dok.py 15.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
"""Dictionary Of Keys based matrix"""

from __future__ import division, print_function, absolute_import

__docformat__ = "restructuredtext en"

__all__ = ['dok_matrix', 'isspmatrix_dok']

import itertools
import numpy as np

from scipy._lib.six import zip as izip, xrange, iteritems, iterkeys, itervalues

from .base import spmatrix, isspmatrix
from ._index import IndexMixin
from .sputils import (isdense, getdtype, isshape, isintlike, isscalarlike,
                      upcast, upcast_scalar, get_index_dtype, check_shape)

try:
    from operator import isSequenceType as _is_sequence
except ImportError:
    def _is_sequence(x):
        return (hasattr(x, '__len__') or hasattr(x, '__next__')
                or hasattr(x, 'next'))


class dok_matrix(spmatrix, IndexMixin, dict):
    """
    Dictionary Of Keys based sparse matrix.

    This is an efficient structure for constructing sparse
    matrices incrementally.

    This can be instantiated in several ways:
        dok_matrix(D)
            with a dense matrix, D

        dok_matrix(S)
            with a sparse matrix, S

        dok_matrix((M,N), [dtype])
            create the matrix with initial shape (M,N)
            dtype is optional, defaulting to dtype='d'

    Attributes
    ----------
    dtype : dtype
        Data type of the matrix
    shape : 2-tuple
        Shape of the matrix
    ndim : int
        Number of dimensions (this is always 2)
    nnz
        Number of nonzero elements

    Notes
    -----

    Sparse matrices can be used in arithmetic operations: they support
    addition, subtraction, multiplication, division, and matrix power.

    Allows for efficient O(1) access of individual elements.
    Duplicates are not allowed.
    Can be efficiently converted to a coo_matrix once constructed.

    Examples
    --------
    >>> import numpy as np
    >>> from scipy.sparse import dok_matrix
    >>> S = dok_matrix((5, 5), dtype=np.float32)
    >>> for i in range(5):
    ...     for j in range(5):
    ...         S[i, j] = i + j    # Update element

    """
    format = 'dok'

    def __init__(self, arg1, shape=None, dtype=None, copy=False):
        dict.__init__(self)
        spmatrix.__init__(self)

        self.dtype = getdtype(dtype, default=float)
        if isinstance(arg1, tuple) and isshape(arg1):  # (M,N)
            M, N = arg1
            self._shape = check_shape((M, N))
        elif isspmatrix(arg1):  # Sparse ctor
            if isspmatrix_dok(arg1) and copy:
                arg1 = arg1.copy()
            else:
                arg1 = arg1.todok()

            if dtype is not None:
                arg1 = arg1.astype(dtype)

            dict.update(self, arg1)
            self._shape = check_shape(arg1.shape)
            self.dtype = arg1.dtype
        else:  # Dense ctor
            try:
                arg1 = np.asarray(arg1)
            except Exception:
                raise TypeError('Invalid input format.')

            if len(arg1.shape) != 2:
                raise TypeError('Expected rank <=2 dense array or matrix.')

            from .coo import coo_matrix
            d = coo_matrix(arg1, dtype=dtype).todok()
            dict.update(self, d)
            self._shape = check_shape(arg1.shape)
            self.dtype = d.dtype

    def update(self, val):
        # Prevent direct usage of update
        raise NotImplementedError("Direct modification to dok_matrix element "
                                  "is not allowed.")

    def _update(self, data):
        """An update method for dict data defined for direct access to
        `dok_matrix` data. Main purpose is to be used for effcient conversion
        from other spmatrix classes. Has no checking if `data` is valid."""
        return dict.update(self, data)

    def set_shape(self, shape):
        new_matrix = self.reshape(shape, copy=False).asformat(self.format)
        self.__dict__ = new_matrix.__dict__
        dict.clear(self)
        dict.update(self, new_matrix)

    shape = property(fget=spmatrix.get_shape, fset=set_shape)

    def getnnz(self, axis=None):
        if axis is not None:
            raise NotImplementedError("getnnz over an axis is not implemented "
                                      "for DOK format.")
        return dict.__len__(self)

    def count_nonzero(self):
        return sum(x != 0 for x in itervalues(self))

    getnnz.__doc__ = spmatrix.getnnz.__doc__
    count_nonzero.__doc__ = spmatrix.count_nonzero.__doc__

    def __len__(self):
        return dict.__len__(self)

    def get(self, key, default=0.):
        """This overrides the dict.get method, providing type checking
        but otherwise equivalent functionality.
        """
        try:
            i, j = key
            assert isintlike(i) and isintlike(j)
        except (AssertionError, TypeError, ValueError):
            raise IndexError('Index must be a pair of integers.')
        if (i < 0 or i >= self.shape[0] or j < 0 or j >= self.shape[1]):
            raise IndexError('Index out of bounds.')
        return dict.get(self, key, default)

    def _get_intXint(self, row, col):
        return dict.get(self, (row, col), self.dtype.type(0))

    def _get_intXslice(self, row, col):
        return self._get_sliceXslice(slice(row, row+1), col)

    def _get_sliceXint(self, row, col):
        return self._get_sliceXslice(row, slice(col, col+1))

    def _get_sliceXslice(self, row, col):
        row_start, row_stop, row_step = row.indices(self.shape[0])
        col_start, col_stop, col_step = col.indices(self.shape[1])
        row_range = xrange(row_start, row_stop, row_step)
        col_range = xrange(col_start, col_stop, col_step)
        shape = (len(row_range), len(col_range))
        # Switch paths only when advantageous
        # (count the iterations in the loops, adjust for complexity)
        if len(self) >= 2 * shape[0] * shape[1]:
            # O(nr*nc) path: loop over <row x col>
            return self._get_columnXarray(row_range, col_range)
        # O(nnz) path: loop over entries of self
        newdok = dok_matrix(shape, dtype=self.dtype)
        for key in iterkeys(self):
            i, ri = divmod(int(key[0]) - row_start, row_step)
            if ri != 0 or i < 0 or i >= shape[0]:
                continue
            j, rj = divmod(int(key[1]) - col_start, col_step)
            if rj != 0 or j < 0 or j >= shape[1]:
                continue
            x = dict.__getitem__(self, key)
            dict.__setitem__(newdok, (i, j), x)
        return newdok

    def _get_intXarray(self, row, col):
        return self._get_columnXarray([row], col)

    def _get_arrayXint(self, row, col):
        return self._get_columnXarray(row, [col])

    def _get_sliceXarray(self, row, col):
        row = list(range(*row.indices(self.shape[0])))
        return self._get_columnXarray(row, col)

    def _get_arrayXslice(self, row, col):
        col = list(range(*col.indices(self.shape[1])))
        return self._get_columnXarray(row, col)

    def _get_columnXarray(self, row, col):
        # outer indexing
        newdok = dok_matrix((len(row), len(col)), dtype=self.dtype)

        for i, r in enumerate(row):
            for j, c in enumerate(col):
                v = dict.get(self, (r, c), 0)
                if v:
                    dict.__setitem__(newdok, (i, j), v)
        return newdok

    def _get_arrayXarray(self, row, col):
        # inner indexing
        i, j = map(np.atleast_2d, np.broadcast_arrays(row, col))
        newdok = dok_matrix(i.shape, dtype=self.dtype)

        for key in itertools.product(xrange(i.shape[0]), xrange(i.shape[1])):
            v = dict.get(self, (i[key], j[key]), 0)
            if v:
                dict.__setitem__(newdok, key, v)
        return newdok

    def _set_intXint(self, row, col, x):
        key = (row, col)
        if x:
            dict.__setitem__(self, key, x)
        elif dict.__contains__(self, key):
            del self[key]

    def _set_arrayXarray(self, row, col, x):
        row = list(map(int, row.ravel()))
        col = list(map(int, col.ravel()))
        x = x.ravel()
        dict.update(self, izip(izip(row, col), x))

        for i in np.nonzero(x == 0)[0]:
            key = (row[i], col[i])
            if dict.__getitem__(self, key) == 0:
                # may have been superseded by later update
                del self[key]

    def __add__(self, other):
        if isscalarlike(other):
            res_dtype = upcast_scalar(self.dtype, other)
            new = dok_matrix(self.shape, dtype=res_dtype)
            # Add this scalar to every element.
            M, N = self.shape
            for key in itertools.product(xrange(M), xrange(N)):
                aij = dict.get(self, (key), 0) + other
                if aij:
                    new[key] = aij
            # new.dtype.char = self.dtype.char
        elif isspmatrix_dok(other):
            if other.shape != self.shape:
                raise ValueError("Matrix dimensions are not equal.")
            # We could alternatively set the dimensions to the largest of
            # the two matrices to be summed.  Would this be a good idea?
            res_dtype = upcast(self.dtype, other.dtype)
            new = dok_matrix(self.shape, dtype=res_dtype)
            dict.update(new, self)
            with np.errstate(over='ignore'):
                dict.update(new,
                           ((k, new[k] + other[k]) for k in iterkeys(other)))
        elif isspmatrix(other):
            csc = self.tocsc()
            new = csc + other
        elif isdense(other):
            new = self.todense() + other
        else:
            return NotImplemented
        return new

    def __radd__(self, other):
        if isscalarlike(other):
            new = dok_matrix(self.shape, dtype=self.dtype)
            M, N = self.shape
            for key in itertools.product(xrange(M), xrange(N)):
                aij = dict.get(self, (key), 0) + other
                if aij:
                    new[key] = aij
        elif isspmatrix_dok(other):
            if other.shape != self.shape:
                raise ValueError("Matrix dimensions are not equal.")
            new = dok_matrix(self.shape, dtype=self.dtype)
            dict.update(new, self)
            dict.update(new,
                       ((k, self[k] + other[k]) for k in iterkeys(other)))
        elif isspmatrix(other):
            csc = self.tocsc()
            new = csc + other
        elif isdense(other):
            new = other + self.todense()
        else:
            return NotImplemented
        return new

    def __neg__(self):
        if self.dtype.kind == 'b':
            raise NotImplementedError('Negating a sparse boolean matrix is not'
                                      ' supported.')
        new = dok_matrix(self.shape, dtype=self.dtype)
        dict.update(new, ((k, -self[k]) for k in iterkeys(self)))
        return new

    def _mul_scalar(self, other):
        res_dtype = upcast_scalar(self.dtype, other)
        # Multiply this scalar by every element.
        new = dok_matrix(self.shape, dtype=res_dtype)
        dict.update(new, ((k, v * other) for k, v in iteritems(self)))
        return new

    def _mul_vector(self, other):
        # matrix * vector
        result = np.zeros(self.shape[0], dtype=upcast(self.dtype, other.dtype))
        for (i, j), v in iteritems(self):
            result[i] += v * other[j]
        return result

    def _mul_multivector(self, other):
        # matrix * multivector
        result_shape = (self.shape[0], other.shape[1])
        result_dtype = upcast(self.dtype, other.dtype)
        result = np.zeros(result_shape, dtype=result_dtype)
        for (i, j), v in iteritems(self):
            result[i,:] += v * other[j,:]
        return result

    def __imul__(self, other):
        if isscalarlike(other):
            dict.update(self, ((k, v * other) for k, v in iteritems(self)))
            return self
        return NotImplemented

    def __truediv__(self, other):
        if isscalarlike(other):
            res_dtype = upcast_scalar(self.dtype, other)
            new = dok_matrix(self.shape, dtype=res_dtype)
            dict.update(new, ((k, v / other) for k, v in iteritems(self)))
            return new
        return self.tocsr() / other

    def __itruediv__(self, other):
        if isscalarlike(other):
            dict.update(self, ((k, v / other) for k, v in iteritems(self)))
            return self
        return NotImplemented

    def __reduce__(self):
        # this approach is necessary because __setstate__ is called after
        # __setitem__ upon unpickling and since __init__ is not called there
        # is no shape attribute hence it is not possible to unpickle it.
        return dict.__reduce__(self)

    # What should len(sparse) return? For consistency with dense matrices,
    # perhaps it should be the number of rows?  For now it returns the number
    # of non-zeros.

    def transpose(self, axes=None, copy=False):
        if axes is not None:
            raise ValueError("Sparse matrices do not support "
                             "an 'axes' parameter because swapping "
                             "dimensions is the only logical permutation.")

        M, N = self.shape
        new = dok_matrix((N, M), dtype=self.dtype, copy=copy)
        dict.update(new, (((right, left), val)
                          for (left, right), val in iteritems(self)))
        return new

    transpose.__doc__ = spmatrix.transpose.__doc__

    def conjtransp(self):
        """Return the conjugate transpose."""
        M, N = self.shape
        new = dok_matrix((N, M), dtype=self.dtype)
        dict.update(new, (((right, left), np.conj(val))
                          for (left, right), val in iteritems(self)))
        return new

    def copy(self):
        new = dok_matrix(self.shape, dtype=self.dtype)
        dict.update(new, self)
        return new

    copy.__doc__ = spmatrix.copy.__doc__

    def tocoo(self, copy=False):
        from .coo import coo_matrix
        if self.nnz == 0:
            return coo_matrix(self.shape, dtype=self.dtype)

        idx_dtype = get_index_dtype(maxval=max(self.shape))
        data = np.fromiter(itervalues(self), dtype=self.dtype, count=self.nnz)
        row = np.fromiter((i for i, _ in iterkeys(self)), dtype=idx_dtype, count=self.nnz)
        col = np.fromiter((j for _, j in iterkeys(self)), dtype=idx_dtype, count=self.nnz)
        A = coo_matrix((data, (row, col)), shape=self.shape, dtype=self.dtype)
        A.has_canonical_format = True
        return A

    tocoo.__doc__ = spmatrix.tocoo.__doc__

    def todok(self, copy=False):
        if copy:
            return self.copy()
        return self

    todok.__doc__ = spmatrix.todok.__doc__

    def tocsc(self, copy=False):
        return self.tocoo(copy=False).tocsc(copy=copy)

    tocsc.__doc__ = spmatrix.tocsc.__doc__

    def resize(self, *shape):
        shape = check_shape(shape)
        newM, newN = shape
        M, N = self.shape
        if newM < M or newN < N:
            # Remove all elements outside new dimensions
            for (i, j) in list(iterkeys(self)):
                if i >= newM or j >= newN:
                    del self[i, j]
        self._shape = shape

    resize.__doc__ = spmatrix.resize.__doc__


def isspmatrix_dok(x):
    """Is x of dok_matrix type?

    Parameters
    ----------
    x
        object to check for being a dok matrix

    Returns
    -------
    bool
        True if x is a dok matrix, False otherwise

    Examples
    --------
    >>> from scipy.sparse import dok_matrix, isspmatrix_dok
    >>> isspmatrix_dok(dok_matrix([[5]]))
    True

    >>> from scipy.sparse import dok_matrix, csr_matrix, isspmatrix_dok
    >>> isspmatrix_dok(csr_matrix([[5]]))
    False
    """
    return isinstance(x, dok_matrix)