix pencil,
    as described in [1]_, :math:`H - \lambda J` given by the block matrices ::

           [  A   0   B ]             [ E   0   B ]
           [ -Q  E^H -S ] - \lambda * [ 0  A^H  0 ]
           [ S^H  0   R ]             [ 0 -B^H  0 ]

    and using a QZ decomposition method.

    In this algorithm, the fail conditions are linked to the symmetry
    of the product :math:`U_2 U_1^{-1}` and condition number of
    :math:`U_1`. Here, :math:`U` is the 2m-by-m matrix that holds the
    eigenvectors spanning the stable subspace with 2m rows and partitioned
    into two m-row matrices. See [1]_ and [2]_ for more details.

    In order to improve the QZ decomposition accuracy, the pencil goes
    through a balancing step where the sum of absolute values of
    :math:`H` and :math:`J` rows/cols (after removing the diagonal entries)
    is balanced following the recipe given in [3]_. If the data has small
    numerical noise, balancing may amplify their effects and some clean up
    is required.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1]  P. van Dooren , "A Generalized Eigenvalue Approach For Solving
       Riccati Equations.", SIAM Journal on Scientific and Statistical
       Computing, Vol.2(2), DOI: 10.1137/0902010

    .. [2] A.J. Laub, "A Schur Method for Solving Algebraic Riccati
       Equations.", Massachusetts Institute of Technology. Laboratory for
       Information and Decision Systems. LIDS-R ; 859. Available online :
       http://hdl.handle.net/1721.1/1301

    .. [3] P. Benner, "Symplectic Balancing of Hamiltonian Matrices", 2001,
       SIAM J. Sci. Comput., 2001, Vol.22(5), DOI: 10.1137/S1064827500367993

    Examples
    --------
    Given `a`, `b`, `q`, and `r` solve for `x`:

    >>> from scipy import linalg as la
    >>> a = np.array([[0, 1], [0, -1]])
    >>> b = np.array([[1, 0], [2, 1]])
    >>> q = np.array([[-4, -4], [-4, 7]])
    >>> r = np.array([[9, 3], [3, 1]])
    >>> x = la.solve_discrete_are(a, b, q, r)
    >>> x
    array([[-4., -4.],
           [-4.,  7.]])
    >>> R = la.solve(r + b.T.dot(x).dot(b), b.T.dot(x).dot(a))
    >>> np.allclose(a.T.dot(x).dot(a) - x - a.T.dot(x).dot(b).dot(R), -q)
    True

    """

    # Validate input arguments
    a, b, q, r, e, s, m, n, r_or_c, gen_are = _are_validate_args(
                                                     a, b, q, r, e, s, 'dare')

    # Form the matrix pencil
    H = np.zeros((2*m+n, 2*m+n), dtype=r_or_c)
    H[:m, :m] = a
    H[:m, 2*m:] = b
    H[m:2*m, :m] = -q
    H[m:2*m, m:2*m] = np.eye(m) if e is None else e.conj().T
    H[m:2*m, 2*m:] = 0. if s is None else -s
    H[2*m:, :m] = 0. if s is None else s.conj().T
    H[2*m:, 2*m:] = r

    J = np.zeros_like(H, dtype=r_or_c)
    J[:m, :m] = np.eye(m) if e is None else e
    J[m:2*m, m:2*m] = a.conj().T
    J[2*m:, m:2*m] = -b.conj().T

    if balanced:
        # xGEBAL does not remove the diagonals before scaling. Also
        # to avoid destroying the Symplectic structure, we follow Ref.3
        M = np.abs(H) + np.abs(J)
        M[np.diag_indices_from(M)] = 0.
        _, (sca, _) = matrix_balance(M, separate=1, permute=0)
        # do we need to bother?
        if not np.allclose(sca, np.ones_like(sca)):
            # Now impose diag(D,inv(D)) from Benner where D is
            # square root of s_i/s_(n+i) for i=0,....
            sca = np.log2(sca)
            # NOTE: Py3 uses "Bankers Rounding: round to the nearest even" !!
            s = np.round((sca[m:2*m] - sca[:m])/2)
            sca = 2 ** np.r_[s, -s, sca[2*m:]]
            # Elementwise multiplication via broadcasting.
            elwisescale = sca[:, None] * np.reciprocal(sca)
            H *= elwisescale
            J *= elwisescale

    # Deflate the pencil by the R column ala Ref.1
    q_of_qr, _ = qr(H[:, -n:])
    H = q_of_qr[:, n:].conj().T.dot(H[:, :2*m])
    J = q_of_qr[:, n:].conj().T.dot(J[:, :2*m])

    # Decide on which output type is needed for QZ
    out_str = 'real' if r_or_c == float else 'complex'

    _, _, _, _, _, u = ordqz(H, J, sort='iuc',
                             overwrite_a=True,
                             overwrite_b=True,
                             check_finite=False,
                             output=out_str)

    # Get the relevant parts of the stable subspace basis
    if e is not None:
        u, _ = qr(np.vstack((e.dot(u[:m, :m]), u[m:, :m])))
    u00 = u[:m, :m]
    u10 = u[m:, :m]

    # Solve via back-substituion after checking the condition of u00
    up, ul, uu = lu(u00)

    if 1/cond(uu) < np.spacing(1.):
        raise LinAlgError('Failed to find a finite solution.')

    # Exploit the triangular structure
    x = solve_triangular(ul.conj().T,
                         solve_triangular(uu.conj().T,
                                          u10.conj().T,
                                          lower=True),
                         unit_diagonal=True,
                         ).conj().T.dot(up.conj().T)
    if balanced:
        x *= sca[:m, None] * sca[:m]

    # Check the deviation from symmetry for lack of success
    # See proof of Thm.5 item 3 in [2]
    u_sym = u00.conj().T.dot(u10)
    n_u_sym = norm(u_sym, 1)
    u_sym = u_sym - u_sym.conj().T
    sym_threshold = np.max([np.spacing(1000.), 0.1*n_u_sym])

    if norm(u_sym, 1) > sym_threshold:
        raise LinAlgError('The associated symplectic pencil has eigenvalues'
                          'too close to the unit circle')

    return (x + x.conj().T)/2


def _are_validate_args(a, b, q, r, e, s, eq_type='care'):
    """
    A helper function to validate the arguments supplied to the
    Riccati equation solvers. Any discrepancy found in the input
    matrices leads to a ``ValueError`` exception.

    Essentially, it performs:

        - a check whether the input is free of NaN and Infs.
        - a pass for the data through ``numpy.atleast_2d()``
        - squareness check of the relevant arrays,
        - shape consistency check of the arrays,
        - singularity check of the relevant arrays,
        - symmetricity check of the relevant matrices,
        - a check whether the regular or the generalized version is asked.

    This function is used by ``solve_continuous_are`` and
    ``solve_discrete_are``.

    Parameters
    ----------
    a, b, q, r, e, s : array_like
        Input data
    eq_type : str
        Accepted arguments are 'care' and 'dare'.

    Returns
    -------
    a, b, q, r, e, s : ndarray
        Regularized input data
    m, n : int
        shape of the problem
    r_or_c : type
        Data type of the problem, returns float or complex
    gen_or_not : bool
        Type of the equation, True for generalized and False for regular ARE.

    """

    if not eq_type.lower() in ('dare', 'care'):
        raise ValueError("Equation type unknown. "
                         "Only 'care' and 'dare' is understood")

    a = np.atleast_2d(_asarray_validated(a, check_finite=True))
    b = np.atleast_2d(_asarray_validated(b, check_finite=True))
    q = np.atleast_2d(_asarray_validated(q, check_finite=True))
    r = np.atleast_2d(_asarray_validated(r, check_finite=True))

    # Get the correct data types otherwise NumPy complains
    # about pushing complex numbers into real arrays.
    r_or_c = complex if np.iscomplexobj(b) else float

    for ind, mat in enumerate((a, q, r)):
        if np.iscomplexobj(mat):
            r_or_c = complex

        if not np.equal(*mat.shape):
            raise ValueError("Matrix {} should be square.".format("aqr"[ind]))

    # Shape consistency checks
    m, n = b.shape
    if m != a.shape[0]:
        raise ValueError("Matrix a and b should have the same number of rows.")
    if m != q.shape[0]:
        raise ValueError("Matrix a and q should have the same shape.")
    if n != r.shape[0]:
        raise ValueError("Matrix b and r should have the same number of cols.")

    # Check if the data matrices q, r are (sufficiently) hermitian
    for ind, mat in enumerate((q, r)):
        if norm(mat - mat.conj().T, 1) > np.spacing(norm(mat, 1))*100:
            raise ValueError("Matrix {} should be symmetric/hermitian."
                             "".format("qr"[ind]))

    # Continuous time ARE should have a nonsingular r matrix.
    if eq_type == 'care':
        min_sv = svd(r, compute_uv=False)[-1]
        if min_sv == 0. or min_sv < np.spacing(1.)*norm(r, 1):
            raise ValueError('Matrix r is numerically singular.')

    # Check if the generalized case is required with omitted arguments
    # perform late shape checking etc.
    generalized_case = e is not None or s is not None

    if generalized_case:
        if e is not None:
            e = np.atleast_2d(_asarray_validated(e, check_finite=True))
            if not np.equal(*e.shape):
                raise ValueError("Matrix e should be square.")
            if m != e.shape[0]:
                raise ValueError("Matrix a and e should have the same shape.")
            # numpy.linalg.cond doesn't check for exact zeros and
            # emits a runtime warning. Hence the following manual check.
            min_sv = svd(e, compute_uv=False)[-1]
            if min_sv == 0. or min_sv < np.spacing(1.) * norm(e, 1):
                raise ValueError('Matrix e is numerically singular.')
            if np.iscomplexobj(e):
                r_or_c = complex
        if s is not None:
            s = np.atleast_2d(_asarray_validated(s, check_finite=True))
            if s.shape != b.shape:
                raise ValueError("Matrix b and s should have the same shape.")
            if np.iscomplexobj(s):
                r_or_c = complex

    return a, b, q, r, e, s, m, n, r_or_c, generalized_case