_root.py 25.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
"""
Unified interfaces to root finding algorithms.

Functions
---------
- root : find a root of a vector function.
"""
from __future__ import division, print_function, absolute_import

__all__ = ['root']

import numpy as np

from scipy._lib.six import callable

from warnings import warn

from .optimize import MemoizeJac, OptimizeResult, _check_unknown_options
from .minpack import _root_hybr, leastsq
from ._spectral import _root_df_sane
from . import nonlin


def root(fun, x0, args=(), method='hybr', jac=None, tol=None, callback=None,
         options=None):
    """
    Find a root of a vector function.

    Parameters
    ----------
    fun : callable
        A vector function to find a root of.
    x0 : ndarray
        Initial guess.
    args : tuple, optional
        Extra arguments passed to the objective function and its Jacobian.
    method : str, optional
        Type of solver.  Should be one of

            - 'hybr'             :ref:`(see here) <optimize.root-hybr>`
            - 'lm'               :ref:`(see here) <optimize.root-lm>`
            - 'broyden1'         :ref:`(see here) <optimize.root-broyden1>`
            - 'broyden2'         :ref:`(see here) <optimize.root-broyden2>`
            - 'anderson'         :ref:`(see here) <optimize.root-anderson>`
            - 'linearmixing'     :ref:`(see here) <optimize.root-linearmixing>`
            - 'diagbroyden'      :ref:`(see here) <optimize.root-diagbroyden>`
            - 'excitingmixing'   :ref:`(see here) <optimize.root-excitingmixing>`
            - 'krylov'           :ref:`(see here) <optimize.root-krylov>`
            - 'df-sane'          :ref:`(see here) <optimize.root-dfsane>`

    jac : bool or callable, optional
        If `jac` is a Boolean and is True, `fun` is assumed to return the
        value of Jacobian along with the objective function. If False, the
        Jacobian will be estimated numerically.
        `jac` can also be a callable returning the Jacobian of `fun`. In
        this case, it must accept the same arguments as `fun`.
    tol : float, optional
        Tolerance for termination. For detailed control, use solver-specific
        options.
    callback : function, optional
        Optional callback function. It is called on every iteration as
        ``callback(x, f)`` where `x` is the current solution and `f`
        the corresponding residual. For all methods but 'hybr' and 'lm'.
    options : dict, optional
        A dictionary of solver options. E.g. `xtol` or `maxiter`, see
        :obj:`show_options()` for details.

    Returns
    -------
    sol : OptimizeResult
        The solution represented as a ``OptimizeResult`` object.
        Important attributes are: ``x`` the solution array, ``success`` a
        Boolean flag indicating if the algorithm exited successfully and
        ``message`` which describes the cause of the termination. See
        `OptimizeResult` for a description of other attributes.

    See also
    --------
    show_options : Additional options accepted by the solvers

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter. The default method is *hybr*.

    Method *hybr* uses a modification of the Powell hybrid method as
    implemented in MINPACK [1]_.

    Method *lm* solves the system of nonlinear equations in a least squares
    sense using a modification of the Levenberg-Marquardt algorithm as
    implemented in MINPACK [1]_.

    Method *df-sane* is a derivative-free spectral method. [3]_

    Methods *broyden1*, *broyden2*, *anderson*, *linearmixing*,
    *diagbroyden*, *excitingmixing*, *krylov* are inexact Newton methods,
    with backtracking or full line searches [2]_. Each method corresponds
    to a particular Jacobian approximations. See `nonlin` for details.

    - Method *broyden1* uses Broyden's first Jacobian approximation, it is
      known as Broyden's good method.
    - Method *broyden2* uses Broyden's second Jacobian approximation, it
      is known as Broyden's bad method.
    - Method *anderson* uses (extended) Anderson mixing.
    - Method *Krylov* uses Krylov approximation for inverse Jacobian. It
      is suitable for large-scale problem.
    - Method *diagbroyden* uses diagonal Broyden Jacobian approximation.
    - Method *linearmixing* uses a scalar Jacobian approximation.
    - Method *excitingmixing* uses a tuned diagonal Jacobian
      approximation.

    .. warning::

        The algorithms implemented for methods *diagbroyden*,
        *linearmixing* and *excitingmixing* may be useful for specific
        problems, but whether they will work may depend strongly on the
        problem.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1] More, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom.
       1980. User Guide for MINPACK-1.
    .. [2] C. T. Kelley. 1995. Iterative Methods for Linear and Nonlinear
       Equations. Society for Industrial and Applied Mathematics.
       <https://archive.siam.org/books/kelley/fr16/>
    .. [3] W. La Cruz, J.M. Martinez, M. Raydan. Math. Comp. 75, 1429 (2006).

    Examples
    --------
    The following functions define a system of nonlinear equations and its
    jacobian.

    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    >>> def jac(x):
    ...     return np.array([[1 + 1.5 * (x[0] - x[1])**2,
    ...                       -1.5 * (x[0] - x[1])**2],
    ...                      [-1.5 * (x[1] - x[0])**2,
    ...                       1 + 1.5 * (x[1] - x[0])**2]])

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr')
    >>> sol.x
    array([ 0.8411639,  0.1588361])

    """
    if not isinstance(args, tuple):
        args = (args,)

    meth = method.lower()
    if options is None:
        options = {}

    if callback is not None and meth in ('hybr', 'lm'):
        warn('Method %s does not accept callback.' % method,
             RuntimeWarning)

    # fun also returns the jacobian
    if not callable(jac) and meth in ('hybr', 'lm'):
        if bool(jac):
            fun = MemoizeJac(fun)
            jac = fun.derivative
        else:
            jac = None

    # set default tolerances
    if tol is not None:
        options = dict(options)
        if meth in ('hybr', 'lm'):
            options.setdefault('xtol', tol)
        elif meth in ('df-sane',):
            options.setdefault('ftol', tol)
        elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing',
                      'diagbroyden', 'excitingmixing', 'krylov'):
            options.setdefault('xtol', tol)
            options.setdefault('xatol', np.inf)
            options.setdefault('ftol', np.inf)
            options.setdefault('fatol', np.inf)

    if meth == 'hybr':
        sol = _root_hybr(fun, x0, args=args, jac=jac, **options)
    elif meth == 'lm':
        sol = _root_leastsq(fun, x0, args=args, jac=jac, **options)
    elif meth == 'df-sane':
        _warn_jac_unused(jac, method)
        sol = _root_df_sane(fun, x0, args=args, callback=callback,
                            **options)
    elif meth in ('broyden1', 'broyden2', 'anderson', 'linearmixing',
                  'diagbroyden', 'excitingmixing', 'krylov'):
        _warn_jac_unused(jac, method)
        sol = _root_nonlin_solve(fun, x0, args=args, jac=jac,
                                 _method=meth, _callback=callback,
                                 **options)
    else:
        raise ValueError('Unknown solver %s' % method)

    return sol


def _warn_jac_unused(jac, method):
    if jac is not None:
        warn('Method %s does not use the jacobian (jac).' % (method,),
             RuntimeWarning)


def _root_leastsq(func, x0, args=(), jac=None,
                  col_deriv=0, xtol=1.49012e-08, ftol=1.49012e-08,
                  gtol=0.0, maxiter=0, eps=0.0, factor=100, diag=None,
                  **unknown_options):
    """
    Solve for least squares with Levenberg-Marquardt

    Options
    -------
    col_deriv : bool
        non-zero to specify that the Jacobian function computes derivatives
        down the columns (faster, because there is no transpose operation).
    ftol : float
        Relative error desired in the sum of squares.
    xtol : float
        Relative error desired in the approximate solution.
    gtol : float
        Orthogonality desired between the function vector and the columns
        of the Jacobian.
    maxiter : int
        The maximum number of calls to the function. If zero, then
        100*(N+1) is the maximum where N is the number of elements in x0.
    epsfcn : float
        A suitable step length for the forward-difference approximation of
        the Jacobian (for Dfun=None). If epsfcn is less than the machine
        precision, it is assumed that the relative errors in the functions
        are of the order of the machine precision.
    factor : float
        A parameter determining the initial step bound
        (``factor * || diag * x||``). Should be in interval ``(0.1, 100)``.
    diag : sequence
        N positive entries that serve as a scale factors for the variables.
    """

    _check_unknown_options(unknown_options)
    x, cov_x, info, msg, ier = leastsq(func, x0, args=args, Dfun=jac,
                                       full_output=True,
                                       col_deriv=col_deriv, xtol=xtol,
                                       ftol=ftol, gtol=gtol,
                                       maxfev=maxiter, epsfcn=eps,
                                       factor=factor, diag=diag)
    sol = OptimizeResult(x=x, message=msg, status=ier,
                         success=ier in (1, 2, 3, 4), cov_x=cov_x,
                         fun=info.pop('fvec'))
    sol.update(info)
    return sol


def _root_nonlin_solve(func, x0, args=(), jac=None,
                       _callback=None, _method=None,
                       nit=None, disp=False, maxiter=None,
                       ftol=None, fatol=None, xtol=None, xatol=None,
                       tol_norm=None, line_search='armijo', jac_options=None,
                       **unknown_options):
    _check_unknown_options(unknown_options)

    f_tol = fatol
    f_rtol = ftol
    x_tol = xatol
    x_rtol = xtol
    verbose = disp
    if jac_options is None:
        jac_options = dict()

    jacobian = {'broyden1': nonlin.BroydenFirst,
                'broyden2': nonlin.BroydenSecond,
                'anderson': nonlin.Anderson,
                'linearmixing': nonlin.LinearMixing,
                'diagbroyden': nonlin.DiagBroyden,
                'excitingmixing': nonlin.ExcitingMixing,
                'krylov': nonlin.KrylovJacobian
                }[_method]

    if args:
        if jac:
            def f(x):
                return func(x, *args)[0]
        else:
            def f(x):
                return func(x, *args)
    else:
        f = func

    x, info = nonlin.nonlin_solve(f, x0, jacobian=jacobian(**jac_options),
                                  iter=nit, verbose=verbose,
                                  maxiter=maxiter, f_tol=f_tol,
                                  f_rtol=f_rtol, x_tol=x_tol,
                                  x_rtol=x_rtol, tol_norm=tol_norm,
                                  line_search=line_search,
                                  callback=_callback, full_output=True,
                                  raise_exception=False)
    sol = OptimizeResult(x=x)
    sol.update(info)
    return sol

def _root_broyden1_doc():
    """
    Options
    -------
    nit : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    disp : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make. If more are needed to
        meet convergence, `NoConvergence` is raised.
    ftol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    fatol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    xtol : float, optional
        Relative minimum step size. If omitted, not used.
    xatol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in
        the direction given by the Jacobian approximation. Defaults to
        'armijo'.
    jac_options : dict, optional
        Options for the respective Jacobian approximation.
            alpha : float, optional
                Initial guess for the Jacobian is (-1/alpha).
            reduction_method : str or tuple, optional
                Method used in ensuring that the rank of the Broyden
                matrix stays low. Can either be a string giving the
                name of the method, or a tuple of the form ``(method,
                param1, param2, ...)`` that gives the name of the
                method and values for additional parameters.

                Methods available:

                    - ``restart``
                        Drop all matrix columns. Has no
                        extra parameters.
                    - ``simple``
                        Drop oldest matrix column. Has no
                        extra parameters.
                    - ``svd``
                        Keep only the most significant SVD
                        components.

                        Extra parameters:

                            - ``to_retain``
                                Number of SVD components to
                                retain when rank reduction is done.
                                Default is ``max_rank - 2``.
            max_rank : int, optional
                Maximum rank for the Broyden matrix.
                Default is infinity (ie., no rank reduction).
    """
    pass

def _root_broyden2_doc():
    """
    Options
    -------
    nit : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    disp : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make. If more are needed to
        meet convergence, `NoConvergence` is raised.
    ftol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    fatol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    xtol : float, optional
        Relative minimum step size. If omitted, not used.
    xatol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in
        the direction given by the Jacobian approximation. Defaults to
        'armijo'.
    jac_options : dict, optional
        Options for the respective Jacobian approximation.

        alpha : float, optional
            Initial guess for the Jacobian is (-1/alpha).
        reduction_method : str or tuple, optional
            Method used in ensuring that the rank of the Broyden
            matrix stays low. Can either be a string giving the
            name of the method, or a tuple of the form ``(method,
            param1, param2, ...)`` that gives the name of the
            method and values for additional parameters.

            Methods available:

                - ``restart``
                    Drop all matrix columns. Has no
                    extra parameters.
                - ``simple``
                    Drop oldest matrix column. Has no
                    extra parameters.
                - ``svd``
                    Keep only the most significant SVD
                    components.

                    Extra parameters:
                  
                        - ``to_retain``
                            Number of SVD components to
                            retain when rank reduction is done.
                            Default is ``max_rank - 2``.
        max_rank : int, optional
            Maximum rank for the Broyden matrix.
            Default is infinity (ie., no rank reduction).
    """
    pass

def _root_anderson_doc():
    """
    Options
    -------
    nit : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    disp : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make. If more are needed to
        meet convergence, `NoConvergence` is raised.
    ftol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    fatol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    xtol : float, optional
        Relative minimum step size. If omitted, not used.
    xatol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in
        the direction given by the Jacobian approximation. Defaults to
        'armijo'.
    jac_options : dict, optional
        Options for the respective Jacobian approximation.

        alpha : float, optional
            Initial guess for the Jacobian is (-1/alpha).
        M : float, optional
            Number of previous vectors to retain. Defaults to 5.
        w0 : float, optional
            Regularization parameter for numerical stability.
            Compared to unity, good values of the order of 0.01.
    """
    pass

def _root_linearmixing_doc():
    """
    Options
    -------
    nit : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    disp : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make. If more are needed to
        meet convergence, ``NoConvergence`` is raised.
    ftol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    fatol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    xtol : float, optional
        Relative minimum step size. If omitted, not used.
    xatol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in
        the direction given by the Jacobian approximation. Defaults to
        'armijo'.
    jac_options : dict, optional
        Options for the respective Jacobian approximation.

        alpha : float, optional
            initial guess for the jacobian is (-1/alpha).
    """
    pass

def _root_diagbroyden_doc():
    """
    Options
    -------
    nit : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    disp : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make. If more are needed to
        meet convergence, `NoConvergence` is raised.
    ftol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    fatol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    xtol : float, optional
        Relative minimum step size. If omitted, not used.
    xatol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in
        the direction given by the Jacobian approximation. Defaults to
        'armijo'.
    jac_options : dict, optional
        Options for the respective Jacobian approximation.

        alpha : float, optional
            initial guess for the jacobian is (-1/alpha).
    """
    pass

def _root_excitingmixing_doc():
    """
    Options
    -------
    nit : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    disp : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make. If more are needed to
        meet convergence, `NoConvergence` is raised.
    ftol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    fatol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    xtol : float, optional
        Relative minimum step size. If omitted, not used.
    xatol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in
        the direction given by the Jacobian approximation. Defaults to
        'armijo'.
    jac_options : dict, optional
        Options for the respective Jacobian approximation.

        alpha : float, optional
            Initial Jacobian approximation is (-1/alpha).
        alphamax : float, optional
            The entries of the diagonal Jacobian are kept in the range
            ``[alpha, alphamax]``.
    """
    pass

def _root_krylov_doc():
    """
    Options
    -------
    nit : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    disp : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make. If more are needed to
        meet convergence, `NoConvergence` is raised.
    ftol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    fatol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    xtol : float, optional
        Relative minimum step size. If omitted, not used.
    xatol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in
        the direction given by the Jacobian approximation. Defaults to
        'armijo'.
    jac_options : dict, optional
        Options for the respective Jacobian approximation.

        rdiff : float, optional
            Relative step size to use in numerical differentiation.
        method : {'lgmres', 'gmres', 'bicgstab', 'cgs', 'minres'} or function
            Krylov method to use to approximate the Jacobian.
            Can be a string, or a function implementing the same
            interface as the iterative solvers in
            `scipy.sparse.linalg`.

            The default is `scipy.sparse.linalg.lgmres`.
        inner_M : LinearOperator or InverseJacobian
            Preconditioner for the inner Krylov iteration.
            Note that you can use also inverse Jacobians as (adaptive)
            preconditioners. For example,

            >>> jac = BroydenFirst()
            >>> kjac = KrylovJacobian(inner_M=jac.inverse).

            If the preconditioner has a method named 'update', it will
            be called as ``update(x, f)`` after each nonlinear step,
            with ``x`` giving the current point, and ``f`` the current
            function value.
        inner_tol, inner_maxiter, ...
            Parameters to pass on to the "inner" Krylov solver.
            See `scipy.sparse.linalg.gmres` for details.
        outer_k : int, optional
            Size of the subspace kept across LGMRES nonlinear
            iterations.

            See `scipy.sparse.linalg.lgmres` for details.
    """
    pass